Study the Proof Given.

List the reasons for Items 2,3, & 4.

Right the number and then the answer.

Study The Proof Given.List The Reasons For Items 2,3, & 4.Right The Number And Then The Answer.

Answers

Answer 1
Given that B is the midpoint of line AC and line BC is congruent to line DE.

The following statements and reasons, proves that line AB is congruent to line DE.

     Statement                                                   Reasons

1.  B is the midpoint of line AC                        Given
2.  Line AB is congruent to line BC.                 Midpoint of a line segment
3.  Line BC is congruent to line DE                  Given
4.  Line AB is congruent to line DE                  Transitive property

Related Questions

The distributive property is used to help simplify math experssions. True False

Answers

true is the answer
hope it helped

Hey!

Hope this helps...

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TRUE

This is because when you distribute 1 thing between 2 (or more) things, it (in a way) simplifies the problem...


For Example:

solve for x

f(x) = 5*(x - 4)


The only way to solve a question like this would be to distribute the 5 to the x and to the 4...

So...

The answer is: TRUE

(01.02) given that f(x) = 2x + 5 and g(x) = x − 7, solve for f(g(x)) when x = −3. (1 point) −15 −8 10 25

Answers

hello : 
 f(x) = 2x + 5 and g(x) = x − 7
f(g(-3))=f (-3-7) =f(-10) = 2(-10)+5 = -20+5 = -15

what do you add 15/4 to make 4

Answers

the answer would be 1/4 or [tex] \frac{1}{4} [/tex] i hope this answer helps!

Suppose y varies directly with x. Write a direct variation equation that relates x and y. Then find the value of y when x = 7.

y=15 when x=6

Answers

[tex]\bf \qquad \qquad \textit{direct proportional variation}\\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array}\\\\ ----------------------------\\\\ \textit{we also know that } \begin{cases} y=15\\ x=6 \end{cases}\implies 15=k6\implies \cfrac{15}{6}=k \\\\\\ therefore\qquad \boxed{y=\cfrac{15}{6}x}\\\\ ----------------------------\\\\ \textit{what's \underline{y} when x=7?}\qquad y=\cfrac{15}{6}\cdot 7[/tex]
Final answer:

To write a direct variation equation, we use the form y = kx, where k is the constant of variation. We can find the value of k by substituting the given values into the equation. Once we have the value of k, we can write the direct variation equation that relates x and y. Finally, we can find the value of y for a given value of x by substituting it into the equation.

Explanation:

To write a direct variation equation, we use the form y = kx, where k is the constant of variation. We are given that y = 15 when x = 6. To find k, we can substitute these values into the equation:

15 = k * 6

To find the value of k, we divide both sides by 6:

k = 15/6 = 2.5

Now we can write the direct variation equation that relates x and y:

y = 2.5x

To find the value of y when x = 7, we substitute x = 7 into the equation:

y = 2.5 * 7 = 17.5

Learn more about Direct Variation here:

https://brainly.com/question/34355670

#SPJ11

Parallelogram JKLM is shown on the coordinate plane below:

If parallelogram JKLM is rotated 270° clockwise around the origin, what are the coordinates of the endpoints of the side congruent to side JM in the image parallelogram?

Answers

Given that rotating 90 degrees clockwise around the origin switches the x andy values and makes the new y value negative, we can, for example, switch (2, 1) to (1, -2). 180 degrees clockwise simply makes both values negative (-2, -1), and 270 degrees clockwise switches them and makes the new y value negative  (-1, 2), we can plug those in to our JM endpoints to turn (-5, 1) into (-1, -5) and (-6, 2) into (-2, -6)

Answer-

The coordinates of the endpoints of the side congruent to side JM will be,

(-2, -6) and (1, -5).

Solution-

When rotating a point 270° clockwise or 90° counter-clockwise around the origin, we apply the rule (x, y) → (-y, x).

The co-ordinates of the original parallelogram are,

J = (-6, 2)

M = (-5, -1)

L = (-3, 3)

K = (-4, 6)

After the rotation, the new co-ordinates will be,

J = (-2, -6)

M = (1, -5)

L = (-3, -3)

K = (-6, 4)

∴ The coordinates of the endpoints of the side congruent to side JM will be,

(-2, -6) and (1, -5).

A jet travels 500 miles in 2 hours. At this rate, how far could the jet fly in 8 hours? What is the rate of speed of the jet? PLEASEEE HELP

Answers

The jet could fly 2,000 miles in 8 hours and the rate of speed is 250miles per hour.

Which trigonometric ratios are correct for triangle ABC? Check all that apply

Answers

Consider an angle M with measure m≠90°, in a right triangle.

Let

OPP denote the length of the side opposite to M,
ADJ denote the length of the side adjacent to M, and 
HYP denote the hypotenuse.

then: 

Sin(M) = OPP/HYP
Cos(M)= ADJ/HYPP
Tan(M)=OPP/ADJ


Back to our problem, 

using the Pythagorean we can find the length of AB: 

[tex]|AB|^2+|AC|^2=|BC|^2\\\\|AB|^2+9^2=18^2\\\\|AB|^2=18^2-9^2\\\\|AB|^2=(18-9)(18+9)=9 \cdot 27=9 \cdot 9 \cdot3\\\\|AB|=9 \sqrt{3} [/tex]

[tex]Sin(C)= \frac{OPP}{HYP}=\frac{9 \sqrt{3} }{18}= \frac{ \sqrt{3} }{2}[/tex]
[tex]Cos(B)= \frac{ADJ}{HYP}= \frac{9 \sqrt{3}}{18}= \frac{ \sqrt{3}}{2} [/tex]
[tex]Tan(C)= \frac{OPP}{ADJ}= \frac{9 \sqrt{3} }{9}= \sqrt{3} [/tex]
[tex]Sin(B)= \frac{OPP}{HYP}= \frac{9}{18}= \frac{1}{2} [/tex]
[tex]Tan(B)= \frac{OPP}{ADJ}= \frac{9}{9 \sqrt{3}}= \frac{1}{ \sqrt{3} }= \frac{ \sqrt{3}}{3} [/tex]


Answer: 1, 3, 4



Complete the steps to the factor the tens. 30x40=( n x 10) x ( n x 10)=( n x n) x (10 x10)= n x 100 = n

Answers

the corrent answer is 20 please mark the brainliest if this helps

Find a point on the y-axis that is equidistant from the points (4, −4) and (1, 1).

Answers

hello : 
a point on the y-axis is : P( 0, y)
PA = PB  or  PA² = PB².... A(4 , -4)    B(1,1)
(4-0)²+(-4-y)² = (1-0)² + (1-y)²
16 +y² +8y +16 = 1 + 1 -2y +y²
10y = -30
y = -3

If cot= 2/3 what is the value of Csc

Answers

So cot= inverse tan
Tan= opposite over adjacent. So 3/2
This means the hypotenuse is square root of 13
Csc is inverse sin
Sin = opposite \ Hypotenuse
Sin = 3/Square root of 13
Csc = square root of 13/ 3

How can I evaluate this question?

Answers

[tex]\bf \left(x^2-\cfrac{2}{\sqrt{x}}+1 \right)(\sqrt[3]{x}+3x-4)\quad \begin{cases} \frac{2}{\sqrt{x}}\implies \frac{2}{x^{\frac{1}{2}}}\implies 2x^{-\frac{1}{2}}\\\\ \sqrt[3]{x}\implies x^{\frac{1}{3}} \end{cases} \\\\\\ (x^2-2x^{-\frac{1}{2}}+1)(x^{\frac{1}{3}}+3x-4)[/tex]

[tex]\bf \\\\\\ \begin{cases} x^2\cdot x^{\frac{1}{3}}+3x^3-4x^2\\\\ -2x^{-\frac{1}{2}}\cdot x^{\frac{1}{3}}-2x^{-\frac{1}{2}}\cdot 3x+2x^{-\frac{1}{2}}\cdot 4\\\\ +x^{\frac{1}{3}}+3x-4 \end{cases} \\\\\\ \begin{cases} x^{2+\frac{1}{3}}+3x^3-4x^2\\\\ -2x^{-\frac{1}{2}+\frac{1}{3}}-6x^{-\frac{1}{2}+1}+8x^{-\frac{1}{2}}\\\\ +x^{\frac{1}{3}}+3x-4 \end{cases}[/tex]

[tex]\bf x^{\frac{7}{3}}+3x^3-4x^2-2x^{-\frac{1}{6}}-6x^{\frac{1}{2}}+8x^{-\frac{1}{2}}+x^{\frac{1}{3}}+3x-4 \\\\\\ \sqrt[3]{x^7}+3x^3-4x^2-\cfrac{2}{x^{\frac{1}{6}}}-6\sqrt{x}+\cfrac{8}{x^{\frac{1}{2}}}+\sqrt[3]{x}+3x-4 \\\\\\ x^2\sqrt[3]{x}+3x^3-4x^2-\cfrac{2}{\sqrt[6]{x}}-6\sqrt{x}+\cfrac{8}{\sqrt{x}}+\sqrt[3]{x}+3x-4[/tex]

Solve x(−2) 2 =4(−2)

Answers

Final answer:

x(−2) 2 =4(−2) = -2

Explanation:

To solve this equation, we first need to understand the order of operations in mathematical equations. The acronym PEMDAS is often used to remember the order: Parentheses, Exponents, Multiplication/Division, Addition/Subtraction.

In this equation, we have parentheses and exponents. According to PEMDAS, we need to solve the parentheses first before moving on to the exponent. So, let's start by simplifying the parentheses on the left side of the equation.

x(-2)^2 = 4(-2)

= x(4) = -8

= 4x = -8

= x = -2

In the first step, we distributed the exponent of 2 to the -2 within the parentheses, resulting in (-2)^2 = (-2)(-2) = 4. This simplifies the left side of the equation to x(4) = 4x.

In the second step, we substituted the value of -2 on the left side of the equation, resulting in 4(-2) = 4x. This simplifies to -8 = 4x.

To isolate x, we divide both sides by 4, resulting in x = -2. This gives us our final answer.

In conclusion, when solving equations with multiple operations, it is important to remember the order of operations and follow it step by step. In this equation, we simplified the parentheses first, then solved for x by isolating it on one side of the equation. By following these steps, we were able to find the value of x, which is -2.

Gretchen and Ezia received equal scores on a test made up of multiple choice questions and an essay. Gretchen got 18 multiple choice questions correct and received 19 points for her essay. Ezia got 15 multiple choice questions correct and received 31 points for her essay.

How many points was each multiple choice question worth?
Enter your answer in the box.

Answers

I think its 91.

NOT Guaranteed this is the Answer. Best of luck to you.
I think its 91. hope this helps


what numbers are divisible by 7?
a.75 b.35 c.20 d.30

Answers

35 is the answer
Thanks (;
35 is the only number divisible by 7.

40% of a 12,000 acre forest is being logged how many acres will be logged

Answers

12000 x 0.40 = 4800

12000 - 4800 = 7200

7200 acres are being logged

hope this helps
40% = 0.40

0.40 (12,000) = 4,800

answer

4,800 acre is 40% of a 12,000 acre

Algebra problem below!


The sum of two consecutive even integers is -50

What are the numbers?

Answers

Thank you for your question!

The formula is:

x + (x + 2) = -50

Solving:

2x + 2 = -50
2x = -52
x = -26

Finding the second number:
-26 + 2 = -24

-24,-26

Hope this helps!

The 1st integer = xthe 2nd integer = x - 2 x + x + 2 = -502x + 2 = -502x = -52  x = -26 The first integer = x = -24The second integer = x - 2 = -24 - 2 = -26  The integers are -24 and -26.

1. Find the perimeter and area of a rectangle with a length of 3.2 m and a width of 1.5 m.
A) p=4.7 m; A=2.25 m^2
B) p=4.7 m; A=4.8^2
C) p=9.4 m; A=2.4 m^2
D) p=9.4 m; A= 4.8^2

2. Find the area of a triangle with a base of 27 feet and a height of 14 feet.
A) 41 ft^2
B) 82 ft^2
C) 189 ft^2
D) 378 ft^2

Answers

1. D) p=9.4 m; A= 4.8 m^2 2. C) 189 ft^2 1. Find the perimeter and area of a rectangle with a length of 3.2 m and a width of 1.5 m. The perimeter of a rectangle is simply twice the sum of it's length and width, so 2(3.2m + 1.5 m) = 2*4.7 = 9.4 m The area of a rectangle is the product of its length and width, so 3.2 m * 1.5 m = 4.8 m^2 Of the available choices, D matches with p=9.4 m; A= 4.8 m^2 2. Find the area of a triangle with a base of 27 feet and a height of 14 feet. The area of a triangle is 1/2 base times height, so 0.5 * 27 ft * 14 ft = 189 ft^2 Of the available choices, C matches with 189 ft^2

Suppose that (y) varies with (x). Write an equation for the inverse variation.

y=4 when x=7

A: y= x/28

B: y=3x

C: x= y/3

D: y= 28/x

Answers

y = k/x, where k is the constant
if x = 7 and y = 4
 4=k/7


k = 4*7 = 28
 

y = 28/x

 answer is D

Staci has seven more cats then Taylor. Write an expression that illustrates how many cats Staci has. Use x to represent the number of cats Taylor has./4899345/032a37eb?utm_source=registration

Answers

x = number of cats Taylor has

Staci has seven more than this so:
x + 7 = number of cats Staci has

Write a story that matches the expression

42x - 5

Answers

I bake 45 cupcakes everyday  and every hour I sell 5 cupcakes.

Answer: Hello there!

The equation is: 42x - 5

That can be phrased as "the difference between 42 times a number x and 5"

And we want to write a story that matches this.

an example can be:

Suppose that Jon craft musical instruments and he sells them in the beach, then you could write:

"The revenue in a day for Jon is equal to $42 for each instrument that he sells, less a 5 dollar fee that he needs to pay every day"

where the number of instruments would be x.

Point M is the midpoint of segment JK. Find JK when JM=6x-7 and MK=2x+3.

Answers

if M is the midpoint of JK then JM+MK=JK and JM=MK
so
6x-7=2x+3
minus 2x both sides
4x-7=3
add 7 both sides
4x=10
divide both sides by 4
[tex]x=\frac{10}{4}[/tex]
[tex]x=\frac{5}{2}[/tex]

sub back

JM=6x-7
[tex]JM=6(\frac{5}{2})-7[/tex]
[tex]JM=\frac{30}{2}-7[/tex]
[tex]JM=15-7[/tex]
JM=8

JM=MK=8
JM+MK=8+8=16=JK

[tex]x=\frac{5}{2}[/tex] and JM=8=MK and JK=16

The value of JK will be 16.

It is given that M is the midpoint of segment JK.

We have to find out the value of JK.

What will be the value of x , if 4x + 12 = 8x + 4 ?

The value of x will be 2.

As M is the midpoint of JK.

JK = MK + JM

So,

MK = JM

2x + 3 = 6x - 7

4x = 10

x =2.5

So ,

MK = 2x + 3 = 8

JM = 6x - 7 = 8

Hence ,

JK = MK + JM = 8 + 8

JK = 16

Thus , value of JK will be 16.

To learn more about lines click here ;

https://brainly.com/question/20900613

#SPJ2

What is the area of a circle with radius 14 units, to the nearest hundredth?

Answers

Take the radius and find the diameter. Then multiply the diameter by 'pi.'
14×2=28
28×pi=88

Plane A leaves Tulsa at 2:00 p.m., averaging 300 mph and flying in a northerly direction. Plane B leaves Tulsa at 2:30 p.m., averaging 225 mph and flying due east. At 5:00 p.m., how far apart will the planes be?

Answers

Answer 1061

Step-by-step explanation:

Answer:

At 5:00 p.m. the planes will be [tex]1061.323[/tex] miles apart.

Step-by-step explanation:

To solve this problem, I add a picture of the situation.

We know that speed is distance over time  ⇒

[tex]Speed=\frac{distance}{time}[/tex] (I)

The first step to solve this exercise is to graph the situation. We can draw a right triangle which vertices will be ''Tulsa'', and the planes ''A'' and ''B'' at 5:00 p.m.

In order to know the measures of the sides, we are going to calculate them using the equation (I)

Plane A leaves Tulsa at 2:00 p.m.

Therefore, at 5:00 p.m. it will have flown 3 hours ⇒

[tex]300\frac{mi}{h}=\frac{distance}{3h}[/tex] ⇒

[tex]distance=(300\frac{mi}{h}).(3h)[/tex]

[tex]distance=900mi[/tex]

At 5:00 p.m. the distance from the plane A to Tulsa is 900 mi

Plane B leaves Tulsa at 2:30 p.m.

Therefore, at 5:00 p.m. it will have flown 2.5 hours ⇒

[tex]225\frac{mi}{h}=\frac{distance}{2.5h}[/tex]

[tex]distance=(225\frac{mi}{h}).(2.5h)[/tex]

[tex]distance=562.5mi[/tex]

At 5:00 p.m. the distance from the plane B to Tulsa is 562.5 mi

Finally, we can find the distance between the plane A and the plane B using the Pythagorean theorem :

[tex](900mi)^{2}+(562.5mi)^{2}=(Distance_{A-B})^{2}[/tex]

[tex]810000mi^{2}+316406.25mi^{2}=(Distance_{A-B})^{2}[/tex]

[tex](Distance_{A-B})^{2}=1126406.25mi^{2}[/tex]

[tex]Distance_{A-B}=\sqrt{1126406.25mi^{2}}[/tex]

[tex]Distance_{A-B}=1061.322877mi[/tex] ≅ [tex]1061.323mi[/tex]

At 5:00 p.m. the planes will be 1061.323 miles apart.

One month, Ruby worked 8 hours more than Isaac, and Svetlana worked 4 times as many hours as Ruby. Together they worked 112 hours. Find the number of hours each person worked.  

Answers

R=8+I
S=4R

R+I+S=112
R+R-8+4R=112
6R=120
R=20

So therefore, Ruby worked 20 hours, Svetlana worked 80 hours, and Isaac worked 12 hours.

Determine the solution of the system. Show your work.
Y = 5x – 9
Y = 2x + 6

Answers

Both define y, so they are equivalent.

5x-9=2x+6
3x-9=6
3x=15
x=5

Then plug in x into any of the equations
y=2(5)+6
y=10+6
y=16

Final answer: (5,16)

The solution is (x, y) = (5, 16). My "work" is to make use of a graphing calculator.



_____

You can subtract the second equation from the first. This gives

... 0 = 3x -15

Then, divide by 3 and add 5.

... 0 = x - 5

... 5 = x


Substitute this value into either equation to find y.

... y = 2x +6

... y = 2·5 +6

... y = 16


The strategy to subtract the second equation from the first is based on the observation that both equations give expressions for y, and the x-coefficient in the first equation is the larger of the two x-coefficients. Thus, the subtraction we chose will eliminate y and give an x-term with a positive coefficient.

Can u solve 6x-21=5x+17+x

Answers

6x - 21 = 5x + 17 + x

6x - 21 = 6x + 17
6x - 6x = 21 + 17

0 = 38, untrue

cannot be solved

hope this helps

Find the angle measure of the hands of a clock at the given time. 5:00

Answers

At 5:00 the minute hand is on 12 and the hour hand is on 5. The angle measure of the hands of a clock is 5/12 of the total number of degrees in a circle (360°)

[tex] \frac{5}{12}*360=5*30=150^o [/tex]

Answer is 150°

The angle measured by the hands of a clock at the given time at 5:00 will be 150°.

What is an angle?

The angle is the distance between the intersecting lines or surfaces. The angle is also expressed in degrees. The angle is 360 degrees for one complete spin.

We know that the hour hand will be on 5 and the minute hand will be on 12 at 5:00 o'clock.

Then the angle measured by the hands of a clock at the given time at 5:00 will be

⇒ (360° / 12) x 5

⇒ 30° x 5

⇒ 150°

The angle measured by the hands of a clock at the given time at 5:00 will be 150°.

More about the angled link is given below.

https://brainly.com/question/15767203

#SPJ2

Evaluate these questions
3a+2a=



c+d there is a line under this one
ad

Answers

Get photo math it would help you out with all of your math problems
Greetings!

1)
For this question we can combine the terms together as they are like:
[tex]3a+2a[/tex]
Combine like terms.
[tex]=5a[/tex]


Hope this helps.
-Benjamin


If a measurement follows a normal (bell-shaped) frequency curve, then percent of the population will have a z-score below .36.

Answers

Refer to the standard table for the normal distribution shown below.

From the normal distribution tables, when z < 0.36, obtain
P(z < 0.36) = 0.6406 ≈ 64 percent

Answer: 64% (nearest integer)

What is the answer for this problem

Answers

9 + 15 / 5 x 13 =
9 + 3 x 13 =
9 + 39 = 48
15/5=3
3x13=39
39+9=48
Other Questions
A sum of money is invested at 12% compounded quarterly. About how long will it take for the amount of money to double?Compound interest formula: (image uploaded V(t) )t = years since initial depositn = number of times compounded per yearr = annual interest rate (as a decimal)P = initial (principal) investmentV(t) = value of investment after t yearsA. 5.9 yearsB. 6.1 yearsC. 23.4 yearsD. 24.5 years N the atd competency model, a _____ plans, obtains, and monitors the effective delivery of learning and performance solutions to support the business. module 2 lesson 4 homework Which of the following is NOT a strategy to prevent falls? Parliamentary general elections _____.A.elect members of the house of Commons and House of LordsB.are called by the party in powerC.are held every four yearsD.elect the Prime Minister If five times the square of a certain positive number is decreased by twice the number, the result is 16. Find the number. What is the difference between Spring Water and Alkaline water ? The prefix ultra- means:a. acrossb. beneathc. excessd. towarde. away from What did children learn about stalin from their mothers? When the cervix of a woman in labor is dilated 9 cm, she states that she has the urge to push. which action should the nurse implement at this time? what is 3/4 of 535????????? describe a way in which the diagram above illustrates the unique line postulate. The supremacy clause plays a key role in disputes among states, or between states and the national government because What important changes are occurring in the nucleus during the longest phase of mitosis? a college residence hall can also be called a? How was Abraham's Lincoln's speech from Gettysberg address structured? Read this passage from the poem Mending Wall. What is the task that the speaker and his neighbor are doing? I let my neighbor know beyond the hill; And on a day we meet to walk the line And set the wall between us once again. We keep the wall between us as we go. Rounding up the cattle that have wandered away Repairing a wall that has fallen apart Building a wall between their two farms Finding rocks that prevent spring plowing DIVIDING ALGEBRAIC FRACTIONS2p/4p^2 divided by 6p^3/6p+3 Estimates 3 2/3 \ 3 2/9 Which english colony was a haven for catholics in north america?