solve for
3x + 12= -12

Answers

Answer 1

Answer:

x = -8

Step-by-step explanation:

Isolate the variable, x. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS.

First, subtract 12 from both sides:

3x + 12 (-12) = -12 (-12)

3x = -12 - 12

3x = -24

Next, divide 3 from both sides:

(3x)/3 = (-24)/3

x = -24/3

x = -8

x = -8 is your answer.

~

Answer 2

Answer:

x = -8

Step-by-step explanation:

3x + 12= -12

3x = -24

x = -24/3

x = -8


Related Questions

Heights​ (cm) and weights​ (kg) are measured for 100 randomly selected adult​ males, and range from heights of 138 to 190 cm and weights of 39 to 150 kg. Let the predictor variable x be the first variable given. The 100 paired measurements yield x overbarequals167.46 ​cm, y overbarequals81.44 ​kg, requals0.108​, ​P-valueequals0.285​, and ModifyingAbove y with caretequalsnegative 105plus1.08x. Find the best predicted value of ModifyingAbove y with caret ​(weight) given an adult male who is 177 cm tall. Use a 0.05 significance level.

Answers

Answer:

Best predicted value of y' = 86.16 kg

Step-by-step explanation:

Given,

n = 100

Range of heights = 138 - 190cm

Range of weight = 39 to 150 kg

x' =167.46 cm

y' = 81.44 kg

r = 0.108

p value = 0.285

y = - 105 + 1.08x

Significance level = 0.05

We reject H0 since pvalue, 0.285 is less than significance level of 0.05.

Therefore,

Given height of adult male, x = 177 cm

y = - 105 + 1.08x

The best predicted value of y' =

y' = - 105 + 1.08(177)

y' = 86.16 kg

The best predicted value of y' is 86.16kg

Please help me and Katie don’t delete it

Answers

Answer:

A.

I say this is the answer because if she has gotten into a habait of buying and breaking glasses,shes just very careless

Answer:

hope she won

t

Step-by-step explanation:

In a completely randomized experimental design, three brands of paper towels were tested for their ability to absorb water. Equal-size towels were used, with four sections of towels tested per brand. The absorbency rating data follow. At a level of significance, does there appear to be a difference in the ability of the brands to absorb water?

Answers

Answer:

Yes. At this significance level, there is evidence to support the claim that there is a difference in the ability of the brands to absorb water.

Step-by-step explanation:

The question is incomplete:

The significance level is 0.05.

The data is:

Brand X: 91, 100, 88, 89

Brand Y: 99, 96, 94, 99

Brand Z: 83, 88, 89, 76

We have to check if there is a significant difference between the absorbency rating of each brand.

Null hypothesis: all means are equal

[tex]H_0:\mu_x=\mu_y=\mu_z[/tex]

Alternative hypothesis: the means are not equal

[tex]H_a: \mu_x\neq\mu_y\neq\mu_z[/tex]

We have to apply a one-way ANOVA

We start by calculating the standard deviation for each brand:

[tex]s_x^2=30,\,\,s_y^2=6,\,\,s_z^2=35.33[/tex]

Then, we calculate the mean standard error (MSE):

[tex]MSE=(\sum s_i^2)/a=(30+6+35.33)/3=71.33/3=23.78[/tex]

Now, we calculate the mean square between (MSB), but we previously have to know the sample means and the mean of the sample means:

[tex]M_x=92,\,\,M_y=97,\,\,M_z=84\\\\M=(92+97+84)/3=91[/tex]

The MSB is then:

[tex]s^2=\dfrac{\sum(M_i-M)^2}{N-1}\\\\\\s^2=\dfrac{(92-91)^2+(97-91)^2+(84-91)^2}{3-1}\\\\\\s^2=\dfrac{1+36+49}{2}=\dfrac{86}{2}=43\\\\\\\\MSB=ns^2=4*43=172[/tex]

Now we calculate the F statistic as:

[tex]F=MSB/MSE=172/23.78=7.23[/tex]

The degrees of freedom of the numerator are:

[tex]dfn=a-1=3-1=2[/tex]

The degrees of freedom of the denominator are:

[tex]dfd=N-a=3*4-3=12-3=9[/tex]

The P-value of F=7.23, dfn=2 and dfd=9 is:

[tex]P-value=P(F>7.23)=0.01342[/tex]

As the P-value (0.013) is smaller than the significance level (0.05), the null hypothesis is rejected.

There is evidence to support the claim that there is a difference in the ability of the brands to absorb water.

What steps should be taken to calculate the volume of the right triangular prism? Select three options.

A triangular prism. The triangular base has a base of 8 meters and height of 14 meters. The height of the prism is 7 meters.
Use the formula A = one-half b h to find the area of the base.
Use the formula A = b h to find the area of the base.
The area of the base, A, is One-half (7) (8) = 28 meters squared.
The area of the base, A, is One-half (8) (14) = 56 meters squared.
The volume of the prism, V is (56) (7) = 392 meters cubed.

Answers

Answer:

A, D, and the choice that says the volume is ~261.33 metres cubed

Step-by-step explanation:

The volume of a triangular prism is denoted by: V = (1/3) * Bh, where B is the base area and h is the height.

Here, we know that the base is a triangle with base 8 and height 14, and the overall height is 7. The first step is to find the area of the base. The area of a triangle is denoted by:

A = (1/2) * b * h, where b is the base and h is the height, so A is correct.

Plug values in:

A = (1/2) * 8 * 14 = 56 metres squared, so the D is correct.

Then use this and the height of 14 to find the volume:

V = (1/3) * Bh

V = (1/3) * 56 * 14 = 784/3 metres cubed (I'm assuming you missed an answer choice when copying the problem on here, so the correct last option is the one that says the volume is 784/3 or ~261.33 metres cubed)

Answer:

Use the formula A = one-half b h to find the area of the base.

The area of the base, A, is One-half (8) (14) = 56 meters squared.

The volume of the prism, V is (56) (7) = 392 meters cubed.

Step-by-step explanation:

Volume of prism:

Base area × height

Base area:

½ × 8 × 14 = 56

Volume:

56 × 7 = 392

The National Center for Education Statistics surveyed a random sample of 4400 college graduates about the lengths of time required to earn their bachelor’s degrees. The mean was 5.15 years and the standard deviation was 1.68 years respectively. Construct a 95% confidence interval for the mean time required to earn a bachelor’s degree by all college students. *

Answers

Answer:

95​% confidence interval for the mean time required to earn a bachelor’s degree by all college students is [5.10 years , 5.20 years].

Step-by-step explanation:

We are given that the National Center for Education Statistics surveyed a random sample of 4400 college graduates about the lengths of time required to earn their bachelor’s degrees. The mean was 5.15 years and the standard deviation was 1.68 years respectively.

Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;

                              P.Q. =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\bar X[/tex] = sample mean time = 5.15 years

            [tex]\sigma[/tex] = sample standard deviation = 1.68 years

            n = sample of college graduates = 4400

            [tex]\mu[/tex] = population mean time

Here for constructing 95% confidence interval we have used One-sample z test statistics although we are given sample standard deviation because the sample size is very large so at large sample values t distribution also follows normal.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5%

                                               level of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]

                                              = [ [tex]5.15-1.96 \times {\frac{1.68}{\sqrt{4400} } }[/tex] , [tex]5.15+1.96 \times {\frac{1.68}{\sqrt{4400} } }[/tex] ]

                                             = [5.10 , 5.20]

Therefore, 95​% confidence interval for the mean time required to earn a bachelor’s degree by all college students is [5.10 years , 5.20 years].

Bob ordered 17 yards of lumber to build a treehouse how many inches of lumber did he order

Answers

Answer:

six hunddered n twelve

Step-by-step explanation:

HELP PLEASE AND FAST
The city of Hamden received money for improvements of the town’s park. The park committee polled a random sample of 75 residents from the town. Of the 75 residents, 27 would like to see more trees planted in the park. From this information, what can be inferred? Most residents in the town would like to have more trees in the park. Exactly 36% of the residents in the town would like more trees in the park. About a third of the residents prefer a park improvement of more trees. Residents who use the park the most would like more trees planted.

Answers

Answer:

About a third of the residents prefer a park improvement of more trees.

Step-by-step explanation:

Less than 1/2 of the sample actually wanted more trees, so it isn't " Most residents in the town would like to have more trees in the park."

You (usually) can't get an exact answer with a sample, so it isn't ". Exactly 36% of the residents in the town would like more trees in the park."

You don't have enough data to say "Residents who use the park the most would like more trees planted."

Examine the following expression. p squared minus 3 + 3 p minus 8 + p + p cubed Which statements about the expression are true? Check all that apply. The constants, –3 and –8, are like terms. The terms 3 p and p are like terms. The terms in the expression are p squared, negative 3, 3 p, negative 8, p, p cubed. The terms p squared, 3 p, p, and p cubed have variables, so they are like terms. The expression contains six terms. The terms p squared and p cubed are like terms. Like terms have the same variables raised to the same powers. The expression contains seven terms.

Answers

Answer:

  see the bullet list below

Step-by-step explanation:

Given the expression: p² -3 +3p -8 +p +p³

The following statements are true:

The constants, –3 and –8, are like terms. The terms 3 p and p are like terms. The terms in the expression are p squared, negative 3, 3 p, negative 8, p, p cubed. The expression contains six terms. Like terms have the same variables raised to the same powers.

_____

Terms are generally separated by + or - signs. (The sign is considered to be part of the term.) In the context of a polynomial, terms may be constants, or may be a product with factors that are constants or variables.

_____

Further comments on "term"

In other contexts, the word "term" is used for various purposes. It can designate a member of a sequence, the left or right side of an equation, the numerator or denominator of a rational expression, or just about any identifiable expression that can be considered as a unit. Whereas "coefficient" or "factor" may apply to just about any subset of the (prime) factors of a product, the word "term" is generally restricted to consideration of the product as a whole.

Final answer:

In the given expression, -3 and -8 are like terms, while 3p and p are also like terms. The expression contains six terms and like terms have the same variables raised to the same powers. However, not all terms with variables are like terms in this instance.

Explanation:

The expression given is p squared minus 3 + 3p minus 8 + p + p cubed. When we look into it, we can see a couple of true statements.

The constants, -3 and -8, are indeed considered 'like terms' because both of them are constants without a variable part.The terms 3p and p are like terms because they both have the same variable component 'p' with the power of 1.The expression consists of six different terms.Like terms do have the same variables which are raised to the same powers.

However, the terms p squared, 3p, p, and p cubed are not like terms since the powers of p in each term are different. Similarly, the terms p squared and p cubed are not like terms since the powers of p are 2 and 3, which are not the same.

Learn more about Like Terms here:

https://brainly.com/question/33652886

#SPJ3

A consumer research group is interested in testing an automobile manufacturer's claim that a new economy model will travel at least 27 miles per gallon of gasoline (H 0: 27). With a .02 level of significance and a sample of 40 cars, what is the rejection rule based on the value of for the test to determine whether the manufacturer's claim should be rejected (to 2 decimals)? Assume that is 6 miles per gallon.

Answers

Answer:

The alternative hypothesis H0, should be rejected, if sample mean, X' < 25.051

Step-by-step explanation:

Given:

Sample size, n = 40

Mean, μ = 27

Significance level = 0.02

Standard deviation = 6

For null hypothesis :

H0 : μ ≥ 27

For alternative hypothesis :

H1 : μ < 27

At significance level, α = 0.02, from Z table, Zα = 2.054

This is a left tailed test

Solving for X' we have:

[tex] X' = u - Za \frac{\sigma}{\sqrt{n}}[/tex]

[tex] X' = 27 - 2.054 \frac{6}{\sqrt{40}}= 25.051[/tex]

The alternative hypothesis H0, should be rejected, if sample mean, X' < 25.051

The rejection rule is based on the value of for the test to determine whether the manufacturer's claim should be rejected is [tex]\mu<27[/tex].

Given :

The sample size is 40..02 level of significance.The mean is 27.The standard deviation is 6.

The following steps can be used in order to determine the rejection rule based on the value of the test:

Step 1 - The Hypothesis test can be used in order to determine the rejection rule based on the value of the test.

The null hypothesis is given below:

[tex]H_0 : \mu\geq 27[/tex]

The alternate hypothesis is given below:

[tex]H_a : \mu<27[/tex]

Step 2 - Now, the formula of X' is given below:

[tex]X' = \mu-Z_\alpha \dfrac{\sigma}{\sqrt{n} }[/tex]

Step 3 - Now, substitute the values of the known terms in the above formula.

[tex]X' = 27-2.054 \dfrac{6}{\sqrt{40} }[/tex]

Step 4 - SImplify the above expression.

[tex]X' = 25.051[/tex]

From the above steps, it can be concluded that the null hypothesis is rejected.

For more information, refer to the link given below:

https://brainly.com/question/10758924

Which of these shows a right angle

Answers

Answer:

the 1st one

Step-by-step explanation:

What is this expression in simplified form? (-7√3)(11√10)

Answers

Answer:

[tex]-77\sqrt{30}[/tex]

Step-by-step explanation:

[tex](-7\sqrt{3})(11\sqrt{10})=-77\sqrt{30}[/tex]

Hope this helps!

The simplified form of the expression is  -77√33

Given the surd function (-7√3)(11√10)

Multiply the surd functions together. To do this, you multiply both the integers and the surd functions separately  as shown:

(-7*11)(√3*√11)= (-77) √33= -77√33

Hence the simplified form of the expression is  -77√33

Learn more on surd here: https://brainly.com/question/24372463

Find the value of x.

Answers

150°

Considering that it had six sides, the total angle degree should be 720, so when you add them all up and subtract it with 720, you would get 150°

Answer: 150

Step-by-step explanation: cause it has six side in total of 720 and subtract it and you have 150

The data in the table represents the value of a savings
account at the end of each year for 6 years. The
relationship between the increasing years and the
increasing value of the account is exponential.
There is [ ]
rate of change in an
exponential relationship
After each year, the value of the account is[. ]times as
large as the previous year

First missing either a constant additive, or a constant multiplicative, or no constant


Second missing word either 0.5 or 1.05 or 1.5 or 2

Answers

Answer:

The answer is constant multiplicative and it is 1.05 times larger.

There is constant rate of change in an exponential relationship.

The value of the account is 1.05 times.

In the given statement, it states that there is a [ ] rate of change in an exponential relationship. The missing word in this case would be "constant."

In an exponential relationship, the rate of change between consecutive terms is constant.

Now, after each year, the value of the account is [. ] times as large as the previous year. The missing value in this case would be "1.05."

This indicates that the value of the account increases by a factor of 1.05 each year, which corresponds to a 5% annual growth rate.

Learn more about Exponential Relation here:

https://brainly.com/question/29160729

#SPJ2

What is the base area of the cone?
°15 m2
°25 m2
°45 m2
°125 m2
V=75 m3
h=5m​

Answers

Answer:

It is 45m2

Step-by-step explanation:

Just took did the question of the topic calculating the Base of Area of a Cone

Answer:

its 42 m^2

Step-by-step explanation: did it on edge

Dot Products of Vectors

Quiz

Active

Find a b if a = 10i + 4j and b = 3i + 4%.

a. (30,16)

c. 46

b. -14

d. (13,8)

Answers

Answer:

choice c. 46

Step-by-step explanation:

Find a b if a = 10i + 4j and b = 3i + 4%

a = <10, 4>

b = <3, 4>

a*b = <10, 4> * <3, 4> = 10*3 + 4*4 = 30 + 16 = 46

Answer:

C. 46

Step-by-step explanation:

T(t)T, models the daily high temperature (in Celsius) in Santiago, Chile, t days after the hottest day of the year. Here, t is entered in radians.

T(t)=7.5cos(2π/365t)+21.5


What is the second time after the hottest day of the year that the daily high temperature is 20 degrees celsius?


Round your final answer to the nearest whole day.

Answers

Answer:

the answer is 262 days

Step-by-step explanation:

Final answer:

To find the second time after the hottest day of the year that the daily high temperature is 20 degrees Celsius, you need to solve the equation T(t) = 20. This involves finding the inverse cosine of a specific value, setting up an equation, and adding one year to the solution. After performing these steps, you can find the value of t that corresponds to the second time.

Explanation:

To find the second time after the hottest day of the year that the daily high temperature is 20 degrees Celsius, we need to solve the equation T(t) = 20. We can rewrite this equation as 7.5cos(2π/365t) + 21.5 = 20. Subtracting 21.5 from both sides gives us 7.5cos(2π/365t) = -1.5. Dividing both sides by 7.5 and simplifying further, we have cos(2π/365t) = -0.2. To find the second time, we need to find the value of t that satisfies this equation.

To find the value of t, we need to use the inverse cosine function (also known as arccosine). The inverse cosine function (cos^(-1)) gives us the angle whose cosine is a specific value. In this case, we want to find t such that cos(2π/365t) = -0.2. We can use a calculator or math software to find the inverse cosine of -0.2. Let's assume the inverse cosine of -0.2 is x.

Now we can set up an equation: 2π/365t = x. Solving for t, we get t = (365x)/(2π). However, we need to find the second time after the hottest day, so we need to find the value of t that satisfies the equation after adding one year (365 days) to the original value. Therefore, the second time after the hottest day of the year that the daily high temperature is 20 degrees Celsius is t = (365x)/(2π) + 365.

What is the perimeter of s triangle with side lengths of 5 cm, 8 cm, and 9 cm?

Answers

The perimeter is 22
This is the answer because perimeter is the sum of all the sides added up. If you add up all the sides you get 22

Answer:

22 cm

Step-by-step explanation:

The perimeter is the distance all the way around a shape. To find the perimeter, add up all the sides

The side lengths are 5, 8 and 9

5+8+9=22

So, the perimeter is 22 centimeters.

What is the area of 6cm and 7cm in square centimeters

Answers

Answer:

42cm²

Step-by-step explanation:

b×h

6×7=42

area-To find the area of a rectangle multiply its height by its width. For a square you only need to find the length of one of the sides (as each side is the same length) and then multiply this by itself to find the area.

Answer:

42 sq cm

Step-by-step explanation:

6 x 7=42

Circle P has a circumference of approximately 75
inches.
What is the approximate length of the radius, r? Use
3.14 for . Round to the nearest inch.
12 inches
24 inches
038 inches
46 inches

Answers

Answer:

12 inches

Step-by-step explanation:

c=2*pi*r

75 = 2*3.14*r

r=75/(2*314)=75/6.28=11.9, which is close to 12

Plz help will choose brainliest!

Answers

Answer:

D, E, F

Step-by-step explanation:

The first step I would do is distribute the original equation. After distributing, the equation is now 8x² + 16xy. The first answer I see that matches this is D.

Then, after already eliminating A, B, and C, I look at E. I distribute the x and find out it is also equal to 8x² + 16xy.

Then, I look at F. After distributing again, it is also equal to 8x² + 16xy.

which is the equation of a circle with diameter AB with A(5, 4) and B(- 1, - 4)

Answers

The equation of the circle with diameter AB and endpoints A(5, 4) and B(-1, -4) is (x - 2)² + y² = 25.

We have,

To find the equation of a circle given the diameter endpoints, use the midpoint formula and the distance formula.

Given the diameter endpoints:

A(5, 4) and B(-1, -4)

Step 1:

Find the midpoint of the diameter.

The midpoint formula is given by:

Midpoint = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)

Let's calculate the midpoint using the coordinates of A and B:

Midpoint = ((5 + (-1)) / 2, (4 + (-4)) / 2)

Midpoint = (4 / 2, 0 / 2)

Midpoint = (2, 0)

Step 2:

Find the radius of the circle.

The radius is the distance between the midpoint and one of the endpoints, A or B.

The distance between the midpoint and point A:

Distance = √((x₂ - x₁)² + (y₂ - y₁)²)

Distance = √((5 - 2)² + (4 - 0)²)

Distance = √(3² + 4²)

Distance = √(9 + 16)

Distance = √25

Distance = 5

The radius of the circle is 5.

Step 3:

Write the equation of the circle.

The equation of a circle with center (h, k) and radius r is given by:

(x - h)² + (y - k)² = r²

Using the midpoint as the center (h, k) and the radius we calculated:

(x - 2)² + (y - 0)² = 5²

(x - 2)² + y² = 25

Therefore,

The equation of the circle with diameter AB and endpoints A(5, 4) and B(-1, -4) is (x - 2)² + y² = 25.

Learn more about Circle here:

https://brainly.com/question/11833983

#SPJ4

g A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights​ (in centimeters) of randomly selected presidents along with the heights of their main opponents. Complete parts​ (a) and​ (b) below. Height (cm )of President 191 180 180 182 197 180 Height (cm )of Main Opponent 166 179 168 183 194 186 a. Use the sample data with a 0.05 significance level to test the claim that for the population of heights for presidents and their main​ opponents, the differences have a mean greater than 0 cm. In this​ example, mu Subscript d is the mean value of the differences d for the population of all pairs of​ data, where each individual difference d is defined as the​ president's height minus their main​ opponent's height. What are the null and alternative hypotheses for the hypothesis​ test?

Answers

Answer:

Step-by-step explanation:

Corresponding heights of presidents and height of their main opponents form matched pairs.

The data for the test are the differences between the heights.

μd = the​ president's height minus their main​ opponent's height.

President's height. main opp diff

191. 166. 25

180. 179. 1

180. 168. 12

182. 183. - 1

197. 194. 3

180. 186. - 6

Sample mean, xd

= (25 + 1 + 12 - 1 + 3 + 6)/6 = 5.67

xd = 5.67

Standard deviation = √(summation(x - mean)²/n

n = 6

Summation(x - mean)² = (25 - 5.67)^2 + (1 - 5.67)^2 + (12 - 5.67)^2+ (- 1 - 5.67)^2 + (3 - 5.67)^2 + (- 6 - 5.67)^2 = 623.3334

Standard deviation = √(623.3334/6 sd = 10.19

For the null hypothesis

H0: μd ≥ 0

For the alternative hypothesis

H1: μd < 0

The distribution is a students t. Therefore, degree of freedom, df = n - 1 = 6 - 1 = 5

The formula for determining the test statistic is

t = (xd - μd)/(sd/√n)

t = (5.67 - 0)/(10.19/√6)

t = 1.36

We would determine the probability value by using the t test calculator.

p = 0.12

Since alpha, 0.05 < than the p value, 0.12, then we would fail to reject the null hypothesis.

Therefore, at 5% significance level, we can conclude that for the population of heights for presidents and their main​ opponents, the differences have a mean greater than 0 cm.

Final answer:

The null hypothesis in this case would be that there is no average height advantage for presidents over their main opponents (µd ≤ 0), while the alternative hypothesis is that presidents are taller on average (µd > 0). A paired t-test with a significance level of 0.05 is usually employed in testing these hypotheses using the p-value and t-score.

Explanation:

In hypothesis testing, the goal is to determine the validity of a claim made. In this case, the claim is that the mean difference in height, where the difference is calculated as the president's height minus their main opponent's height, is greater than 0 cm. This represents the theory that taller presidential candidates have an advantage.

For setting up a null hypothesis and an alternative hypothesis, we consider the following parameters:

Null Hypothesis (H₀): There is no height advantage for presidents (µd ≤ 0) Alternative Hypothesis (Ha): Presidents are taller on average (µd > 0)

To test these hypotheses, we would typically use a one-sample t-test for paired differences with a significance level (alpha) of 0.05. A p-value less than this would allow us to reject the null hypothesis in favor of the alternative hypothesis that presidents are on average taller than their main opponents. Use of p-value and t-score is essential in conducting such a test.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

Note: picture not drawn to scale The circle above has a radius of 12 cm. What is the area of the circle? Use = 3.14. A. 75.36 cm2 B. 37.68 cm2 C. 904.32 cm2 D. 452.16 cm2

Answers

Answer:

452.16

Step-by-step explanation:

Area of a circle = pi*radius squared

A= 3.14(12)^2

=3.14*144

=452.16

Final answer:

The area of a circle with a radius of 12 cm can be calculated using the formula A = \u03C0r^2. By applying the radius to this formula with pi approximated to 3.14, we obtain an area of 452.16 cm^2, which corresponds to option D.

Explanation:

To calculate the area of the circle with a radius of 12 cm, we use the formula: A = \\u03C0r^2\

Where (pi) is approximately 3.14 and r is the radius of the circle.

Plugging the radius into the formula:

A = 3.14 * (12 cm)^2

A = 3.14 * 144 cm^2

A = 452.16 cm^2

Thus, the correct answer is D. 452.16 cm^2.

Which matrix equation can be used to solve the systems of equations below?
3x - 2y = -3
6x - 5y = -9

Answers

Answer:

A.   x = [  5/3   -2/3  ] [  -3  ]

      y = [  2        -1   ]  [  -9  ]

Step-by-step explanation:

got it correct on the unit test review on edge 2020

Final answer:

The matrix equation to solve the system of equations 3x - 2y = -3 and 6x - 5y = -9 is AX = B, where A is the coefficient matrix[tex]\(\begin{bmatrix}3 & -2 \\ 6 & -5\end{bmatrix}\)[/tex], X is the variable matrix[tex]\(\begin{bmatrix}x \\ y\end{bmatrix}\)[/tex], and B is the constant matrix[tex]\(\begin{bmatrix}-3 \\ -9\end{bmatrix}\)[/tex].

Explanation:

To solve the system of linear equations presented using matrices, we can set up a matrix equation of the form AX = B, where A is the coefficient matrix, X is the variable matrix, and B is the constant matrix.

The system of equations is:

3x - 2y = -36x - 5y = -9

From the system, we can identify the coefficient matrix A, the variable matrix X, and the constant matrix B as follows:

A =
[tex]\(\begin{bmatrix}3 & -2 \\ 6 & -5\end{bmatrix}\)[/tex]

X =
[tex]\(\begin{bmatrix}x \\ y\end{bmatrix}\)[/tex]

B =
[tex]\(\begin{bmatrix}-3 \\ -9\end{bmatrix}\)[/tex]

The matrix equation that can be used to solve the system is:

[tex]\(\begin{bmatrix}3 & -2 \\ 6 & -5\end{bmatrix}\) \(\begin{bmatrix}x \\ y\end{bmatrix}\) = \(\begin{bmatrix}-3 \\ -9\end{bmatrix}\)[/tex]

g Assume that the distribution of time spent on leisure activities by adults living in household with no young children is normally distributed with a mean of 4.5 hours per day and a standard deviation of 1.3 hours per day. Find the probability that the amount of time spent on leisure activities per day for a randomly selected adult from the population of interest is less than 6 hours per day. Round your answer to four decimal places. (make sure to put a 0 in front of the decimal ie 0.1 vs .1)

Answers

Answer:

"The probability that the amount of time spent on leisure activities per day for a randomly selected adult from the population of interest is less than 6 hours per day" is about 0.8749.

Step-by-step explanation:

We have here a random variable that is normally distributed, namely, the time spent on leisure activities by adults living in a household with no young children.

The normal distribution is determined by two parameters: the population mean, [tex] \\ \mu[/tex], and the population standard deviation, [tex] \\ \sigma[/tex]. In this case, the variable follows a normal distribution with parameters [tex] \\ \mu = 4.5[/tex] hours per day and [tex] \\ \sigma = 1.3[/tex] hours per day.

We can solve this question following the next strategy:

Use the cumulative standard normal distribution to find the probability.Find the z-score for the raw score given in the question, that is, x = 6 hours per day.With the z-score at hand, we can find this probability using a table with the values for the cumulative standard normal distribution. This table is called the standard normal table, and it is available on the Internet or in any Statistics books. Of course, we can also find these probabilities using statistics software or spreadsheets.

We use the standard normal distribution because we can "transform" any raw score into standardized values, which represent distances from the population mean in standard deviations units, where a positive value indicates that the value is above the mean and a negative value that the value is below it. A standard normal distribution has [tex] \\ \mu = 0[/tex] and [tex] \\ \sigma = 1[/tex].

The formula for the z-scores is as follows

[tex] \\ z = \frac{x - \mu}{\sigma}[/tex] [1]

Solving the question

Using all the previous information and using formula [1], we have

x = 6 hours per day (the raw score).

[tex] \\ \mu = 4.5[/tex] hours per day.

[tex] \\ \sigma = 1.3[/tex] hours per day.

Then (without using units)

[tex] \\ z = \frac{x - \mu}{\sigma}[/tex]

[tex] \\ z = \frac{6 - 4.5}{1.3}[/tex]

[tex] \\ z = \frac{1.5}{1.3}[/tex]

[tex] \\ z = 1.15384 \approx 1.15[/tex]

We round the value of z to two decimals since most standard normal tables only have two decimals for z.

We can observe that z = 1.15, and it tells us that the value is 1.15 standard deviations units above the mean.

With this value for z, we can consult the cumulative standard normal table, and for this z = 1.15, we have a cumulative probability of 0.8749. That is, this table gives us P(z<1.15).  

We can describe the procedure of finding this probability in the next way: At the left of the table, we have z = 1.1; we can follow the first line on the table until we find 0.05. With these two values, we can determine the probability obtained above, P(z<1.15) = 0.8749.

Notice that the probability for the z-score, P(z<1.15), of the raw score, P(x<6) are practically the same,  [tex] \\ P(z<1.15) \approx P(x<6)[/tex]. For an exact probability, we have to use a z-score = 1.15384 (without rounding), that is, [tex] \\ P(z<1.15384) = P(x<6) = 0.8757[/tex]. However, the probability is approximated since we have to round z = 1.15384 to z = 1.15 because of the use of the table.

Therefore, "the probability that the amount of time spent on leisure activities per day for a randomly selected adult from the population of interest is less than 6 hours per day" is about 0.8749.

We can see this result in the graphs below. First, for P(x<6) in [tex] \\ N(4.5, 1.3)[/tex] (red area), and second, using the standard normal distribution ([tex] \\ N(0, 1)[/tex]), for P(z<1.15), which corresponds with the blue shaded area.

Final answer:

The question seeks to find the probability that an adult spends less than 6 hours per day on leisure activities, using the given mean and standard deviation for a normal distribution. The z-score is calculated and then used to determine the probability using the cumulative normal distribution function.

Explanation:

The student's question asks to find the probability that a randomly selected adult from a certain population spends less than 6 hours per day on leisure activities, given that the distribution of time spent is normally distributed with a mean of 4.5 hours and a standard deviation of 1.3 hours.

To solve this, you can use the z-score formula:

z = (X - μ) / σ

where X is the value of interest (6 hours), μ is the mean (4.5 hours), and σ is the standard deviation (1.3 hours).

Using this, we calculate:

z = (6 - 4.5) / 1.3

= 1.15 / 1.3

= 0.8846

Now, we look up this z-score in a standard normal distribution table or use a calculator with the normal distribution function to find the corresponding probability.

Assuming normal CDF is the function for cumulative normal distribution:

probability = CDF(-∞, 0.8846, 0, 1)

This will give us the probability that the adult spends less than 6 hours per day on leisure activities. Remember, the cumulative distribution function gives the area to the left of the z-score, which corresponds to the probability of obtaining a value less than the one of interest.

There are four entrances to the Government Center Building in downtown Philadelphia. The building maintenance supervisor would like to know if the entrances are equally utilized. To investigate, 401 people were observed entering the building. The number using each entrance is reported below. At the 0.01 significance level, is there a difference in the use of the four entrances? Entrance Frequency Main Street 81

Answers

Answer:

Yes. We have evidence to support the claim that there is a difference in the use of the four entrances.

Step-by-step explanation:

The question is incomplete:

Entrance Frequency

Main Street 81

Broad Street 129

Cherry Street 72

Walnut Street 119

Total: 401

The building maintenance supervisor wants to know if the entrances are equally utilized.

This problem can be solved using the Chi-square goodess of fit test.

The expected value for each door is

[tex]E=401/4=100.25[/tex]

The degrees of freedom are equal to the number of categories (4 doors) minus one:

[tex]df=n-1=4-1=3[/tex]

Then, the value of the chi-square statistic can be calculated as:

[tex]\chi^2=\sum \dfrac{(O_i-E)^2}{E}\\\\\\\chi^2=\dfrac{(81-100.25)^2}{100.25}+\dfrac{(129-100.25)^2}{100.25}+\dfrac{(72-100.25)^2}{100.25}+\dfrac{(119-100.25)^2}{100.25}\\\\\\\chi^2=\dfrac{370.5625+826.5625+798.0625+351.5625}{100.25}=\dfrac{2346.75}{100.25}=23.41[/tex]

The P-value for this test statistic χ^2=23.41 and df=3 is:

[tex]P-value=P(\chi^2_3>23.41)=0.00003[/tex]

This P-value is much smaller than the significance level (0.01), so the effect is significant.

We have evidence to support the claim that there is a difference in the use of the four entrances.


Use the information in the table to find the constant of
proportionality and write the equation.
The constant of proportionality is
The equation that represents this proportional
relationship is
N
5
4
10
6
12.5

Answers

Answer:

2.5

and

y=2.5x

Step-by-step explanation:

Answer:

2.5

y=2.5x

Step-by-step explanation:

I hope you do good today I'm a little sad sorry I didn't do the joke of the day :(

Blake simplified the expression (StartFraction x Superscript 12 Baseline Over x Superscript negative 3 Baseline EndFraction) Superscript 5 to StartFraction 1 Over x Superscript 20 Baseline EndFraction. What was Blake’s mistake?

Answers

Answer:

D.

Step-by-step explanation:

Answer:

D.He divided the exponents in the parentheses instead of subtracting.

Step-by-step explanation:

Edge 2022

what is the difference between distrust and distake .

Answers

Answer:

The difference between mistrust and distrust comes down to nuances in meaning. Distrust is a withholding of trust based on evidence or informed opinion. Many people distrust salespeople working on commission, for instance, knowing that these salespeople personally benefit from their purchases.

Step-by-step explanation:

Justin saves $8 every week. Which equation represents the amount of money Justin has, y, after x number of weeks? IF YOU PUT AN ABSURD ANSWER YOU WILL BE REPORTED, will choose brainliest.

Answers

Answer:

C

Step-by-step explanation:

C, because if x stands for the amount of weeks, and you save $8 per week, you would multiply the amount of weeks (x) by how much he saves each week ($8), which will equal y (amount of money Justin has)
Other Questions
Giving brainliest for CORRECT awnser. India moonsoons are seasonal .whar does this reveal about the monsoons PLEASSSSEEEE HELPLPP ME ITS DUE IN 20 MINS !!!!! 100 POINTS PLUS BRAINLY OrangesThe first time I walkedWith a girl, I was twelve,Cold, and weighted downWith two oranges in my jacket.December. Frost crackingBeneath my steps, my breathBefore me, then gone,As I walked towardHer house, the one whosePorch light burned yellowNight and day, in any weather.A dog barked at me, untilShe came out pullingAt her gloves, face brightWith rouge. I smiled,Touched her shoulder, and ledHer down the street, acrossA used car lot and a lineOf newly planted trees,Until we were breathingBefore a drugstore. WeEntered, the tiny bellBringing a salesladyDown a narrow aisle of goods.I turned to the candiesTiered like bleachers,And asked what she wanted -Light in her eyes, a smileStarting at the cornersOf her mouth. I fingeredA nickle in my pocket,And when she lifted a chocolateThat cost a dime,I didnt say anything.I took the nickle fromMy pocket, then an orange FIRST QUESTION 1. What is the main conflict in this poetry? What is the main character dealing with?2. How does the character change or grow as a person? What does he learn from this experience?3. What could be a theme-lesson of this text?and 4.4. Make a connection to this text and explain. It can be any type of connection. In one school, a half of all students who like math like science as well. Also, in that school, a third of all students who like science also like math.bIn that school, what is the ratio of the number of students who like math to the number of students who like science? Deliberate murder or physical extermination Examine the diagram. It is not drawn to scale.A triangle has angles A, C, 57 degrees. The exterior angle to angle A is B and the exterior angle to angle C is 118 degrees.Use the measurements provided in the diagram to determine the measure of AngleB.mAngleB = E DGENUITY Benjamin started her walk from the front door of her ground floor apartment. She walked 6 meters to the corner of the building and then turned the corner and walked 10 meters to her friend's apartment. Bows are strung at varying degrees of pounds of pressurea. Trueb. False Each of 4 tables at a party is set with a bowl of grapes. Eachbowl contains 5/8 of a pound of grapes. How many pounds ofgrapes are there altogether? Show your work. Ned scored 84 points in the first 6 games of the basketball season . How many points per game has Ned scored ? Why did some leaders of the feminist movement use the phrase Jane Crow to motivate people to act? what's the best way to get an agent if you wanna work for tv/film? Which number is a common factor of 116 and 40 Give two abiotic factors which will affect the growth on a school playing field Predict whether the pHpH at the equivalence point for each titration will be acidic, basic, or neutral. Predict whether the at the equivalence point for each titration will be acidic, basic, or neutral. neutral for HFHF, and basic for HClHCl neutral for HClHCl, and basic for HFHF neutral for HFHF, and acidic for HClHCl neutral for HClHCl, and acidic for HFHF neutral for both Write 4451 in lowest terms Consider the following figure and find the value of v What made many of the young volunteers think going off to war would be an adventure? A) Many had never been away from home.B) Many had read war propaganda. C) Many hated the jobs they did at home. Write a complete step-by-step plan for dealing with broken glassware on the floor or lab table. Write your plan in list form in the order in which steps should be taken. Pirate Seafood Company purchases lobsters and processes them into tails and flakes. It sells the lobster tails for $20.30 per pound and the flakes for $15.30 per pound. On average, 100 pounds of lobster are processed into 58 pounds of tails and 26 pounds of flakes, with 16 pounds of waste. Assume that the company purchased 3,200 pounds of lobster for $4 per pound and processed the lobsters with an additional labor cost of $7,400. No materials or labor costs are assigned to the waste. If 1,722 pounds of tails and 752 pounds of flakes are sold, calculate the allocated cost of the sold items and the allocated cost of the ending inventory. The company allocates joint costs on a value basis. (Round your answers to nearest whole number. Round cost per pound answers to 2 decimal places.)