Answer:
i think c or a
Step-by-step explanation:
Answer:
b.x = -4/3+4/3i , -4/3-4/3i
Step-by-step explanation:
We have given a quadratic equation.
9x²+24x+32 = 0
We have to find the solution of given equation by using the quadratic formula.
From given equation,
a = 9,b = 24 and c = 32
x = (-b±√b²-4ac) / 2a is quadratic formula to solve equation.
Putting values in above formula, we have
x = (-24±√(24)²-4(9)(32) ) / 2(9)
x = (-24±√576-1152) / 18
x = (-24±√-576) / 18
x = -24 ± 24i / 18
x = 6(-4±4i) / 18
x = -4±4i / 3
x = -4/3+4/3i , -4/3-4/3i which is the solution.
135, 131, 127, 123, 119...
1. What is f(1)
2. What is f(6)
3. What is f (26)
4. What is f(n)
Answer:
[tex]\large\boxed{1.\ f(1)=135}\\\boxed{2.\ f(6)=115}\\\boxed{3.\ f(26)=25}\\\boxed{4.\ f(n)=139-4n}[/tex]
Step-by-step explanation:
[tex]f(1)=135\\f(2)=135-4=131\\f(3)=131-4=127\\f(4)=127-4=123\\f(5)=123-4=119\\\vdots\\\\\text{It's an arithmetic sequence with firs term = 135 and the common}\\\text{difference d = -4.}\\\text{The formula of arithmetic sequence: }\\\\f(n)=f(1)+(n-1)d\\\\\text{We have}\ f(1)=135\ \text{and}\ =-4.\ \text{Substitute:}\\\\f(n)=135+(n-1)(-4)=135+(n)(-4)+(-1)(-4)\\=135-4n+4=139-4n\\\\\boxed{f(n)=139-4n}[/tex]
[tex]\text{Put n = 6, n=26 to the formula:}\\\\f(6)=139-4(6)=139-24=115\\\\f(26)=139-4(26)=139-104=25[/tex]
Please Help Me!!!
A cone's base has a circumference of 75.36 cm and a height of 18 cm.
What is the volume of the cone?
Use 3.14 for pi, and round your answer to the nearest hundredth if necessary.
First, lets start with the formula for the volume of a cone
[tex] \frac{1}{3} (\pi \times {r}^{2})h [/tex]
Then lets find the diameter so we can get the radius...
Since we have circumference, all we need to do is use this formula-
[tex] c \div \pi[/tex]
C being circumference, the PI being the 3.14, we plug it in to the formula as the number we have to get the diameter...
[tex]{75.36} \div 3.14[/tex]
And it comes out to...
24.
Now we need to divide it by two to get the radius, and we come up with 12.
Now that we have our radius, we can finally plug in all of the numbers into our original formula...
[tex] \frac{1}{3} (3.14 \times \: {12}^{2} ) \times 18[/tex]
The answer of the entire problem turns out to be... Drum roll please...
2712.96 cubic centimeters.
A driver accelerates when the car is traveling at a speed of 30 miles per hour (i.e., 44 feet per second). the velocity (in feet per second) function is v(t)=44+2.2t . the car reaches the speed of 60 miles per hour (i.e., 88 feet per second) in 20 seconds. then during the 20 seconds the car has traveled
Assume the car starts at the origin, so that its initial position is [tex]x(0)=0[/tex]. The car's displacement at any time [tex]t[/tex] over the 20 second interval is
[tex]\displaystyle x(0)+\int_0^t(44+2.2u)\,\mathrm du=0+\left(44u+1.1u^2\right)\bigg|_{u=0}^{u=t}=44t+1.1t^2[/tex]
so that after 20 seconds the car has moved 1320 ft.
###
Without using calculus, recall that under constant acceleration, the average velocity of the car over the 20 second interval satisfies
[tex]v_{\rm avg}=\dfrac{v_f+v_i}2[/tex]
and that, by definition, we have
[tex]v_{\rm avg}=\dfrac{\Delta x}{\Delta t}[/tex]
where [tex]v_f[/tex] and [tex]v_i[/tex] are the final/initial speeds of the car and [tex]\Delta x[/tex] is the displacement it undergoes. It starts with a speed of 44 ft/s and ends with a speed of 88 ft/s, so we have
[tex]\dfrac{88\frac{\rm ft}{\rm s}+44\frac{\rm ft}{\rm s}}2=\dfrac{\Delta x}{20\,\rm s}\implies\Delta x=1320\,\mathrm{ft}[/tex]
same as before.
To find the distance traveled by the car during the 20 seconds, we integrate the velocity function and solve for the distance using the given values. The car travels a distance of 1320 feet.
Explanation:To find the distance traveled by the car during the 20 seconds, we need to calculate the area under the velocity-time graph. The velocity function given is v(t)=44+2.2t. To find the distance, we integrate the velocity function from 0 to 20 seconds:
d = ∫(44+2.2t) dt
Applying integration, we get: d = 44t + 1.1t^2
Substituting the values t=0 and t=20 into the equation, we can find the distance traveled by the car:
d = 44(20) + 1.1(20)^2
Solving this equation, we get d = 880 + 440
So, the car has traveled a distance of 1320 feet during the 20 seconds.
Learn more about Calculating Distance Traveled here:https://brainly.com/question/31568688
#SPJ11
A rectangle has a perimeter of 48 inches. Each side is a whole number of inches. What is the difference between the greatest and least areas that the rectangle can have
The difference between the greatest and least areas is 72 square inches.
What is perimeter of a rectangle?
Let L be the length and w be the width of the rectangle.
Perimeter = 2l + 2w = 48
Since each side is a whole number, list pairs of whole numbers that satisfy the equation.
Potential pairs (length, width) are:
(23, 1)
(22, 2)
(21, 3)
(20, 4)
(19, 5)
Let's calculate the areas for the pairs mentioned:
Area = l*w
(23, 1)) A = 23* 1 = 23
(22, 2) A = 22 *2 = 44
(21, 3) A = 21 *3 = 63
(20, 4) A = 20 *4 = 80
(19, 5) A = 19 *5 = 95
The greatest area is 95 square inches, and the least area is 23 square inches.
The difference between the greatest and least areas is 95 - 23 = 72 square inches. Therefore, the answer is 72.
What angle pair is matched with ∠MLA to make alternate interior angles ?
angle GAL would be the same as MLA
A bag contains 5 black, 3 green, 3 blue, and 4 yellow marbles. A marble is randomly drawn. Find P(not black). 4/15 1/5 1/3 2/3
Answer:
2/3
Step-by-step explanation:
5 black
3 green (not black)
3 blue (not black)
4 yellow (not black)
there are 5 black and 10 not black out of a total of 15 marbles.
there are 10/15 that are not black. Reduced 2/3.
The probability of not drawing a black marble is 2/3, calculated by subtracting the number of black marbles from the total number of marbles in the bag and dividing the result by the total number of marbles.
The question asks to find the probability of not drawing a black marble. To solve this, we first determine the total number of marbles and then subtract the number of black marbles to find the number of marbles that are not black. In this case:
Total number of marbles (black, green, blue, yellow) = 5 + 3 + 3 + 4 = 15Number of black marbles = 5Number of marbles that are not black = Total - Black = 15 - 5 = 10Next, we calculate the probability using the formula:
Probability (not black) = Number of marbles that are not black / Total number of marbles
Plugging in the numbers:
Probability (not black) = 10 / 15 = 2/3
Therefore, the probability of not drawing a black marble is 2/3.
A geometric sequence is defined by a the recursive formula t1 = 243, tn + 1 = tn/3
where n ∈N and n ≥ 1. The general term of the sequence is
Answer:
tn = 243·(1/3)^(n-1)
Step-by-step explanation:
The recursive formula tells you the first term (243) and the common ratio (1/3). You can put these numbers into the general formula for the n-th term of a geometric sequence:
an = a1·r^(n-1) . . . . . where a1 is the first term and r is the common ratio
You want the n-th term of your sequence to be called tn, so ...
tn = 243·(1/3)^(n-1)
Michelle has a bag with marbles in it. Some of the marbles are blue, some are green, and some are yellow. She draws one marble at random, records the color, and returns it to the bag.
Here is her data after 500 trials:
Blue Green Yellow
120 119 261
0.5
0.333
0.125
0.25
Answer:
im pretty sure its d) 0.25
Step-by-step explanation:
To find the experimental probability of each, divide the number for each color by 500. Then, multiply it by 20, to find the amount expected out of 20.
At a zoo, the lion pen has a ring-shaped sidewalk around it. The outer edge of the sidewalk is a circle (blue) with a radius of 11 m. The inner edge of the sidewalk is a circle (orange) with a radius of 9 m. Find the approximate AREA of the smaller circle (orange).
Use 3.14 for pi.
Answer:
380
Step-by-step explanation:
11^2 x 3.14 = 380
On Dolphin Beach, the high tide is 2.2 meters and only occurs at 12 a.m. and 12 p.m. The low tide is 1 meter and only occurs at 6 a.m. and 6 p.m.
Which function models the height of the tide t hours after 12 a.m.?
h(t) = 0.6 sin (πt/6) + 1.6
h(t) = 1.6 sin (πt/3) + 2.2
h(t) = 1.2 cos (πt/3) + 1
h(t) = 0.6 cos (πt/6) + 1.6
Answer:
D
Step-by-step explanation:
maximum at 12am which is time, t = 0 and 12pm which is time, t = 12
so we’ll use a cosine function since no phase shift is given.
period, T: 1 cycle = 2π and time taken to complete one cycle is 12hrs
T = 2π/(12) = ⅙π
med-line = ½(1 + 2.2) = 1.6
and thus amplitude = 1.6 - 1 = 0.6 or 2.2 - 1.6 = 0.6
h(t) = 0.6 cos(⅙πt ) + 1.6
ANS: D Can I get brainliest on this please because I only need two more until virtuoso
The function h(t) = 0.6 cos (πt/6) + 1.6 models the height of the tide at Dolphin Beach.
1. To model the height of the tide at Dolphin Beach, we need to consider the given tide heights and times. High tide occurs at 12 a.m. and 12 p.m. with a height of 2.2 meters, and low tide occurs at 6 a.m. and 6 p.m. with a height of 1 meter. This suggests a periodic function with a 12-hour period.
2. The general form for such a function can be a sine or cosine function. Based on the information, we can match the function's characteristics with the function options provided:
Amplitude: (2.2 - 1)/2 = 0.6 (This represents the maximum deviation from the average height.)Mean height: (2.2 + 1)/2 = 1.6 (This is the average height between high and low tides.)Period: 12 hours (since the tide pattern repeats every 12 hours).3. The cosine function, which starts at its maximum value, would be appropriate, and since the low tide occurs 6 hours later, the function should resemble a cosine function shifted by 6 hours:
Among the options provided h(t) = 0.6 cos (πt/6) + 1.6, perfectly alligns :
The amplitude 0.6 fits the range of tide height variations.The average height (mean height) is 1.6 meters.The period of 12 hours is incorporated as 2π/12 = π/6 within the cosine function.Thus, the function h(t) = 0.6 cos (πt/6) + 1.6 models the height of the tide at Dolphin Beach.
A football team gained 10 yards on one play and then lost 22 yards on the next. What was the overall change in field position.
Answer:12 yards
Step-by-step explanation: 22-10=12
Find the value of the variable that makes the statement true:
Answer:
m = 15.
Step-by-step explanation:
∛(3375) = 15.
You can use a calculator to do this. Some calculators have a direct key giving you a cube root or you can use the power key + 1/3 .
Note: ∛(3375) = 3375^(1/3).
Answer:
-5
Step-by-step explanation:
Edge 2020
(Q7) Solve the inequality graphically.
3^-x > 6^-x
Answer:
C
Step-by-step explanation:
We will graph [tex]3^{-x}[/tex] and [tex]6^{-x}[/tex] and find WHERE in the x-axis, [tex]3^{-x}[/tex] is greater than [tex]6^{-x}[/tex].
Attached is the graph of both the functions. RED color graph is of [tex]3^{-x}[/tex] and BLUE color graph is of [tex]6^{-x}[/tex].
So, WHICH WHERE IN X-AXIS IS THE RED GRAPH "ABOVE" THE BLUE GRAPH?
We can clearly see that this occurs when x > 0.
Hence, C is the correct answer.
Answer:
C edge
Step-by-step explanation:
Find the missing side length. Round your answer to the nearest tenth.
5.5
21.5
30.8
43.2
It would be 30.8 hope this helps
HOW DOES SIMILARITY DIFFER FROM CONGRUENCE? WHY DOES THE PROPERTY OF RIGID MOTION NOT APPLY FOR ALL TRANSFORMATIONS?
Answer:
Similarity means that two figures are the same shape, but not necessarily the same size, color or orientation, congruent means two figures are the same in every form.
Step-by-step explanation:
In my understanding, The Property of Rigid motion holds two points:
- The relative distance between two points stays the same,
- The relative position of the points stays the same
This includes, translations, reflections, and rotation but not to dilutions since it breaks these rules. The relative distance between points gets smaller after dilution.
which of the following is equivalent to, (3x–4y)(3x+4y)?
A. 9x^2 + 16y^2
B. 9x^2 – 16y^2
C. 9x^2 – 24xy – 16y^2
D. 6x^2 – 14xy + 16y^2
E. 6x^2 – 8y^2
Hello!
The answer is:
B. [tex]9x^{2}-16y^{2}[/tex]
Why?To find the equivalent expression we need to apply the distributive property, so:
[tex](3x-4y)(3x+4y)=9x^{2}+12xy-12yx-16y^{2}\\\\9x^{2}+12xy-12yx-16y^{2}=9x^{2}+12xy-12xy-16y^{2}=9x^{2}-16y^{2}[/tex]
So, the correct option will be B. [tex]9x^{2}-16y^{2}[/tex]
Have a nice day!
Solve for A ?
Anyone willing to help me :)
Answer:
2.2Step-by-step explanation:
Use the cosine law:
[tex]BC^2=AB^2+AC^2-2(AB)(AC)\cos(\angle A)[/tex]
We have:
[tex]BC=a\\\\AB=4\\\\AC=3\\\\m\angle A=32^o\to\cos32^o\approx0.848[/tex]
Substitute:
[tex]a^2=4^2+3^2-2(4)(3)(0.848)\\\\a^2=16+9-20.352\\\\a^2=4.648\to a=\sqrt{4.648}\\\\a\approx2.2[/tex]
Whats 10x10 squared?
Answer:
Step-by-step explanation:
10x10 squared
=10x100
=1000
Answer 10000
Step-by-step explanation:
10x10=100
100x100=10000
Point Q lies on the circle and has an x-coordinate of 4.
Which value could be the y-coordinate for point Q?
2
4
2
8
The y coordinate of the point which lies on the circle is y = 2√5
What is a Circle?A circle is a closed figure in which the set of all the points in the plane is equidistant from a given point called “center”. Every line that passes through the circle forms the line of reflection symmetry. Also, the circle has rotational symmetry around the center for every angle
The circumference of circle = 2πr
The area of the circle = πr²
where r is the radius of the circle
The standard form of a circle is
( x - h )² + ( y - k )² = r²,
where r is the radius of the circle and (h,k) is the center of the circle.
The equation of circle is ( x - h )² + ( y - k )² = r²
For a unit circle , the radius r = 1
x² + y² = r² be equation (1)
Now , for a unit circle , the terminal side of angle θ is ( cos θ , sin θ )
Given data ,
Let the radius of the circle be r = 6 units
The point on the circle is P ( x , y )
where the x coordinate is x = 4
So , the point is P ( 4 , y )
And , the equation of circle is given as
x² + y² = r²
On simplifying , we get
x² + y² = ( 6 )²
The point will lies on the circle , so
when x = 4
( 4 )² + y² = ( 6 )²
Subtracting ( 4 )² on both sides , we get
y² = 36 - 16
y² = 20
Taking square roots on both sides , we get
y = ±2√5
The point P lies in the first quadrant , so
y = 2√5
Hence , the y coordinate of the circle is y = 2√5
To learn more about circle click :
https://brainly.com/question/28391204
#SPJ7
Final answer:
Without a specific circle equation, it's impossible to definitively determine the correct y-coordinate for point Q on the circle with an x-coordinate of 4. Additional information such as the circle's center and radius is needed.
Explanation:
The question asks us to identify a possible y-coordinate value for a point Q that lies on a circle with an x-coordinate of 4. Using the information on parametric equations, Pythagorean theorem, and circle equations provided, we can infer that the circle equation might typically be in the form of (x - h)² + (y - k)² = r², where h and k are the coordinates of the center of the circle and r is the radius. However, without a specific equation for the circle in question, we cannot conclusively determine the y-coordinate that corresponds to an x-coordinate of 4 on this circle. Therefore, additional information is required to answer this question correctly.
If a data set has only one outlier, which value will always change when the outlier is excluded?
Answer:
the mean (average) will change
Step-by-step explanation:
Answer:
the rangue
Step-by-step explanation:
True or false (picture provided)
False. That does not satify the equation
Answer:
False
Step-by-step explanation:
The given inequality is [tex]-3 \:<\:x\:<\:14[/tex].
Since both boundaries of the inequalities are not inclusive , we use the parenthesis for open interval."()".
We write the given inequality in interval notation as;
[tex](-3,14)[/tex].
The correct choice is false
Solve the triangle that has a=4.6, B=19°, A=92° (picture provided)
Answer:
Option b
Step-by-step explanation:
To solve this problem use the law of the sines.
We have 2 angles of the triangle and one of the sides.
[tex]a = 4.6\\B = 19\°\\A = 92\°\\C = 180 -A - B\\C = 180 - 92 - 19\\C = 69\°[/tex]
The law of the sines is:
[tex]\frac{sin(A)}{a} = \frac{sin(B)}{b} = \frac{sin(C)}{c}[/tex]
Then:
[tex]\frac{sin(92)}{4.6} = \frac{sin(19)}{b}\\\\b = \frac{sin(19)}{\frac{sin(92)}{4.6}}\\\\b = 1.5[/tex]
[tex]\frac{sin(B)}{b} = \frac{sin(C)}{c}\\\\\frac{sin(19)}{1.5} = \frac{sin(69)}{c}\\\\c = \frac{sin(69)}{\frac{sin(19)}{1.5}}\\\\c = 4.30[/tex]
Mason has to mow 6 lawns today. So far, he has mowed 1 1/2 of them. How many does he have left to do?
2 1/2
3 1/2
4 1/2
7 1/2
A town has approximately 1000 homes the town Council is considering plans For future development plan a calls for an increase of 200 home per year Plan B calss for a 10% increase each year compare the plans
Final answer:
To compare Plan A's increase of 200 homes per year and Plan B's 10% increase per year for a town's housing development, Plan A adds homes linearly, while Plan B's growth is exponential, potentially leading to a larger increase and more significant infrastructure needs over time.
Explanation:
To compare the two growth plans for the town's development—which are Plan A, an increase of 200 homes per year, and Plan B, a 10% increase each year—we need to analyze the two scenarios mathematically.
Under Plan A, the town will add a fixed number of homes each year, that is, 200 homes. After one year, the total will be 1200 homes, after two years 1400 homes, and this pattern will continue linearly.
Plan B's 10% annual increase results in exponential growth. Starting with 1000 homes, in the first year, there will be 1000 + (10% of 1000) = 1100 homes. The second year, the growth will be based on the new total, so it will be 1100 + (10% of 1100) = 1210 homes, and this pattern will continue to result in an increasingly larger number of homes added each year.
In terms of the community's development, Plan A adds homes predictably and steadily, while Plan B accelerates growth over time. This could lead to a boom in construction and investment depending on the current needs and infrastructure of the town.
Plan B's compound growth could lead to a much larger number of homes in the long run, but might require more significant investment in infrastructure and services as the growth compounds.
What is the value of x in the diagram?
Answer:
x = 15.
Step-by-step explanation:
Given : Two similar triangle .
To find : What is the value of x in the diagram.
Solution : We have given that
Two triangle with corresponding sides .
By the similar triangle property
The ratio of the two corresponding sides are equal.
[tex]\frac{x}{25} = \frac{9}{15}[/tex].
On cross multiplication
x = [tex]\frac{9* 25}{15}[/tex].
x = [tex]\frac{225}{15}[/tex].
x = [tex]\frac{45}{3}[/tex].
x = 15.
Therefore, x = 15.
The value of x in the diagram is 15. Option A
How to determine the value
Similar triangles have the same shape but different sizes. In similar triangles, corresponding angles are equal.
Corresponding sides of similar triangles are in the same ratio.
The ratio of area of similar triangles is the same as the ratio of the square of any pair of their corresponding sides.
Then, we have that;
x/25 = 9/15
cross multiply the values, we have;
x = 9(25)/15
Multiply the values
x = 225/15
Divide the values
x = 15
Learn about triangles at: https://brainly.com/question/17335144
#SPJ6
If it takes John 10 hours to paint the fence, how long will it take John and his two friends to do the job if they work at the same rate?
Answer:
look in picture below :)
The original cost of a lamp is $18.95. The lamp is on sale for 25% off. How much will you pay?
$9.48
$14.21
$4.74
$1.90
Answer:
$14.21
Step-by-step explanation:
Hello, I think I can help yo with this
if the lamp is on sale for 25% it means you have to pay the 75% of the original cost, you can find that 75% or to find the 25 % and the subtract that value from the original cost, it is the same anyway
Step 1
if
$18.95 ⇔100%
x$? ⇔75%
[tex]\frac{18.95}{100}=\frac{x}{75}[/tex]
Step 2
solve for x
[tex]\frac{75*18.95}{100}=x\\x=\frac{1421.51}{100}\\ x=14.21\\\\[/tex]
the new price is $14.21
have a great day.
What is the value of x? Show all of your work.Round your answer to the nearest tenth.
Answer:
[tex]x=20.6\ in[/tex]
Step-by-step explanation:
we know that
Applying the Pythagoras Theorem
[tex]41.2^{2} =35.7^{2} +x^{2}[/tex]
solver for x
[tex]x^{2}=41.2^{2}-35.7^{2}[/tex]
[tex]x^{2}=422.95[/tex]
[tex]x=20.6\ in[/tex]
Integers are _____ rational numbers.
always
sometimes
never
Here is your answer
[tex]<b>always</b>[/tex]
REASON :
Integers are all natural numbers their negative including 0.
Rational numbers are the numbers of the form p/q where p and q are integers and q is not equal to 0.
So, the definition itself defines that every integer is a rational number.
Exa- Integers
1, -2 , 3, 90, -6
These are rational numbers as
1=1/1 (p/q form)
-2=-2/1 (p/q form)
3= 3/1 (p/q form)
90= 90/1 (p/q form)
-6= -6/1 (p/q form)
HOPE IT IS USEFUL
the answer is always :)))))
A teacher has a 2 gallon ( 32 -cup ) container of juice. She gives each student 1/2 cup of juice. Which equation represents the amount of juice that remains ,y, after x student are served
Answer:
[tex]y = 2 - \frac{1}{32}x\text{ or } y=2-0.03125x[/tex]
Step-by-step explanation:
Here x represents the number of student and y represents the amount of juice remain after x students are served,
Given,
The total number of cup = 32,
And, the amount of juice in 32 cups = 2 gallon,
⇒ The amount in 1 cup = [tex]\frac{2}{32}[/tex] = [tex]\frac{1}{16}[/tex] gallons,
Number of cups served to a student = [tex]\frac{1}{2}[/tex] cup.
⇒ The amount of juice served to a student = [tex]\frac{1}{32}[/tex] gallon.
⇒ The amount of juice served to x students = [tex]\frac{x}{32}[/tex] gallon
Thus, the remaining amount of juice = The amount of juice in 32 cups - served amount
⇒ [tex]y = 2 - \frac{1}{32}x\text{ or } y=2-0.03125x[/tex]
Which is the required equation.