Hello!
Coastal-plain swamp sparrows are gray brown whereas others are rusty brown.
There are a lot of genetic differences between the coastal-plain swamp sparrows and the others.
...
Genetic differences must be the reason of of the difference in color.
The gap is that we do not know whether the difference is caused by internal(i.e. genetics) or external (i.e. climate, food etc.) reasons.
Taking these into consideration
A) weakens the argument, because it clearly states that there is no genetic difference between coastal-plain swamp sparrows and freshwater swamp sparrows that affects plumage color, thus the reason of difference in plumage color should be external (for example food)
E) strengthens the argument, because it shows that under same external conditions(“identical diet and controlled conditions”) the birds grew plumage similar in color to that of their respective parents. This shows that external factors have no affect, thus the reason should be genetic.
Pls mark brainliest :)
Describe the process of skeletal muscle contraction by assembling the following 10 events in the proper order in paragraph form. Begin with an action potential traveling down a motor neuron to the neuromuscular junction and end with the muscle in its relaxed state. (5 points) 1) T and T system undergoes a conformational change, exposing the myosin binding sites on actin 2) myosin heads/cross bridges bind to actin and flex, shortening the sacromere 3) calcium ions bind to the T and T system 4) actin filaments are pulled toward the center of the sacromere, shortening the muscle fiber 5) muscle fiber is stimulated at the neuromuscular junction triggering an action potential 6) myosin head/cross-bridges bind to actin 7) APs travel down the T-tubules to the sarcoplasmic reticulum 8) in response to an AP, calcium ions are released into the cytosol/space around the myofibrils 9) calcium ions actively transported into the sarcoplasmic reticulum 10) myosin head continues to attach, flex, release, extend, and reattach as long as calcium ions are present
5) muscle fiber is stimulated at the neuromuscular junction triggering an action potential
7) APs travel down the T-tubules to the sarcoplasmic reticulum
Released acetylcholine (due to action potential within motor neuron) from the motor neuron initiates depolarisation within the sarcolemma, which is spread through the muscle fibre via T tubules.
8) in response to an AP, calcium ions are released into the cytosol/space around the myofibrils
Depolarisation causes the sarcoplasmic reticulum to release calcium ions necessary for the contraction
3) calcium ions bind to the T and T system
1) T and T system undergoes a conformational change, exposing the myosin binding sites on actin
6) myosin head/cross-bridges bind to actin
The binding sites for the myosin heads located on actin, are covered by a blocking complex (troponin and tropomyosin) that can be unblocked by the calcium binding
2) myosin heads/cross bridges bind to actin and flex, shortening the sacromere
4) actin filaments are pulled toward the center of the sacromere, shortening the muscle fiber
As the individual sarcomeres become shorten the muscle fibres as a whole contracts
10) myosin head continues to attach, flex, release, extend, and reattach as long as calcium ions are present
9) calcium ions actively transported into the sarcoplasmic reticulum
Relaxation of a muscle fiber occurs when a Ca ions are pumped back into the sarcoplasmic reticulum .
The process of skeletal muscle contraction involves a series of events that occur in a specific order, starting from an action potential and ending with muscle relaxation. Calcium ions play a crucial role in this process, binding to the T and T system and exposing the myosin binding sites on actin. The myosin heads then bind to actin, flexing and shortening the sarcomere, which leads to muscle contraction.
Explanation:The process of skeletal muscle contraction involves multiple events that occur in a specific order. First, an action potential travels down a motor neuron to the neuromuscular junction, stimulating the muscle fiber. This triggers the release of calcium ions from the sarcoplasmic reticulum into the cytosol. The calcium ions bind to the T and T system, causing a conformational change that exposes the myosin binding sites on actin. The myosin heads then bind to actin and flex, shortening the sarcomere. This pulling of actin filaments towards the center of the sarcomere shortens the muscle fiber.
The myosin heads continue to attach, flex, release, extend, and reattach as long as calcium ions are present. To maintain muscle relaxation, calcium ions are actively transported back into the sarcoplasmic reticulum. Additionally, the T and T system undergoes another conformational change that covers the myosin binding sites on actin, preventing further contraction.
In summary, the order of events in skeletal muscle contraction is: 1) Muscle fiber is stimulated at the neuromuscular junction, triggering an action potential; 2) APs travel down the T-tubules to the sarcoplasmic reticulum, causing the release of calcium ions into the cytosol; 3) Calcium ions bind to the T and T system, exposing the myosin binding sites on actin; 4) Myosin heads bind to actin and flex, shortening the sarcomere and pulling actin filaments towards the center of the sarcomere; 5) Myosin heads continue to attach, flex, release, extend, and reattach as long as calcium ions are present; 6) Calcium ions are actively transported back into the sarcoplasmic reticulum, leading to muscle relaxation.
Learn more about Skeletal Muscle Contraction here:https://brainly.com/question/33446061
#SPJ6
Bacteria that live around deep-sea, hot-water vents obtain energy by oxidizing inorganic hydrogen sulfide belched out by the vents. They use this energy to build organic molecules from carbon obtained from the carbon dioxide in seawater. These bacteria are _____. See Concept 27.3 (Page 579) View Available Hint(s) Bacteria that live around deep-sea, hot-water vents obtain energy by oxidizing inorganic hydrogen sulfide belched out by the vents. They use this energy to build organic molecules from carbon obtained from the carbon dioxide in seawater. These bacteria are _____. See Concept 27.3 (Page 579) chemoautotrophs photoautotrophs chemoheterotrophs photoheterotrophs
The correct answer is: chemoautotrophs
Since these bacteria obtain energy by the oxidation of electron donors (inorganic hydrogen sulfide) in their environments (chemical reactions) we can classify them as chemotrophs. In addition, they synthesize all necessary organic compounds from CO2 so they are autotrophs (opposite from heterotrophs that are unable to fix carbon).
Bacteria that live around deep-sea, hot-water vents and obtain energy by oxidizing inorganic hydrogen sulfide and using this energy to build organic molecules from carbon dioxide in seawater are chemoautotrophs.
Explanation:The bacteria that live around deep-sea, hot-water vents and obtain energy through oxidizing inorganic hydrogen sulfide and using this energy to build organic molecules from carbon dioxide in seawater are chemoautotrophs. Chemoautotrophs are organisms that can use inorganic compounds as a source of energy to convert carbon dioxide into organic matter.
Learn more about Chemoautotrophs here:https://brainly.com/question/34189698
#SPJ6
What does an egg contribute to the embryo that a sperm does not contribute?
a. polar bodiesb. organellesc. DNAd. germ cells
B. organelles
Explanation;Eggs contribute 50% of the chromosomes as well as cytoplasm and cellular mechanisms required for the cell to thrive and replicate. Mitochondria for example are particularly important to the embryo but are only passed from mother to child via the egg.Sperms on the other hand, are just packets of DNA.A trait has two alleles, p and q. If 20% of the alleles in a population are type p, what percent are type q? (enter number only, no % sign)
Darwin meets Mendel—not literally
When Darwin came up with his theories of evolution and natural selection, he knew that the processes he was describing depended on heritable variation in populations. That is, they relied on differences in the features of the organisms in a population and on the ability of these different features to be passed on to offspring.
Darwin described evolution as "descent with modification," the idea that species change and give rise to new species over extended periods of time and that all species can trace their descent to a common ancestor. Today, evolution is typically defined as a change in the genetic makeup of a population over generations—a definition that encompasses both the large-scale evolution Darwin envisioned and the smaller-scale processes we'll discuss in this article.
Natural selection is the mechanism that Darwin proposed to explain how evolution takes place and why organisms are typically adapted, well-suited, to their environments and roles.
The basic idea of natural selection is that organisms with heritable traits that help them survive and reproduce—in a certain environment—will leave more offspring than organisms without those traits. Because the traits are heritable, they will be passed on to the offspring, who will also have a survival and reproduction advantage. Over generations, differential survival and reproduction will lead to a progressive increase in the frequency of the helpful traits in the population, making the population as a group better-suited to its environment.
Natural selection is not the only mechanism of evolution. Populations can also change in their genetic composition due to random events, migration, and other factors. However, natural selection is the one mechanism of evolution that consistently produces adaptation, a close fit between a group of organisms and its environment.
Darwin did not, however, know how traits were inherited. Like other scientists of his time, he thought that traits were passed on via blending inheritance. In this model, parents' traits are supposed to permanently blend in their offspring. The blending model was disproven by Austrian monk Gregor Mendel, who found that traits are specified by non-blending heritable units called genes.
Although Mendel published his work on genetics just a few years after Darwin published his ideas on evolution, Darwin probably never read Mendel’s work. Today, we can combine Darwin’s and Mendel’s ideas to arrive at a clearer understanding of what evolution is and how it takes place.
Microevolution is sometimes contrasted with macroevolution, evolution that involves large changes, such as formation of new groups or species, and happens over long time periods. However, most biologists view microevolution and macroevolution as the same process happening on different timescales. Microevolution adds up gradually, over long periods of time to produce macroevolutionary changes.
Let's look at three concepts that are core to the definition of microevolution: populations, alleles, and allele frequency.
Populations
A population is a group of organisms of the same species that are found in the same area and can interbreed. A population is the smallest unit that can evolve—in other words, an individual can’t evolve.
Alleles
An allele is a version of a gene, a heritable unit that controls a particular feature of an organism.
For instance, Mendel studied a gene that controls flower color in pea plants. This gene comes in a white allele, w, and a purple allele, W. Each pea plant has two gene copies, which may be the same or different alleles. When the alleles are different, one—the dominant allele, W—may hide the other—the recessive allele, w. A plant's set of alleles, called its genotype, determines its phenotype, or observable features, in this case flower color.
Phenotype—flower color
Genotype—pair of alleles
Allele frequency refers to how frequently a particular allele appears in a population. For instance, if all the alleles in a population of pea plants were purple alleles, W, the allele frequency of W would be 100%, or 1.0. However, if half the alleles were W and half were w, each allele would have an allele frequency of 50%, or 0.5.
In general, we can define allele frequency as
Total number of A/a gene copies in population
Number of copies of allele Ain population
start subscript, i, end subscript_ alleles of a gene). In that case, you would want to add up all of the different alleles to get your denominator.
Let’s look at an example. Consider the very small population of nine pea plants shown below. Each pea plant has two copies of the flower color gene.
The frequencies of all the alleles of a gene must add up to one, or 100%.
Phenotype frequency: How often we see white vs. purple
Allele frequency: how often we see each allele
What chemical produces an inflammatory reaction
Answer:
histamine
Explanation:
the inflammatory response (inflammation) occurs when tissues are injured by bacteria, trauma, toxins, heat, or any other cause. The damaged cells release chemicals including histamine, bradykinin, and prostaglandins. These chemicals cause blood vessels to leak fluid into the tissues, causing swelling
A patient is to receive 3 units of packed red blood cells over 8 hours. what will the nurse do to maintain the patency of the patient's iv access line after each of the first two units of blood has transfused?
D.
The nurse would maintain a separate access line if IV solutions or medications are to be administered. Medication is never injected into the same IV line used for a blood component. The blood product may be incompatible with the medication, and the blood component could become contaminated if the same IV line is used for another purpose.
In what states can hydroelectric power be found? (United States) *will give brainiest!
The hoover dam is a great example! :D
New York has the largest hydroelectricity generation capacity of all states east of the Mississippi River!
Where are over half the bones in the skeleton located
probably by the ribs or something as it protects the Lungs the Heart and the Stomach
Which two organelles contain their own DNA genome, separate from the nuclear genome?
lysosomes and transport vesicles
endoplasmic reticulum and Golgi apparatus
cilia and flagella
mitochondria and chloroplast
ribosomes and vacuoles
Answer:
mitochondria and chloroplasts
Explanation:
Both mitochondria and chloroplasts contain their own DNA and ribosomes.
Which of the following statements is true? A thin layer of chyme protects the lining of the digestive tract from being broken down by enzymes. Hydrochloric acid (HCl) begins the partial digestion of fats in the small intestine. Cystic fibrosis is an infectious disease that causes the muscles that control swallowing to malfunction. Heartburn often results when the gastroesophageal sphincter fails to close properly.
Final answer:
The true statement is that heartburn often results from the gastroesophageal sphincter failing to close properly. None of the other listed statements are true regarding the digestive system.
Explanation:
Among the statements provided, the true statement is that heartburn often results when the gastroesophageal sphincter fails to close properly. The gastroesophageal sphincter is responsible for sealing the top of the stomach to prevent stomach acids from flowing back up into the esophagus, which can cause discomfort and the sensation known as heartburn.
Contrary to one of the other statements, a thin layer of chyme does not protect the lining of the digestive tract; rather, it is a thick mucus lining that protects the stomach lining from digestive enzymes and hydrochloric acid. Moreover, hydrochloric acid is not responsible for the partial digestion of fats in the small intestine; that role is mainly played by bile and pancreatic lipase. Finally, cystic fibrosis is not an infectious disease, but a genetic disorder that affects various organs, including the lungs and the digestive system, without directly causing muscle malfunction that controls swallowing.
When listing the levels of organization in organisms from smallest to lost complex which level is just below organs in
This is the smallest to largest in the organization of organisms: atom- molecule-cell-tissue-organ-organ system-organism. Tissue is just below organs.
Organisms are highly organized, coordinated structures that consist of one or more cells. Even very simple, single-celled organisms are remarkably complex: inside each cell, atoms make up molecules; these in turn make up cell organelles and other cellular inclusions. In multicellular organisms, similar cells form tissues. Tissues, in turn, collaborate to create organs (body structures with a distinct function). Organs work together to form organ systems.
In African areas that are prone to malaria having normal blood leaves you prone to contracting malaria and death. Having sickle cell anemia makes your blood unable to effectively transport oxygen and typically leads to early death. However, being heterozygous for normal blood and sickle cell anemia leads to the blood being able to effectively transport oxygen and resistance to malaria, allowing for a longer life expectancy.
Is this Directional, Stabilizing, or Disruptive selection
Its stabilising. Since the selection pressure is against the extremes which are the normal blood and the sickle cell anaemia.
Which of the following microscopic structures is only found in the cardiac muscle tissue?
a) myosin
b) tropomyosin
c) sarcomeres
d) intercalated discs
e) striations
The correct answer is: d) intercalated discs
Cardiac muscle tissue is muscle tissue found in the heart. It is similar to skeletal muscle in that both are striated and organized into sarcomeres but cardiac muscle fibers are shorter and usually contain only one nucleus in the central region of the myocyte (muscle cell). Cardiac muscle fibers are rich in mitochondria and myoglobin, (ATP is produced primarily through aerobic metabolism), are extensively branched and are connected to one another by intercalated discs. An intercalated disc is a structure that enables the propagation of contraction among muscle cells: it allows the muscle cells to contract in a wave-like pattern.
The unique microscopic component found only in cardiac muscle tissue among the given options is the intercalated discs. These are specifically designed to facilitate the cardiac muscle's pump function.
Explanation:The microscopic structure that is only found in the cardiac muscle tissue among the options provided is the intercalated discs. Myosin, tropomyosin, sarcomeres, and striations are found in all types of muscle tissues, including cardiac, smooth, and skeletal. Intercalated discs, however, are special adhesion structures only found in cardiac muscle. They allow the cardiac muscle cells to contract in a wave-like pattern so the heart can function as a pump.
Learn more about Cardiac Muscle Tissue here:https://brainly.com/question/28833905
#SPJ3
Which organism has fur and mammary glands, but does NOT have opposable thumbs? A) The lizard B) The salmon C) The hamster D) The chimpanzee
your answer is c. the hamster
Well, neither lizards or salmon have fur so A and B are wrong. The question asks which does not have opposable thumbs. The chimpazee does have them, so the answer is C.
2. Which of the following will change the equilibrium potential for Na+?
1.the gating properties of the Na+ channels
2.the concentration of the Na+ on the inside of the cell versus the outside
3.the ion channels that are open in the cell
4.the resting membrane potential of the cell
According to the question, Option C, the ion channels that are open in the cell
Ion channels work on the principle of identification of size of the pore.
How plasma memebrane play role in Na+ transport?The plasma membrane of neuron is slightly permeable to Na+ ion while it is highly permeable to K+ ion. The concentration of Na+ ion is higher outside the cell while it is lower inside the cell while the concentration of K+ ion is higher on the inner side of the cell as compared to the outer side of the cell. The ion gate is responsible for maintain this equilibrium.
Hence, option C is correct.
To learn more about plasma memebrane click here:
https://brainly.com/question/14727404
Why are pigments important to the process of photosynthesis?
Absorb Light
Reflect Light
It’s to absorb light!!
Would it be easier for an investigator to change the outcome of differentiation if a cell used cytoplasmic determinants or induction to produce specialized daughter cells? See Section 21.1 (Page 420) . Would it be easier for an investigator to change the outcome of differentiation if a cell used cytoplasmic determinants or induction to produce specialized daughter cells? See Section 21.1 (Page 420) . Induction, because this could be easily changed by changing the cell's environment. Cytoplasmic determinants, since it is easy to change the composition of a cell's cytoplasm Induction, because it is easy to change the concentration of a cell's cytoplasm Cytoplasmic determinants, because these could be easily changed by changing the cell's environment.
The correct answer is: Induction, because this could be easily changed by changing the cell's environment.
Cell differentiation (process by which cell becomes specialized) can be under the influence of many factors:
• Cytoplasmic influence because cytoplasm can influence and control the behaviour of nuclear genes.
• Embryonic induction-changing the cell environment
For example: if cells from one region of the embryo are transplanted to some other region that transplant will most likely differentiate according to the chemical regulators of the surrounding cells.
• Proteins present in a cell influences its differentiation
• Cell-Cell interactions via cell-cell adhesion and signalling molecules.
Which of the following statements is not true about growth hormone? Growth hormone can be administered as a medical treatment for stature The quantity of growth hormone is greatest during childhood and adolescence. Too little growth hormone results in dwarfism. Growth hormone is produced by the posterior pituitary. Too much growth hormone results in gigantism.
The false statement is: Growth hormone is produced by the posterior pituitary
Growth hormone (GH) or somatotropin is produced in the cells called somatotrophs of the anterior pituitary gland. GH is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration. Its function is involved in metabolic processes (favors anabolism or synthesis of macromolecules). Also, growth hormone stimulates production of IGF-1 and increases the levels of glucose and free fatty acids.
Answer:
Growth hormone is produced by the posterior pituitary
Explanation:
It's produced in the anterior
What stimuli does the vestibular apparatus detect?
head position in space
sound waves
joint position
presence of particular odorants
Answer:
Head position in space
Explanation:
The vestibular system or apparatus is a collection of structures in the inner ear that provides a sense of balance and awareness of spatial orientation. The information furnished by the vestibular system is essential for coordinating the position of the head and the movement of the eyes. There are two sets of end organs in the inner ear, or labyrinth: the three semicircular canals, which detects and respond to rotational movements (angular acceleration); and the utricle and saccule (the otolith organs) within the vestibule, which respond to changes in the position of the head with respect to gravity (linear acceleration).
The receptor cells of the otoliths and semicircular canals send signals through the vestibular nerve fibers to the neural structures that control eye movements, posture, and balance.
The vestibular system detects head motion and position with respect to gravity.
Vestibular signals are heavily processed in numerous parts of the brain and are engaged in a wide range of important processes.
It is largely engaged in the delicate regulation of visual gaze, posture, orthostasis, spatial orientation, and navigation.
Gravity and rotational acceleration and deceleration are examples of the stimuli that the vestibular system is sensitive to.
The inertia of the vestibular system's receptive cells may be measured to determine gravity, acceleration, and deceleration. Through head position, gravity may be felt.
To learn more about vestibular system, click:
https://brainly.com/question/32135175
#SPJ6
Aldosterone from the adrenal cortex causes sodium ions to be
A. excreted and potassium ions to be conserved.
B. excreted and potassium ions to be excreted.
C. conserved and potassium ions to be conserved.
D. conserved and potassium ions to be excreted.
the answer is A. excreted and potassium ions to be conserved
Aldosterone from the adrenal cortex leads to the conservation of sodium ions and the excretion of potassium ions, supporting fluid and electrolyte balance in the body. The correct option is D.
Aldosterone is a hormone produced by the adrenal cortex that plays a critical role in the regulation of sodium and potassium levels in the body. This hormone increases the reabsorption of sodium ions (Na+) and the excretion of potassium ions (K+) in the distal tubules of the kidney.
When aldosterone is released, it stimulates the sodium-potassium pump, leading to sodium being conserved by the body and potassium being secreted into the renal filtrate for excretion. As sodium is conserved, water follows due to osmosis, resulting in increased water retention and blood volume. Conversely, the increased excretion of potassium helps maintain the balance of electrolytes in the body.
Therefore, the correct answer to the student's question is: Aldosterone from the adrenal cortex causes sodium ions to be D. conserved and potassium ions to be excreted.
how does the circulatory system and respiratory system related to ATP and cellular respiration?
The Respiratory system controls the intake of oxygen and the exhale of waste products such as carbon dioxide from our circulatory system. The lungs control the gas exchange between our respiratory system and our circulatory system. Once the nutrients are in the blood stream, the circulatory system, red blood cells and white blood cells and other cells floating through arteries, all controlled by the pumping of the heart. Once the nutrients inhaled by the respiratory system are brought to the cells by the circulatory system (from the pulmonary vein to the heart to the arteries) through the much smaller capillaries, they are used in cellular respiration. The oxygen is used to help the products of glycolysis enter the mitochondria to produce more ATP.
The waste products are then put back into the circulatory system through the capillaries. The circulatory system then takes the nutrients through veins back to the heart where it is then put through the pulmonary artery to the lungs. Once in the lungs gas exchange occurs, expelling the waste products and reoxygenating the blood.
Source: https://sites.google.com/a/student.oprfhs.org/ap-biology-interdependence/interdependence/interdependence-of-the-circulatory-system
Hopefully this helps you with your confusion!
80% OF QUESTIONS ARE ANSWERED IN UNDER 10 MINUTES80% OF QUESTIONS ARE ANSWERED IN UNDER 10 MINUTES80% OF QUESTIONS ARE ANSWERED IN UNDER 10 MINUTES80% OF QUESTIONS ARE ANSWERED IN UNDER 10 MINUTES
okay?
whats wrong with that?
Answer:
Explanation:
Bile salts aid in the digestion of fats by ________ large fat droplets.
binding
combining
emulsifying
dehydrating
anabolizing
Emulsifying would be the correct response
It would be Emulsifying
Dogs have a reduced nonfunctional digit on their paws known as a dewclaw what is this and example of
Vestigial Structure
Explanation;Vestigial Structure are structures that have no apparent function and appear to be residual parts from a past ancestor. Vestigial structures are normally homologous to structures that are functioning normally in other species and therefore may be considered evidence for evolution. Other examples of vestigial structures include; the human appendix, the pelvic bone of a snake, and the wings of flightless birds.Answer:
C
Explanation:
in corn, purple kernels are dominant to yellow. a random sample off 100 kernels is taken from a population in hardy-weinberg equilibrium. it is found that 9 kernels are yellow and 91 kernels are purple. what is the frequency of yellow allele in this population?
The answer to this question is 0.3
The frequency of the yellow allele in this corn population is 0.3, calculated following the Hardy-Weinberg equilibrium principle, by taking the square root of the frequency of yellow kernels in the sample.
Explanation:In the case of corn color, we are dealing with a simple Mendelian inheritance where the purple color is dominant over yellow. Given that there are 9 yellow kernels (representing genotype 'yy') out of 100 allows us to calculate the frequency of the recessive,yellow allele. In a Hardy-Weinberg equilibrium, the frequency of a homozygous recessive genotype (like 'yy' for the yellow corn) is equal to the square of the frequency of the recessive allele, represented as q². Therefore, to calculate the frequency of the yellow allele ‘q’, take the square root of 9/100, equaling to 0.3. Thus, the frequency of the yellow allele in this corn population is 0.3.
Learn more about Genetic Frequency here:https://brainly.com/question/33731122
#SPJ2
Which layer of the digestive tract controls digestive propulsion?
A. serosa
B. mucosa
C. submucosa
D. muscularis externa
Answer:
D. muscularis externa
Explanation:
The gastrointestinal tract or digestive tract consist of four main layers:
• Mucosa- consists of the epithelium together with glandular tissue and the lamina propria (connective tissue)
• Submuscosa- consists of fibrous connective tissue with larger blood vessels, lymphatics, nerves..
• Muscularis externa-smooth muscle layer that consists of three layers, responsible for movement (propulsion) and physical break down of the food
• Serosa-consists of connective tissue continuous with the peritoneum.
If the mass of a material is 92 grams and the volume of the material is 25 cm3, what would the density of the material be?
= 3.68 g/cm³
Explanation;Density is given by dividing the mass of a substance by its volume.
Thus; Density = mass/ volume
In this case; mass = 92 g and Volume = 25 cm³
Therefore;
Density = 92 g/ 25 cm³
= 3.68 g/cm³
Which antacid is the most effective on a per gram basis ? explain show your calculations?
To determine the most effective antacid, the neutralizing power per gram was calculated for both antacids. Antacid B is more effective with 2.333 mmol/g, compared to antacid A's 1.723 mmol/g.
To determine which antacid is the most effective on a per gram basis, we will calculate the mmol of HCl each antacid neutralizes and then compare the efficacy per gram of the antacid.
Let's start with the neutralizing power of antacid A:
Calculate the mmol of HCl that antacid A neutralizes: 40 mL of 0.56 M HCl
= 40 mmol/L
0.56 mol/L = 22.4 mmol of HCl.
Calculate the neutralizing power per gram: 22.4 mmol / 13.0 g
= 1.723 mmol/g.
Now for antacid B:
Calculate the mmol of HCl that antacid B neutralizes: 25 mL of 0.56 M HCl
= 25 mmol/L * 0.56 mol/L
= 14.0 mmol of HCl.
Calculate the neutralizing power per gram: 14.0 mmol / 6.00 g
= 2.333 mmol/g.
Comparing the two antacids, antacid B has a higher neutralizing power of 2.333 mmol/g compared to antacid A which has 1.723 mmol/g. Therefore, antacid B is more effective on a per gram basis.
if a dna molecule is made up of 7% thymine what percent of it would be guanine
Guanine would be 43%
ALL 4 BASES MUST EQUAL 100
SO 7 THYMINE +7 ADENINE =14
100-14 T&A=86 OF GUANINE AND CYTOSINE
86 G&C ÷2= 43 OF GUANINE AND CYTOSINE
Guanine would be present in 43%.
What do you mean by Nucleotides?Nucleotides may be defined as a combination consisting of a phosphate group, a sugar molecule, and a base. It forms the essential structural unit of nucleic acids such as DNA.
According to Chargaff's rule,
A = T; G = C
The amount of Thymine = 7%
∴ The amount of Adenine = 7%
Now, 100-14 = 86%.
So, the amount of guanine and cytosine = 86%
Therefore, the amount of Guanine = 43%
To learn more about DNA, refer to the link:
https://brainly.com/question/1328358
#SPJ2
What is the angle of incidence if a reflected wave bounces off a mirror with an angle of reflection equal to 55 degrees?
55 degrees
Explanation;The angle of incidence is 55 degrees as the angle is equal to the bouncing or reflection angle. That is; Angle of incidence= angle of reflection.The angle of incidence is the angle between the incident ray and the normal while the angle of reflection is the angle between the reflected ray and the normal. According to the law of reflection, when a ray of light reflects off a surface, the angle of incidence is equal to the angle of reflection.The angle of incidence is equal to the angle of reflection due to the law of reflection. Hence, if the angle of reflection is 55 degrees, the angle of incidence will also be 55 degrees.
Explanation:The question you've asked relates to a fundamental law in physics called the law of reflection. This law states that the angle of incidence is equal to the angle of reflection. The angles are always measured relative to the perpendicular (or 'normal') to the surface at the point where the wave or ray of light strikes the surface.
So, in your case, if a wave is reflected off a mirror and it bounces at an angle of reflection of 55 degrees, then the angle of incidence — the angle at which the wave originally struck the mirror — would also be 55 degrees. This is because the angle of incidence is equal to the angle of reflection.
Learn more about Law of Reflection here:https://brainly.com/question/15655610
#SPJ3