Answer:
x = -2 or x = -3/2 thus B. & D. are the answer
Step-by-step explanation:
Solve for x:
2 x^2 + 7 x + 6 = 0
Hint: | Factor the left hand side.
The left hand side factors into a product with two terms:
(x + 2) (2 x + 3) = 0
Hint: | Find the roots of each term in the product separately.
Split into two equations:
x + 2 = 0 or 2 x + 3 = 0
Hint: | Look at the first equation: Solve for x.
Subtract 2 from both sides:
x = -2 or 2 x + 3 = 0
Hint: | Look at the second equation: Isolate terms with x to the left hand side.
Subtract 3 from both sides:
x = -2 or 2 x = -3
Hint: | Solve for x.
Divide both sides by 2:
Answer: x = -2 or x = -3/2
Answer:
B and D
Step-by-step explanation:
Given
2x² + 7x + 6 = 0
To factorise the quadratic
Consider the factors of the product of the x² term and the constant term which sum to give the coefficient of the x- term.
product = 2 × 6 = 12 and sum = + 7
The factors are + 4 and + 3
Use these factors to split the x- term
2x² + 4x + 3x + 6 = 0 ( factor the first/second and third/fourth terms )
2x(x + 2) + 3(x + 2) = 0 ← factor out (x + 2) from each term
(x + 2)(2x + 3) = 0
Equate each factor to zero and solve for x
x + 2 = 0 → x = - 2 → D
2x + 3 = 0 ⇒ 2x = - 3 ⇒ x = - [tex]\frac{3}{2}[/tex] → B
The soccer team collected $800 at a car wash fundraiser. They charged $5 00 for small vehicles and $10 00 for larger
vehicles. The amount collected can be modeled by the equation 5x+10y 800, where x represents the number of small
vehicles and y represents the number of larger vehicles. If the number of larger vehicles washed was 50, how many small
vehicles were washed in total?
You are told Y is the number of large vehicles washed and that there were 50 large vehicles.
Replace Y with 50 in the given equation to solve for x ( the number of small cars.
5x + 10(50) = 800
5x + 500 = 800
Subtract 500 from both sides:
5x = 300
Divide both sides by 5:
x = 300/5
x = 60
There were 60 small cars washed.
Answer:
yes the answer would be B ✌
In physics, Ohm's law says that current through a wire, I, is directly proportional to voltage, V, and inversely proportional to resistance, R:
I=V/R.
It's also true that resistance is directly proportional to the length of the wire. We have a piece of wire. We pass 12 volts through this wire and measure 100 milliamps of current. If I cut the wire in half and pass 24 volts through it, how many milliamps of current will I measure?
If you cut the wire in half and pass 24 volts through it, you would measure 400 milliamps of current.
Ohm's law states that the current (I) through a wire is directly proportional to the voltage (V) and inversely proportional to the resistance (R). The formula is given by:
[tex]\[ I = \frac{V}{R} \][/tex]
If you double the voltage (V) and cut the wire in half, the length of the wire (which affects resistance) is also halved. Let's denote the original resistance as [tex]\( R_1 \)[/tex] and the halved resistance as [tex]\( R_2 \)[/tex]. The new equation becomes:
[tex]\[ I_2 = \frac{V_2}{R_2} \][/tex]
Now, since resistance is directly proportional to the length of the wire, we can write:
[tex]\[ R_2 = \frac{1}{2} \cdot R_1 \][/tex]
Substitute this into the previous equation:
[tex]\[ I_2 = \frac{V_2}{\frac{1}{2} \cdot R_1} \][/tex]
Now, let's use the information given. Initially, [tex]\( V_1 = 12 \)[/tex] volts and [tex]\( I_1 = 100 \)[/tex] milliamps. We can find [tex]\( R_1 \)[/tex] using Ohm's law:
[tex]\[ R_1 = \frac{V_1}{I_1} \][/tex]
Substitute the values:
[tex]\[ R_1 = \frac{12 \, \text{volts}}{100 \, \text{milliamps}} = 120 \, \text{ohms} \][/tex]
Now, substitute [tex]\( R_1 \)[/tex] into the equation for [tex]\( I_2 \)[/tex]:
[tex]\[ I_2 = \frac{24 \, \text{volts}}{\frac{1}{2} \cdot 120 \, \text{ohms}} \][/tex]
Simplify:
[tex]\[ I_2 = \frac{24 \, \text{volts}}{60 \, \text{ohms}} \][/tex]
[tex]\[ I_2 = 0.4 \, \text{amps} \][/tex]
To convert amps to milliamps, multiply by 1000:
[tex]\[ I_2 = 0.4 \, \text{amps} \times 1000 = 400 \, \text{milliamps} \][/tex]
Therefore, if you cut the wire in half and pass 24 volts through it, you would measure 400 milliamps of current.
By applying Ohm's law, the new current measured after cutting the wire in half and applying 24 volts is calculated to be 400 milliamps.
Explanation:According to Ohm's law, the current (I) through a resistor is directly proportional to the voltage (V) and inversely proportional to the resistance (R), as described by the equation I = V / R. Given the initial conditions of 12 volts and 100 milliamps of current, we can calculate the resistance of the wire using R = V / I. The resistance (R) would then be 120 ohms.
When the wire is cut in half, the resistance is halved because resistance is directly proportional to the length of the wire. Now, with a resistance of 60 ohms and applying 24 volts across it, the new current can be calculated with Ohm's law by I = V / R, which gives us I = 24 V / 60 Ω = 0.4 A, or 400 milliamps of current.
Which inequality does the graph below represent?
Answer:
A. [tex]y\le2x^2-8x+3[/tex]
Step-by-step explanation:
The given parabola has vertex at (2,-5).
The equation of this parabola in vertex form is given by:
[tex]y=a(x-h)^2+k[/tex], where (h,k)=(2,-5) is the vertex of the parabola.
We substitute the values to get:
[tex]y=a(x-2)^2-5[/tex]
The graph passes through; (0,3).
[tex]3=a(0-2)^2-5[/tex]
[tex]\implies 3+5=4a[/tex]
[tex]\implies 8=4a[/tex]
[tex]\implies a=2[/tex]
Hence the equation of the parabola is
[tex]y=2(x-2)^2-5[/tex]
We expand this to get:
[tex]y=2x^2-8x+8-5[/tex]
[tex]y=2x^2-8x+3[/tex]
Since the outward region was shaded, the corresponding inequality is
[tex]y\le2x^2-8x+3[/tex]
The correct answer is A
Ramon invested $2,400 into two accounts. One account paid 3% interest and the other paid 6% interest. He earned 5% interest on the total investment. How much money did he put in each account?
Answer:
In the account that paid 3% Ramon put [tex]\$800[/tex]
In the account that paid 6% Ramon put [tex]\$1,600[/tex]
Step-by-step explanation:
we know that
The simple interest formula is equal to
[tex]I=P(rt)[/tex]
where
I is the Final Interest Value
P is the Principal amount of money to be invested
r is the rate of interest
t is Number of Time Periods
[tex]P(rt)=Pa(rat)+Pb(rbt)[/tex]
in this problem we have
[tex]t=t\ years\\ P=\$2,400\\ Pa=\$x\\ Pb=\$(2,400-x)\\r=0.05\\ra=0.03\\rb=0.06[/tex]
substitute
[tex]2,400(0.05t)=x(0.03t)+(2,400-x)(0.06t)[/tex]
solver for x
Simplify
[tex]2,400(0.05)=x(0.03)+(2,400-x)(0.06)[/tex]
[tex]120=0.03x+144-0.06x[/tex]
[tex]0.03x=24[/tex]
[tex]x=\$800[/tex]
therefore
In the account that paid 3% Ramon put [tex]\$800[/tex]
In the account that paid 6% Ramon put [tex]\$2,400-\$800=\$1,600[/tex]
To solve this problem, we set up an equation representing the total interest earned from the two different bank accounts. After doing a bit of algebra, we find that Ramon put $1200 into each account.
Explanation:This question falls into the category of the linear system in mathematics which deals with simple interest calculations. The total amount invested by Ramon is $2400 and we don't know how it was distributed into the two accounts, so we can name the amount in the account with 3% interest x and the other with the 6% interest 2400-x, as the total should be $2400.
We know the total interest earned was 5% of the whole sum, so we can set up the equation:
0.03x + 0.06(2400 - x) = 2400 * 0.05.
Solving the equation, we find that x, the amount in the first account, is $1200 and therefore, $1200 must have been put into the second account.
Learn more about Simple Interest here:https://brainly.com/question/22621039
#SPJ3
Simplify the expression. 2n/3n
[tex]\dfrac{2n}{3n}=\dfrac{2\cdot \not n}{3\cdot\not n}=\dfrac{2}{3}[/tex]
if x+3y=-2 and 2x-6y=-8, which of the following equation is true?
A) 3X-3Y=-6
B) 12y=4
C) x-9y=-10
D) 3X=5
Final answer:
The correct equation is 3X-3Y = -6, Therefore option A is correct.
Explanation:
To find the correct equation, we can solve the given system of equations. We can do this by using the method of substitution or elimination. Let's use the method of elimination to solve the system.
Multiplying the first equation by 2 and the second equation by 3, we get:
2(x+3y) = 2(-2) ⟶ 2x + 6y = -4
3(2x-6y) = 3(-8) ⟶ 6x - 18y = -24
Adding these two equations together, we eliminate the variable 'x':
(2x + 6y) + (6x - 18y) = -4 + (-24)
8x - 12y = -28
Now, let's compare this equation to the options given. The correct equation is:
3X-3Y = -6
When a number is added to 1/5 of itself, the result is 24. The equation that models this problem is n +1/5 n = 24. What is the value n? n = 18 n = 20 n = 214/5 n = 234/5
For this case we must find the value of n of the following equation:
[tex]n + \frac {1} {5} n = 24[/tex]
Taking common factor "n" from the left side of the equation we have:
[tex]n (1+ \frac {1} {5}) = 24\\n \frac {6} {5} = 24[/tex]
Multiplying by 5 on both sides of the equation:
[tex]6n = 120[/tex]
Dividing between 6 on both sides of the equation:
[tex]n = 20[/tex]
Thus, the value of n is 20.
Answer:
[tex]n = 20[/tex]
Answer: Second Option
[tex]n = 20[/tex]
Step-by-step explanation:
Let's call n the number searched.
Then one fifth of this number is written as
[tex]\frac{1}{5}n[/tex]
Then at 1 / 5n the number n is added.
So, we have
[tex]n + \frac{1}{5}n[/tex]
Now we know that the result of this sum is equal to 24. Then we write the equation:
[tex]n + \frac{1}{5}n = 24[/tex].
Now we solve the equation:
[tex]\frac{6}{5}n = 24[/tex]
Muple both sides of equality by [tex]\frac{5}{6}[/tex]
[tex]\frac{5}{6} * \frac{6}{5}n = 24*\frac{5}{6}[/tex]
[tex]n = 20[/tex]
1. Graph the function f (x) =
The graph is attached.
Why?To solve the given piecewise function, we need to graph each of the functions that compound the main function with their respective domain restrictions.
So, solving we have:
- First function: Positive slope line (red line).
[tex]f(x)=x+1=y\\\\y=x+1, if x<0[/tex]
Let's find the axis intercepts in order to be able to graph the function.
Finding the x-axis intercept, we need to make "y" equal to 0, so:
[tex]y=x+1\\\\0=x+1\\x=-1[/tex]
So, we have that the x-axis intercept is located at the point (-1,0)
Finding the y-axis intercept, we to mate "x" equal to 0, so:
[tex]y=x+1\\\\y=0+1\\y=1[/tex]
So, we have that the y-axis intercept is located at the point (0,1)
Hence, we have that the function exists from the values of "x" less than 0 to the negative infinite or (-∞,0)
- Second function: Horizontal line (blue line).
[tex]y=2,if0\leq x\leq 1[/tex]
Since there is not variable, we know that it's a horizontal line that passes through y equal to 2.
Hence, we have that the function exists between the values of "x" from 0 to 1 or [0,1]
- Third function: Positive slope line (green line).
[tex]y=x,ifx>0[/tex]
Let's find the axis intercepts in order to be able to graph the function.
Finding the x-axis intercept, we need to make "y" equal to 0, so:
[tex]0=x+\\\\0=x+\\x=0[/tex]
So, we have that the x-axis intercept is located at the point (0,0)
Finding the y-axis intercept, we to make "x" equal to 0, so:
[tex]y=x\\\\y=0\\y=0[/tex]
We have that the function only pass through the point (0,0) or origin.
Hence, we have that the function exists from the values of "x" greater than 2.
So, the graph of the given function is attached.
Have a nice day!
A triangular tile measures 4 4 cm along its base and 3 3 cm tall. What is the area taken up by the tile? The area is __________ cm 2 cm2 .
Answer:
Step-by-step explanation:
Area of a triangle is A=(1/2)*base*height
A = (1/2)*(4.4)*(3.3) = 0.726 cm2
What is the range of this function
The range of a function is the output values ( Y values)
These would be the numbers the arrows are pointing at.
-8, -3 , 5 and 7
The answer is C.
Please help
I’m bad at this
Hello There!
The Answer Would Be 0.25
This is because you have to multiply your original number 5.8 by 0.25 to get the new dilation.
The scale factor is 0.25
the perimater of the triangle is 30cm. its sides are in the ratios 1:3:2, then find its sides
Answer:
1 * 5 = 5cm
3 * 5 = 15cm
2 * 5 = 10cm
Step-by-step explanation:
1+3+2 = 6
then do 30 / 6 = 5 to find one part of the ratio
1 * 5 = 5
3 * 5 = 15
2 * 5 = 10
Answer: The lengths of the sides of the triangle are:
____________________________________
" 5 cm, 15 cm, and 10 cm " .
____________________________________
Step-by-step explanation:
____________________________________
1x + 3x + 2x = 30 ;
In which the sides are:
1x ; 3x, 2x ;
Find: 1x ; 3x; and 2x .
____________________________________
Let us begin by finding "x" :
____________________________________
1x + 3x + 2x = 30
1x + 3x + 2x = 6x ;
→ 6x = 30 ;
Divide each side of the equation by: " 6 " ;
to isolate "x" on each side of the equation; and to solve for "x" ;
→ 6x / 6 = 30 / 6 ;
to get:
→ x = 5 ;
______________________________________
Now, solve for the length of each side;
______________________________________
1x = x = 5 cm ;
3x = (3*5) = 15 cm ;
2x = (2*5) = 10 cm ;
______________________________________
Answer: The lengths of the sides of the triangle are:
5 cm, 15 cm, and 10 cm .
_______________________________________
Hope this helps!
Best wishes to you in your academic pursuits
— and within the "Brainly" community!
_______________________________________
Which equation is the inverse of 5y+4 = (x+3)^2 + 1/2?
Answer:
[tex]f^{-1}(x)=-3(+/-)\sqrt{\frac{10x+7}{2}}[/tex]
Step-by-step explanation:
we have
[tex]5y+4=(x+3)^{2}+\frac{1}{2}[/tex]
Exchange x for y and y for x
[tex]5x+4=(y+3)^{2}+\frac{1}{2}[/tex]
Isolate the variable y
[tex]5x+4-\frac{1}{2}=(y+3)^{2}[/tex]
[tex]5x+\frac{7}{2}=(y+3)^{2}[/tex]
[tex]\frac{10x+7}{2}=(y+3)^{2}[/tex]
Take square root both sides
[tex](y+3)=(+/-)\sqrt{\frac{10x+7}{2}}[/tex]
[tex]y=-3(+/-)\sqrt{\frac{10x+7}{2}}[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
[tex]f^{-1}(x)=-3(+/-)\sqrt{\frac{10x+7}{2}}[/tex]
You have a map of an area in France. The scale used is 2cm:8km. You want to ride to a national park. The park is shown on the map as 16 cm away.
How far is that in kilometres?
Divide the distance on the map by 2 to get the number of 8km segments there are, then multiply that by 8km for total distance.
16 cm / 2cm = 8
8 x 8km = 64km total.
Solve this equation -4x = -60
x =
-4x = -60
x = -60 / -4
x = 15
The answer is
x = 15
Anyone know the answer?
Answer:
A 4955.30
Step-by-step explanation:
A = P ( 1+i) ^ t
where A is the amount in the account
P is the principal
i is the interest rate
and t is the time in years
A = 4000(1+.055)^4
A = 4000(1.055)^4
A = 4955.2986025
Rounding to the nearest cent
A = 4955.30
factorise 49 a^2 + 4b^2 +9c^2 -28ab + 12bc- 42 ac
which situation best represents the equation below?
26= 179 - 9k
A. A pool of water has gallons of water in it. It is filled at a rate of 9 gallons per minute, until there are 179 gallons.
B. A dairy farm has 179 cows in it. All of the cows are placed in groups of nine. There are 26 groups of cows.
C. There were 26 boxes for delivery at the post office one morning. By the end of the day, 179 boxes had been added to the delivery pile. The boxes will be delivered in groups of k.
D. A school assembly has 179 students in it. Nine teachers escort k number of students out of the assembly, until there are 26 students remaining.
D ! :)
Got it wrong, and it showed me the correct answer. IT IS NOT B.
A school assembly has 179 students in it. Nine teachers escort k number of students out of the assembly, until there are 26 students remaining
Model equation for the situationThe equation for the situation is given as;
26 = 179 - 9k
From the equation above, 26 is the result of the difference between "179" and "9k".
Thus, the situtation that bets represent the equation is, a school assembly has 179 students in it. Nine teachers escort k number of students out of the assembly, until there are 26 students remaining.
Learn more about model equation here: https://brainly.com/question/25987747
The sum of -1 7/8 and 1 11/12
Answer:
1/24
Step-by-step explanation:
Step-by-step explanation:
-1 7/8+1 11/12
=-15/8+23/12 by taking Lcm as 24 we get:
=-45+46/24=1/24
Which of the following is the converse of the statement “if it is my birthday, then it is September”
Answer:
The converse statement is "If its is September then it is my birthday"
Step-by-step explanation:
Answer:
If its is September then it is my birthday basically reverising it
Step-by-step explanation:
A section of a biking trail begins at the coordinates
(-3, 14) and follows a straight path that ends at
coordinates (6, -1). What is the rate of change of
the biking trail?
Answer:
-5/3
Step-by-step explanation:
The rate of change of the biking trail is determined using the slope formula. The slope of the line passing through the given coordinates is -5/3.
Explanation:The rate of change of the biking trail can be determined using the slope formula. The slope of a line passing through two points (x1, y1) and (x2, y2) is given by the formula slope = (y2 - y1) / (x2 - x1).
Using the given coordinates (-3, 14) and (6, -1), we can substitute the values into the formula to find the rate of change of the biking trail.
slope = (-1 - 14) / (6 - (-3)) = -15 / 9 = -5/3
Therefore, the rate of change of the biking trail is -5/3.
Learn more about slope of a line here:https://brainly.com/question/34207674
#SPJ11
The unicorns: Stardust, Umo, Windthorn and Highflyer are enjoying themselves playing in the forest. They notice 8 spiders in the tree, 5 cockroaches, 7 bees, 3 deer, 4 cows and a pair of antlers behind a bush. How many legs do all the numbered creatures amount to all together?
There are 188 legs in all
Step-by-step explanation:Let's solve this problem step by step:
1. First of all, there are 4 unicorns enjoying themselves playing in the forest, they are: Stardust, Umo, Windthorn and Highflyer are enjoying themselves playing in the forest. Each unicorn has 4 legs, so:
[tex]4 \ unicorns \times 4 \ legs=\boxed{16 \ legs}[/tex]
2. The unicorns notice 8 spiders in the tree, so each spider has 8 legs. Accordingly:
[tex]8 \ spider \times 8 \ legs=\boxed{64 \ legs}[/tex]
3. There are 5 cockroaches, so each cockroach has 6 legs. Accordingly:
[tex]5 \ cockroaches \times 6 \ legs=\boxed{30 \ legs}[/tex]
4. There are 7 bees, so each bee has 6 legs. Accordingly:
[tex]7 \ bees \times 6 \ legs=\boxed{42 \ legs}[/tex]
5. There are 3 deer, so each deer has 4 legs. Accordingly:
[tex]3 \ deers \times 4 \ legs=\boxed{12 \ legs}[/tex]
6. There are 4 cows, so each cow has 4 legs. Accordingly:
[tex]4 \ cows \times 4 \ legs=\boxed{16 \ legs}[/tex]
7. They notice a pair of antlers behind a bush, so this means there are 2 more deers, and each having 4 legs. Accordingly:
[tex]2\ deers \times 4 \ legs=\boxed{8 \ legs}[/tex]
7. They notice a pair of antlers behind a bush, so this means there are 2 deers, and each having 4 legs. Accordingly:
[tex]2\ deers \times 4 \ legs=\boxed{8 \ legs}[/tex]
Adding all the amounts of legs we have:
[tex]Total=16+64+30+42+16+12+8=\boxed{188 \ legs}[/tex]
a snake slithers 2/9 miles in 4/5 hours what is its speed in miles per hour
Answer:
5/18
Step-by-step explanation:
speed = distance / time
s = (2/9 miles) / (4/5 hours)
To divide by a fraction, multiply by the reciprocal:
s = (2/9) × (5/4)
s = 10/36
s = 5/18
So the snake's speed is 5/18 miles per hour.
Final answer:
To calculate the snake's speed, you divide the distance (2/9 miles) by the time (4/5 hours), resulting in a speed of 5/18 miles per hour.
Explanation:
To calculate the snake's speed in miles per hour, we divide the distance traveled by the time taken. The snake slithers 2/9 miles in 4/5 hours, which can be written as a rate equation:
Speed = Distance ÷ Time
Plugging in the numbers, we calculate:
Speed = (2/9) miles ÷ (4/5) hours
To find the speed in miles per hour, we solve the equation:
Speed = (2/9) ÷ (4/5)
To divide one fraction by another, we multiply by the reciprocal of the divisor:
Speed = (2/9) × (5/4)
Speed = (2×5) ÷ (9×4)
Speed = 10/36
When this fraction is simplified, it equals 5/18 miles per hour.
If we want to relate it to units of m/s as the reference information suggests, we can use an online unit converter or unit analysis, considering that 1 mile per hour is approximately equal to 0.44704 meters per second.
The air temperature at 2 pm was 12º. What was the air temperature at 8 pm, if it had dropped 15ºby
then?
Answer:
-3 degrees at 8 pm.
Step-by-step explanation:
That would be 12 - 15
= -3 degrees.
Answer:
-3
Step-by-step explanation:
The answer would be -3, because if it were to go down 15 degrees from when it was 2 PM. The equation you would have to do is 12 - 15. Which answsering that would be -3
Find x in the following right triangle.
Helppp
Answer:
15 ft
Step-by-step explanation:
Use Pythagorean Thm. If I have two sides:
Then I do this to find the third:
If looking for leg, do sqrt(big square - small square)
If looking for hyp, do sqrt(leg square+leg square)
So what this means since x is a leg, I'm going to do sqrt(17^2-8^2)
17 was bigger than 8 that's why it went first
Anyways now we can just whip out the calculator
sqrt(17^2-8^2)=15
Since this is a right triangle you may use Pythagorean theorem which is [tex]a^{2} +b^{2} =c^{2}[/tex]
a and b are the legs (two sides that FORM the right angle) of the right triangle while c is the hypotenuse (the side that is opposite the right angle)
In this case...
a = x
b = 8
c = 17
Plug these numbers into the formula and solve for x
[tex]x^{2} +8^{2} =17^{2}[/tex]
[tex]x^{2}[/tex] + 64 = 289
[tex]x^{2}[/tex] + (64 - 64) = 289 - 64
[tex]x^{2}[/tex] = 225
To remove the squared from the x take the square root of both sides
x = 15
Hope this helped!
~Just a girl in love with Shawn Mendes
A closet contains n pairs of shoes. If 2r shoes are chosen at random, (where 2r < n), what is the probability that there will be
a) no complete pair
b) Exactly one complete pair
c) Exactly 2 complete pair
What is the slope of a line perpendicular to the line whose equation is y = 2x+5?
slope = -1
slope =
slope = -2
Answer:
slope = - [tex]\frac{1}{2}[/tex]
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 2x + 5 is in this form with slope m = 2
Given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{2}[/tex]
Answer:
Slope [tex]m_{2} = \frac{-1}{2}[/tex].
Step-by-step explanation:
Given : equation is y = 2x+5.
To find : What is the slope of a line perpendicular to the line.
Solution : We have given y = 2x+5.
On comparing by the slope form of line is
y = mx + b
where, m = slope , b = y-inercept.
So , [tex]m_{1}[/tex] = 2 .
When the two line are perpendicular to each other then thier slope is
[tex]m_{2} = \frac{-1}{m_{1}}[/tex].
Then plug the value of [tex]m_{1}[/tex] = 2 .
[tex]m_{2} = \frac{-1}{2}[/tex].
[tex]m_{2} = \frac{-1}{2} [/tex].
Therefore, Slope [tex]m_{2} = \frac{-1}{2}[/tex].
please help, see pic attachment
Answer:
the answer is 30
Step-by-step explanation:
because it is an equilateral triangle all sides are the same so if you set 3x+15 equal to 7x-5 and solve for x you get 4x=20 and x= 5
when you plug 5 in to each equation you get 30 for both sides and so it proves that the answer is 30
which value is included in the solution set for the inequality graphed on the number line
Answer:
-5
Step-by-step explanation:
On the number line, the arrow is from -2 (opens) to the left; that means solutions will be any values less than -2
So
-5 < -2 : YES ( solutions will be any values less than -2)
-2 = -2 : NO (solutions will be any values less than -2)
0 > -2 : NO (solutions will be any values less than -2)
3 > -2 : NO (solutions will be any values less than -2)
Answer
- 5
Answer:
-5
Step-by-step explanation:
First
(open circle) means < or >
(closed circle) means < or >
SInce the arrow is pointing to the left the answer would be to the left.
So -3, -4, -5, -6, -7, -8, -9, -10etc
so -5 is one of them so thats ur answer
Factor x^2+2x+1 please
[tex]x^2+2x+1=(x+1)^2[/tex]
Answer:
(x+1)(x+1)
Step-by-step explanation: