Answer:
The acid dissociation constant, _Ka__, is a quantitative measure of acid strength
Explanation:
Which of the subshells below do not exist due to the constraints upon the angular momentum quantum number?A) 2dB) 2sC) 2pD) all of the aboveE) none of the above
Answer:
Option A): Due to the constraints upton the angular momentum quantum number, the subshell 2d does not exist.Explanation:
The angular momentum quantum number, identified with the letter l (lowercase L), number is the second quantum number.
This number identifies the shape of the orbital or kind of subshell.
The possible values of the angular momentum quantum number, l, are constrained by the value of the principal quantum number n: l can take values from 0 to n - 1.
So, you can use this guide:
Principal quantum Angular momentum Shape of the orbital
number, n quantum number, l
1 0 s
2 0, 1 s, p
3 0, 1, 2 s, p, d
Hence,
the subshell 2d (n = 2, l = 2) is not feasible.2s (option B) is possible: n = 2, l = 02p (option C) is possible: n = 2, l = 1Which pair of substances would most likely result in the production of a gas when reacting with an acid?
litmus and methyl orange
base and salt
metal and carbonate
carbon dioxide and water
Answer: metal and carbonate
Explanation:
According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions [tex](OH^-)[/tex] when dissolved in water and an acid is defined as a substance which donates hydrogen ions [tex](H^+)[/tex] in water.
An acid is represented as :
[tex]HX\rightarrow H^++X^-[/tex]
1. When metal is treated with an acid such as [tex]HCl[/tex], if the metal is more reactive than hydrogen displaces hydrogen from its salt solution and thus produce zinc chloride and hydrogen gas.
[tex]M+xHCl(aq)\rightarrow MCl_x(aq)+xH_2(g)[/tex]
2. When carbonates are treated with acid, double displacement takes place ad carbon dioxide is released as a gas.
[tex]MCO_3(aq)+xHCl(aq)\rightarrow MCl_x(aq)+xH_2O(l)+CO_2(g)[/tex]
Answer:
for those in a hurry, its C
Explanation:
on edge. Metal and carbonates
Which two forces drive the rock cycle?
A. Weathering and erosion
B. Transportation and deposition
C. Mineral composition of existing rock and time
D. Earth's internal heat engine and the water cycle
Answer:
D. Earth's internal heat engine and the water cycle
Explanation:
The rock cycle is driven by the earth's internal heat engine and the water cycle.
The internal heat engine furnishes the earth with the required energy. The energy is used to melt rocks within the earth crust and to initiate convective cells in the mantle. This causes rocks to melt and plates to move. As this occurs, igneous and metamorphic processes takes place.
The water cycle is greatly responsible for the weathering and erosion of rocks. Through these processes of denudation, sediments are formed and deposited within basins on the crust. The action of runing water and glacier plays a very significant role in forming sedimentary rocks.
The interplay between the internal heat Engine and water cycle moves crustal materials to deeper levels of the earth and also deep seated materials to the crust.
The two forces that primarily drive the rock cycle are Earth's internal heat engine and the water cycle. Therefore, option D is correct.
The Earth's internal heat engine, which includes processes like volcanic activity, tectonic plate movements, and mountain building plays a crucial role in the rock cycle.
These processes generate heat and pressure that lead to the formation of new rocks through processes such as solidification, crystallization, and metamorphism.
The water cycle, driven by solar energy, also plays a role as it contributes to weathering and erosion by causing precipitation, runoff, and the movement of water through different stages.
To learn more about the rock cycle, follow the link:
https://brainly.com/question/29767269
#SPJ6
Which describes a radioactive substance?
A. A substance whose nuclei do not stay together
B. A substance that generates radio-wave frequencies
C. A substance that forms positive or negative ions
D. A substance that forms weak molecular bonds
Answer: I believe the Answer is A
Answer:
a substance whose nuclei do not stay together
Explanation:
Urgent 25 points!!
Amanda was asked to make a solution of salt water using 32.0 grams of NaCl and 0.75 Liter of water. Amanda realized that first, she needed to find the number of moles there are in 32 grams of NaCl. She set up the following calculation to find the number of moles of NaCl.
32.0 g NaCl x 1 mole NaCl = 0.55 moles of NaCl
58.45 g NaCl
A. Did Amanda find the number of moles of NaCl correctly? If not, explain.
B. What does Amanda need to do next to calculate the molarity of the NaCl solution? Show your work for full credit.
Answer:
A. Yes, Amanda find the number of moles of NaCl correctly.
B. 0.73 M.
Explanation:
A. Did Amanda find the number of moles of NaCl correctly? If not, explain.
Yes, Amanda find the number of moles of NaCl correctly.The relation to find the no. of moles of NaCl is:No. of moles (n) of NaCl = mass/molar mass.
mass of NaCl = 32.0 g, molar mass of NaCl = 58.45 g/mol.
∴ No. of moles (n) of NaCl = mass/molar mass = (32.0 g)/(58.45 g/mol) = (32.0 g NaCl)*(1 mol of NaCl)/(58.45 g NaCl) = 0.547 mol ≅ 0.55 mol.
B. What does Amanda need to do next to calculate the molarity of the NaCl solution? Show your work for full credit.
Molarity is the no. of moles of solute dissolved in a 1.0 liter of a solution.∴ M = (no. of moles of NaCl)/(volume of solution (L)) = (0.55 mol)/(0.75 L) = 0.73 M.
If a wave has a wavelength of 13 meters and a period of 0.005, what's the velocity of the wave? A. 2,600 m/s B. 260 m/s C. 1,300 m/s D. 1,560 m/s
Answer:
V = 2600ms⁻¹
Explanation:
Given parameters:
Wavelength(λ) = 13meters
Period (T) = 0.005s
Period(T) is the time it takes for a full cycle of vibration to pass through. It's unit is in seconds (s)
The Velocity of waves is expressed as:
V = fλ
Where f = frequency(s⁻¹)
Frequency of a wave is the number of waves that passes through a point per unit time
f = 1/T
Where T is the period
We can therefore express Velocity of waves as a function of period
V = λ/T
Inputing the parameters, we have:
V = 13m / 0.005s
V = 2600ms⁻¹
Answer:
B) 2,600 m/s
Explanation:
What happens to a catalyst in a reaction?
Answer:
The catalyst is unchanged.
Explanation:
Hope my answer has helped you!
Substitution of an amino group on the para position of acetophenone shifts the cjo frequency from about 1685 to 1652 cm−1 , whereas a nitro group attached to the para position yields a cjo frequency of 1693 cm−1 . explain the shift for each substituent from the 1685 cm−1 base value for acetophenone
Answer:
Here's what I get.
Explanation:
The frequency of a vibration depends on the strength of the bond (the force constant).
The stronger the bond, the more energy is needed for the vibration, so the frequency (f) and the wavenumber increase.
Acetophenone
Resonance interactions with the aromatic ring give the C=O bond in acetophenone a mix of single- and double-bond character, and the bond frequency = 1685 cm⁻¹.
p-Aminoacetophenone
The +R effect of the amino group increases the single-bond character of the C=O bond. The bond lengthens, so it becomes weaker.
The vibrational energy decreases, so wavenumber decreases to 1652 cm⁻¹.
p-Nitroacetophenone
The nitro group puts a partial positive charge on C-1. The -I effect withdraws electrons from the acetyl group.
As electron density moves toward C-1, the double bond character of the C=O group increases.
The bond length decreases, so the bond becomes stronger, and wavenumber increases to 1693 cm¹.
Which list of solutions is arranged in order from highest boiling point to lowest boiling point?
A 2.0 BaCl2
B 2.0 NaNO3
C 1.0 C6H12O6
D 1.0 K2SO3
Answer:
A) 2.0 BaCl₂ > B) 2.0 NaNO₃ > D) 1.0 K₂SO₃ > C) 1.0 C₆H₁₂O₆Explanation:
The boiling point of a pure solven increases when a solute is added and a solution is formed.
The increase of the boiling point of a solvent, when a non-volatile solute is added, is a colligative property, meaning that it depends of the number particles of solute dissolved.
The equation that rules the increase of the boiling point is:
ΔTb = Kb × m × iWhere:
ΔTb is the increase in the boiling point of the solvent,Kb is the boiling molal constant of the solvent, andi is the Vant' Hoff factor, which accounts for the number of ions when the solute is a ionic compound.Then, since Kb is constant (because it is the same solvent for all the solutions), you must look at the product m × i.
For ionic solutes you assume 100% ionization, which drives to:
Solution Ionization i m m × i
A) 2.0 BaCl₂ Ba⁺² + 2Cl⁻ 3 2.0 6.0 ↔ highest
B) 2.0 NaNO₃ Na⁺ + NO₃⁻ 2 2.0 4.0 ↔ second
C) 1.0 C₆H₁₂O₆ none 1 1.0 1.0 ↔ lowest (fourth)
D) 1.0 K₂SO₃ 2K⁺ + SO₃²⁻ 3 1.0 3.0 ↔ third
Then, 6.0 > 4.0 > 3.0 > 1.0 and the final list of the solutions arranged in order from highest boiling point to lowest boiling point is:
2.0 BaCl₂ > 2.0 NaNO₃ > 1.0 K₂SO₃ > 1.0 C₆H₁₂O₆Answer:
The order should be ABDC.
Explanation:
What is true about elements that are in the same column
There are made out of the same material or elements
Which answer describes a chemical reaction in equilibrium? (2 points)
The reactants are all used up.
All the product is formed.
The forward and reverse reactions have ceased.
The forward and reverse reaction rates are the same.
Answer:
It is the last option.
Explanation:.
The forward and reverse reaction rates are the same.
The concentration of reactants and products are constant.
Solid magnesium has a specific heat of 1.01 J/g°C. How much heat is given off by a 20.0 gram sample of magnesium when it cools from 70.0°C to 50.0°C?
Answer:
404 J
Explanation:
The amount of heat given off by the magnesium sample is given by:
[tex]Q=mC_s \Delta T[/tex]
where
m = 20.0 g is the mass of the sample
[tex]C_s = 1.01 J/gC[/tex] is the specific heat capacity of the magnesium
[tex]\Delta T=50.0 C-70.0 C=-20.0^{\circ}[/tex] is the change in temperature
Substituting into the equation, we find
[tex]Q=(20.0 g)(1.01 J/gC)(-20.0^{\circ})=-404 J[/tex]
and the negative sign means the heat is given off by the sample.
Using the formula for heat exchange (q = mcΔT), we find that a 20.0 gram sample of magnesium releases 404 Joules of heat when cooling from 70.0°C to 50.0°C
Explanation:The student's question involves the physics concept of specific heat. Specific heat is the heat required to change the temperature of 1 gram of a substance by 1 degree Celsius, it's an intensive property. To calculate the amount of heat given off you can use this formula: q = mcΔT, where:
q is the heat exchanged,m is the mass of the substance,c is the specific heat, andΔT is the difference in temperature.For the given problem, the mass (m) of magnesium is 20.0 grams, its specific heat (c) is 1.01 J/g°C and the change in temperature (ΔT) is 70.0°C - 50.0°C = 20.0°C. So,
q = mcΔT
= (20.0 g) * (1.01 J/g°C) * (20.0°C)
= 404 J
Therefore, 404 Joules of heat is released when the 20.0 gram sample of magnesium cools from 70.0°C to 50.0°C.
Learn more about Specific Heat here:https://brainly.com/question/28852989
#SPJ3
Which is an overall third-order reaction?
a. R=k[A]2[b]
b.R= k[A][B]1
c. R=k [X]2[Y]3
d.R=k [x][y]
A on nudity
Reason: ye
8. Determine the number of significant figures in the following numbers
Answer:
a) 5
b) 4
c) 3
d) 3
e) 4
Explanation:
I use only one rule when the decimal is present, meaning you can see the decimal (as is the case with all of these).
When the decimal is Present, start counting sig figs from the Pacific (left) side of the number beginning with the first non-zero digit and count all the way to the end.
So, for example, in "a", the first non-zero digit starting from the left is 1, then continue counting all the way to the right side.
For "c", the first non-zero digit is the left most 4 (skip the first 4 zeros), then count all the way to the right side.
A saturated solution of silver nitrate is prepared in 100g of water at 20c. The solution is then heated to 50c. How much more silver nitrate must now be added to obtain a saturated solution?
Answer:
233 g.
Explanation:
It is known that:The solubility of silver nitrate at 20.0°C is 222 g per 100 g of water.
The solubility of silver nitrate at 50.0°C is 455 g per 100 g of water.
∴ We need to add (455 g - 222 g = 233 g) of AgNO₃ to obtain a saturated solution at 50.0°C.
** WILL MARK BRAINLIEST **
Which term is used to describe the reactant that is not used up completely in a chemical reaction?
A. Catalytic reactant
B. Excess reactant
C. Limiting reactant
D. Theoretical yield
The answer is excess reactant
Answer: option B, excess reactant
Explanation:
Since one the reactants is in excess(high amount) compared to other.
Example reaction of H2& Cl2 gives HCl.
If we take excess H2 compared to Cl2. Then we call H2 as excess Reactant.
Which formula can be used to calculate the actual yield?
(Percent yield × theoretical yield) ÷ 100
(Percent yield ÷ theoretical yield) × 100
(Theoretical yield ÷ percent yield) × 100
(Theoretical yield × amount of reactants) ÷ 100
Answer:
(Percent yield × theoretical yield) ÷ 100.
Explanation:
∵ percent yield of the reaction = [(actual yield)/(theoretical yield)] x 100.
∴ actual yield = [(percent yield of the reaction) x (theoretical yield)]/100.
So the right choice is: (Percent yield × theoretical yield) ÷ 100 .
Answer : The correct option is, [tex]\frac{(\text{Percent yield}\times \text{Theoretical yield})}{100}[/tex]
Explanation :
The formula used for the percent yield will be :
[tex]\text{Percent yield}=\frac{\text{Actual yield}}{\text{Theoretical yield}}\times 100[/tex]
or,
[tex]\text{Actual yield}=\frac{(\text{Percent yield}\times \text{Theoretical yield})}{100}[/tex]
For example : If we are given that the percentage yield of a sample is 94.92% and the theoretical yield is 83.475 g. Now calculate the actual yield of the sample.
By using formula we get the value of actual yield.
[tex]\text{Actual yield}=\frac{(94.92\times 83.475)}{100}=79.23g[/tex]
Thus, the actual yield is, 79.23 g.
Hence, the formula used to calculate the actual yield can be, [tex]\frac{(\text{Percent yield}\times \text{Theoretical yield})}{100}[/tex]
You are given a solution of HCOOH (formic acid) with an approximate concentration of 0.20 M and you will titrate this with a 0.1105 M NaOH. If you add 20.00 mL of HCOOH to the beaker before titrating, approximately what volume of NaOH will be required to reach the end point? View Available Hint(s) You are given a solution of (formic acid) with an approximate concentration of 0.20 and you will titrate this with a 0.1105 . If you add 20.00 of to the beaker before titrating, approximately what volume of will be required to reach the end point? 11.1 mL 20.0 mL 72.4 mL 36.2 mL
Answer:
[tex]\boxed{\text{36 mL}}[/tex]
Explanation:
1. Write the balanced chemical equation.
[tex]\rm HCOOH + NaOH $ \longrightarrow$ HCOONa + H$_{2}$O[/tex]
2. Calculate the moles of HCOOH
[tex]\text{Moles of HCOOH} =\text{20.00 mL HCOOH } \times \dfrac{\text{0.20 mmol HCOOHl}}{\text{1 mL HCOOH}} = \text{4.00 mmol HCOOH}[/tex]
3. Calculate the moles of NaOH.
[tex]\text{Moles of NaOH = 4.00 mmol HCOOH } \times \dfrac{\text{1 mmol NaOH} }{\text{1 mmol HCOOH}} = \text{4.00 mmol NaOH}[/tex]
4. Calculate the volume of NaOH
[tex]c = \text{4.00 mmol NaOH } \times \dfrac{\text{1 mL NaOH }}{\text{0.1105 mmol NaOH }} = \textbf{36 mL NaOH }\\\\\text{The titration will require }\boxed{\textbf{36 mL of NaOH}}[/tex]
The volume of NaOH required to reach the end point is 36.2 mL
We'll begin by writing the balanced equation for the reaction.
HCOOH + NaOH —> HCOONa + H₂O
From the balanced equation above,
The mole ratio of the acid, HCOOH (nA) = 1
The mole ratio of the base, NaOH (nB) = 1
Finally, we shall determine the volume of the base, NaOHFrom the question given above,
Molarity of base, NaOH (Mb) = 0.1105 M
Volume of acid, HCOOH (Va) = 20 mL
Molarity of acid, HCOOH (Ma) = 0.2 M
Volume of base, NaOH (Vb) =?MaVa / MbVb = nA/nB
(0.2 × 20) / (0.1105 × Vb) = 1
4 / (0.1105 × Vb) = 1
Cross multiply
0.1105 × Vb = 4
Divide both side by 0.1105
Vb = 4 / 0.1105
Vb = 36.2 mLThus, the volume of the base, NaOH is 36.2 mL
Learn more: https://brainly.com/question/17151711
Help me on this question
Answer:
Explanation:
That's almost the exact definition of an ecosystem.
Hello!
I think an ecosystem because they are a biological community of interacting organisms and their physical environment. And that’s what an ecosystem is and it relates to your question.
I hope I answered in time!
Good luck!
~ Destiny ^_^
Of the reactions involved in the photodecomposition of ozone (shown below), which are photochemical? 1. o2 (g) + hν → o (g) + o (g) 2. o (g) + o2 (g) + m (g) → o3 (g) + m* (g) 3. o3 (g) + hν → o2 (g) + o (g) 4. o (g) + o (g) + m (g) → o2 (g) + m* (g)
Answer:
The answers are...
Explanation:
2 and 4.
How many liters of oxygen are required to react completely with 1.2 liters of hydrogen to form water? 2H2(g) + O2(g) → 2H2(g)
Answer:
[tex]\boxed{\text{0.60 L}}[/tex]
Explanation:
We can use Gay-Lussac's Law of Combining Volumes to solve this problem.
Gases at the same temperature and pressure react in the same ratios as their coefficients in the balanced equation.
1. Write the chemical equation.
Ratio: 2 L 1 L
2H₂ + O₂ → 2H₂O
V/L: 1.2
2. Calculate the volume of O₂.
According to Gay-Lussac, 1 L of O₂ forms from 2 L of H₂.
Then, the conversion factor is (1 L O₂/2 L H₂).
[tex]\text{Volume of O}_{2} = \text{1.20 L H}_{2}\times \dfrac{\text{1 L O}_{2}}{\text{2 L H}_{2}} = \textbf{0.60 L O}_{2}\\\\\text{You need }\boxed{\textbf{0.60 L of O}_{2}}[/tex]
How does solar activity affect Earth?
When the sun becomes active, the occurrences of phenomena such as solar flares, coronal mass ejection become frequent. The amount of high-energy particles and extreme shortwave radiation released, such as X-rays and UV, will also increase. These phenomena affect the ionosphere of the Earth's atmosphere the most.
you fill a rigid steel container that has a volume of 20 L with nitrogen gas to a final pressure of 2 x 10^4 kpa at 23 Celsius. how mny kilorams of n2 does this cylinder contai
Answer:
4.549 kg.
Explanation:
We can use the general law of ideal gas: PV = nRT.where, P is the pressure of the gas in atm (P = 2 x 10⁴ kPa/101.325 = 197.4 atm).
V is the volume of the gas in L (V = 20.0 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 23° C + 273 = 296 K).
∴ n = PV/RT = (197.4 atm)(20.0 L)/(0.0821 L.atm/mol.K)(296 K) = 162.5 mol.
To find the mass of N₂ in the cylinder, we can use the relation:mass of N₂ = (no. of moles of N₂)*(molar mass of N₂) = (162.5 mol)*(28.0 g/mol) = 4549 g = 4.549 kg.
Match the words to the definitions below.
Question 1 options:
Turns litmus paper blue, taste bitter, donate OH- ions, feel slippery, 8-14 on pH scale.
The amount of ions per an amount of solvent. Ex: 10g salt/100g water
A lab procedure to deliver a measured volume of solution, generally measured in ml.
A substance or solution that resists changes in pH by stabilizing hydrogen ion concentration.
Turns litmus paper red, taste sour, donate H+, corrode metals, 0-6 on pH scale.
Logarithmic scale to indicate the amount of hydrogen ions in solution.
A chemical (dye created from lichens) that changes color in response to changes in pH.
Acids and bases are added proportionally and result in a chemical reaction that causes the pH of a solution to reach pH 7.
1.
Acid
2.
Base
3.
pH
4.
Concentration
5.
Buffer
6.
Litmus
7.
Neutralization
8.
Titration
Answer:
Explanation:
1. Turns litmus paper blue, taste bitter, donate OH- ions, feel slippery, 8-14 on pH scale.
BASE
BASE: A base is a substance that reacts with water to yield excess hydroxide ions.
Some of its characteristics are:
>It has a bitter taste
>Their aqeuos solutions have a soapy feel
>They have a PH greater than 7
>They turn red litmus paper blue
>They are electrolytes
2. The amount of ions per an amount of solvent. Ex: 10g salt/100g water
CONCENTRATION
Concentration is the amount of solute that can be found in a solution.
3. A lab procedure to deliver a measured volume of solution, generally measured in ml.
TITRATION
Titration is a laboratory procedure that is used to determine the amount of solution that is needed to drive a reaction to completion. It involves adding a solution to a known volume of another solution.
4. A substance or solution that resists changes in pH by stabilizing hydrogen ion concentration.
BUFFER
A buffer is solution that is made up of weak acids and their salts or weak bases and their salts. Such solutions are able to resist changes in PH
5. Turns litmus paper red, taste sour, donate H+, corrode metals, 0-6 on pH scale.
ACID
An acid is a proton donor, hydrogen ions.
Characteristics:
>Acids turns blue litmus paper red, they have sour taste and easily corrodes metals.
>They have a PH value between 0-6 on the scale.
>They are generally electrolytes
6. Logarithmic scale to indicate the amount of hydrogen ions in solution.
PH SCALE
A PH scale is a logarithmic scale that runs from 1-14 and is used to indicate the amount of hydrogen ions in a solution.
7. A chemical (dye created from lichens) that changes color in response to changes in pH.
LITMUS PAPER
Litmus paper is made of dyes created from lichen and it changes its color as PH changes. Acids turns blue litmus paper red while bases changes the color of litmus to blue from red. Litmus test is a popular test for solutions.
8. Acids and bases are added proportionally and result in a chemical reaction that causes the pH of a solution to reach pH 7.
NEUTRALIZATION
Neutralization is the reaction of acids and bases to produce salts and water. The endpoint of neutralization reaction signifies the point at which equal number of bases neutralizes an acid. The PH is 7 at this point.
The definitions for the provided words are as follows: 1. Base: Turns litmus paper blue, taste bitter, donate OH- ions, feel slippery, 8-14 on pH scale. 2. Concentration: The amount of ions per an amount of solvent. Ex: 10g salt/100g water. 3. Titration: A lab procedure to deliver a measured volume of solution, generally measured in ml. 4. Buffer: A substance or solution that resists changes in pH by stabilizing hydrogen ion concentration. 5. Acid: Turns litmus paper red, taste sour, donate H+, corrode metals, 0-6 on pH scale. 6. pH: Logarithmic scale to indicate the amount of hydrogen ions in solution. 7. Litmus: A chemical (dye created from lichens) that changes color in response to changes in pH. 8. Neutralization: Acids and bases are added proportionally and result in a chemical reaction that causes the pH of a solution to reach pH 7.
Explanation:1. Base: Turns litmus paper blue, taste bitter, donate OH- ions, feel slippery, 8-14 on pH scale.
2. Concentration: The amount of ions per an amount of solvent. Ex: 10g salt/100g water.
3. Titration: A lab procedure to deliver a measured volume of solution, generally measured in ml.
4. Buffer: A substance or solution that resists changes in pH by stabilizing hydrogen ion concentration.
5. Acid: Turns litmus paper red, taste sour, donate H+, corrode metals, 0-6 on pH scale.
6. pH: Logarithmic scale to indicate the amount of hydrogen ions in solution.
7. Litmus: A chemical (dye created from lichens) that changes color in response to changes in pH.
8. Neutralization: Acids and bases are added proportionally and result in a chemical reaction that causes the pH of a solution to reach pH 7.
What effect does the addition of a catalyst have on a chemical reaction at equilibrium?
Answer:it speeds up the reaction
Explanation:
How much heat energy is added to 2 grams of water if the initial temperature was 40°C and the final temperature is 50°C? (The specific heat of water is 4.18 J/g°C).
To calculate the amount of heat energy added to the water, multiply the mass of water by the specific heat of water and the change in temperature.
Explanation:To calculate the amount of heat energy added to the water, we can use the equation:
q = m * c * ΔT
Where q is the heat energy, m is the mass of the water (2 grams), c is the specific heat of water (4.184 J/g °C), and ΔT is the change in temperature (final temperature minus initial temperature).
Substituting the values into the equation, we get:
q = 2g * 4.184 J/g°C * (50°C - 40°C)
q = 2g * 4.184 J/g°C * 10°C
q = 83.68 J
Therefore, 83.68 Joules of heat energy is added to 2 grams of water.
What sort of relationship is there between the molarity and the absorbance? What evidence is there for this claim?
The molarity of a solution is typically directly related to its absorption. This relationship is expressed through the Beer-Lambert law, and can be written as A=ecl. This is usually used in spectroscopy and research.
Hope this helps!
The average kinetic energy of the particles in a sample of matter is measured as the ____.
A. chemical kinetics
B. thermochemistry
C. reaction rate
D. temperature
Answer:
D. Temperature
Explanation:
Temperature is not energy, let's just make that point first. So how can it be the average kinetic energy then?
Well, the short answer is, it is just a number. Temperature is a number that represents the average kinetic energy. It is important to note that temperature only relates to kinetic energy in substances.
This is what makes it different from heat. Heat considers all forms of energy in the substance.
Answer:
TEMPERATUE
Explanation:
Which of the following is true of an exothermic reaction? Choose the 4 that apply.
Answer:
heat is relaesed
a decrease in temperature
less than the chemical energy
written as a reactant
Explanation:
Answer:
Answer is Below
Explanation:
For an exothermic reaction, heat is released. Which means that...
1. Heat is written as a product of the reaction.
2. A rise in temperature occurs.
3. Heat is released into the surroundings.
and 4. The chemical energy stored in the bonds of the products is less than that stored in the reactants.
This diagram also explains why this is the case, the chemical energy is lower as you see the products is lower on the graph as compared to the reactants.
What is true about the electrolysis of water? Use the picture to choose 2 correct answers.
Answer:
oxygen is produced at the anode and hydrogen gas is produced at the cathode
Explanation:
The statement true about electrolysis of water are;
Hydrogen gas is produced at the cathode.Oxygen gas is produced at the anode.What is electrolysis?Electrolysis is a process in which direct current is use to alter or change the chemical composition of a substance when the current is pass through it.
Therefore, The statement true about electrolysis of water are;
Hydrogen gas is produced at the cathode.Oxygen gas is produced at the anode.Learn more about electrolysis below.
https://brainly.com/question/24063038
#SPJ2