Scores on the Critical Reading part of the SAT exam in a recent year were roughly Normal with mean 496 and standard deviation 115. You choose an SRS of 100 students and average their SAT reading scores. If you do this many times, the mean of the average scores will be close to:_______. A. 115.
B. 115 / square root of 100 = 1.15.
C. 115 / square of 100 = 11.5.

Answers

Answer 1

Answer:

Option C) 115 / square of 100 = 11.5

Step-by-step explanation:

We are given the following in the question:

Mean, μ = 496

Standard Deviation, σ = 115

Sample size, n = 100

a) Mean of scores

[tex]\bar{x} = \mu = 496[/tex]

b) The standard Deviation

[tex]s = \dfrac{\sigma}{\sqrt{n}} = \dfrac{115}{\sqrt{100}} = \dfarc{115}{10} = 11.5[/tex]

Thus, the correct answer is

Option C) 115 / square of 100 = 11.5

Answer 2

Answer:

Option C.  115 / square of 100 = 11.5.

Step-by-step explanation:

We are given that Scores on the Critical Reading part of the SAT exam in a recent year were roughly Normal with mean 496 and standard deviation 115.

An SRS of 100 students is chosen and average their SAT reading scores.

The z score normal probability is given by;

  Z = [tex]\frac{xbar-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)

So, the mean of the average scores will be close to [tex]\frac{\sigma}{\sqrt{n} }[/tex] i.e.;

      = 115 / square root of 100 = [tex]\frac{115}{\sqrt{100} }[/tex] = 115/10 = 11.5


Related Questions

please help!
"solving proportions" is what needs done
please show all work clearly!​

Answers

23) x = [tex]\frac{-60}{9}[/tex] = -6.666.

24) x = [tex]\frac{-12}{7}[/tex] = -1.7142.

25) x = [tex]\frac{-37}{5}[/tex] = -7.4.

Step-by-step explanation:

Step 1; For [tex]\frac{x+6}{3}[/tex] = [tex]\frac{x+4}{12}[/tex], we cross multiply the denominators and get,

3 × (x + 4) = 12 × (x + 6),

3x + 12 = 12x + 72.

We take all the x terms to the LHS and keep the constants on the RHS.

3x - 12x = 72 - 12,

-9x = 60, x = [tex]\frac{-60}{9}[/tex] = -6.6666.

Step 2; For [tex]\frac{-5}{x-4}[/tex] = [tex]\frac{9}{x+12}[/tex], we cross multiply the denominators and get,

-5 × (x + 12) = 9 × (x - 4),

-5x - 60 = 9x - 36.

We take all the x terms to the LHS and keep the constants on the RHS.

-5x - 9x = -36 + 60,

-14x = 24, x = [tex]\frac{-24}{14}[/tex] = -1.7142.

Step 3; For [tex]\frac{6}{11}[/tex] = [tex]\frac{x-1}{x-8}[/tex], we cross multiply the denominators and get,

6 × (x - 8) = 11 × (x - 1),

6x - 48 = 11x - 11.

We take all the x terms to the LHS and keep the constants on the RHS.

6x - 11x = -11 + 48,

-5x = 37, x = [tex]\frac{-37}{5}[/tex] = -7.4.

(1 point) A rock is thrown into a still pond and causes a circular ripple. If the radius of the ripple is increasing at a rate of 4 feet per second, how fast is the circumference changing when the radius is 18 feet?

Answers

Answer:

8pi feet per second

Or, 25.1 feet per second (3 sf)

Step-by-step explanation:

C = 2pi×r

dC/dr = 2pi

dC/dt = dC/dr × dr/dt

= 2pi × 4 = 8pi feet per second

dC/dt = 25.1327412287

100 pyramid shaped chocolate candies with a square base of 12 mm size and height of 15 mm are melted in a cylinder coil pot if the part has a radius of 75 mm what is the height of the melted candies in the pot.

Answers

Answer: the height of the melted candies in the pot is 12.2 mm

Step-by-step explanation:

The formula for determining the volume of a square base pyramid is expressed as

Volume = area of base × height

Area of the square base = 12² = 144 mm²

Volume of each pyramid = 15 × 144 = 2160 mm³

The volume of 100 pyramid shaped chocolate candies is

2160 × 100 = 216000 mm³

The formula for determining the volume of a cylinder is expressed as

Volume = πr²h

Since the pyramids was melted in the cylindrical pot whose radius is 75 mm, it means that

216000 = 3.14 × 75² × h

17662.5h = 216000

h = 216000/17662.5

h = 12.2 mm

Answer:

The height of the melted candies in the pot is 4.07mm

Step-by-step explanation:

H= 100*1/3(12)^2(15)/π(75)^2=64/5π=4.07

You and your friend are skiing down a hill, your friend is almost at the finish line, and you want to catch up with him, how many seconds will it take you to reach him?

Answers

Answer:It depends

Step-by-step explanation:

What are the solutions to the system of equations?




{y=2x2−8x+5
{y=x−2

Answers

Final answer:

To find the solutions to the system of equations, use the substitution method. The solutions are (1/2, -3/2) and (7, 5).

Explanation:

To find the solutions to the system of equations, we can use the substitution method. First, solve one of the equations for y in terms of x. Let's solve the second equation for y:

y = x - 2

Now substitute this expression for y into the first equation:

x - 2 = 2x^2 - 8x + 5

Now we have a quadratic equation. Rearrange it into standard form:

2x^2 - 9x + 7 = 0

Next, factor the quadratic equation:

(2x - 1)(x - 7) = 0

Set each factor equal to zero and solve for x:

2x - 1 = 0, x - 7 = 0

x = 1/2, x = 7

Now substitute these values of x back into either of the original equations to find the corresponding values of y:

For x = 1/2: y = 1/2 - 2 = -3/2

For x = 7: y = 7 - 2 = 5

So the solutions to the system of equations are (1/2, -3/2) and (7, 5).

Nanette earns $14 per hour. Last week, she worked 2 hours on Monday, 10 hours on Tuesday, and 9 hours on Wednesday. She had Thursday off, and then she worked 8 hours on Friday. How much money did Nanette earn in all last week?

Answers

Answer: $406

Step-by-step explanation:

Answer: she earned $406 last week.

Step-by-step explanation:

Last week, she worked 2 hours on Monday, 10 hours on Tuesday, and 9 hours on Wednesday. This means that the number of hours that she worked for the first three days is

2 + 10 + 9 = 21 hours

She had Thursday off, and then she worked 8 hours on Friday. Therefore, the total number of hours that she worked for the week is 21 + 8 = 29 hours.

If Nanette earns $14 per hour, then the total amount of money that Nanette earned in all last week is

29 × 14 = $406

Given the cost function, C(x), and the revenue function, R(x), find the number of units x that must be sold to break even.
C(x)= 9000x +72,000
R(x)= 15,000x

Answers

Answer:

12

Step-by-step explanation:

15000x = 9000x +72000

6000x = 72000

x = 12

Answer: the number of units that must be sold to break even is 12

Step-by-step explanation:

The cost function is expressed as

C(x)= 9000x +72000

The revenue function is expressed as

R(x) = 15000x

Profit = Revenue - cost

At the point of break even, the total revenue is equal to the total cost. This means that profit is zero. The expression becomes

Revenue - cost = 0

Revenue = cost

R(x) = C(x)

Therefore,

15000x = 9000x +72000

15000x - 9000x = 72000

6000x = 72000

x = 72000/6000

x = 12

Which inequality can Josh use to determine x, the minimum number of visits he needs to earn his first free movie ticket?

Answers

Answer:

3.5x + 15 ≥ 55

Step-by-step explanation:

I think the question below contains the missing information.

Josh has a rewards card for a movie theater. - He receives 15 points for becoming a rewards card holder. - He earns 3.5 points for each visit to the movie theatre. - He needs at least 55 points to earn a free movie ticket. Which inequality can Josh use to determine x, the minimum number of visits he needs to earn his firs free movie ticket?

My answer:

Becoming a member = 15 pointsVisiting the moving theater = 3.5 pointsTotal points needed for a free movie ticket = 55

Let x is the number of times he visits = 3.5x

Total points = Points received on becoming a member + Points received on x visits

So,

Total Points = 15 + 3.5x

We know the total points must be at least 55 for a free movie ticket.  This can be expressed as:

3.5x + 15 ≥ 55

Power (denoted by PPP) can be defined as a function of work (denoted by WWW) and time (denoted by ttt) using this formula: P=\dfrac{W}{t}P= t W ​ P, equals, start fraction, W, divided by, t, end fraction Work is measured in \dfrac{\text{kg}\cdot\text{m}^2}{\text{s}^2} s 2 kg⋅m 2 ​ start fraction, start text, k, g, end text, dot, start text, m, end text, squared, divided by, start text, s, end text, squared, end fraction, and time is measured in \text{s}sstart text, s, end text.

Answers

Answer: kg*m^2 / s^3

Answer:

Answer: kg*m^2 / s^3

Step-by-step explanation:

PLEASE HELP!!!!
ERGF is inscribed in a circle.
Find the measure of angle E.

Answers

In a cyclic quadrilateral ( a quadrilateral that is inscribed in a circle),

opposite angles add up to 180 degrees. So you can form an equation and solve for x, and thus angle E.

Therefore:

(-2 + 6x) + (7x - 13) = 180

13x - 15 = 180

13x = 195

x = 15

So angle E = 5x

                 = 5 (15)

                 = 75 degrees

What is the volume of a cylinder, in cubic m, with a height of 5m and a base diameter of 20m? Round to the nearest tenths place

Answers

What is the volume of a cylinder, in cubic m, with a height of 5m and a base diameter of 20m? Round to the nearest tenths place.

Answer: 1570.8

The volume of a cylinder with a height of 5m and a base diameter of 20m is approximately 1,570.8 cubic meters when rounded to the nearest tenths place.

To find the volume of a cylinder with a height of 5m and a base diameter of 20m, we will use the formula for the volume of a cylinder: V = πr²h , where V is volume, r is the radius of the base, and h is the height of the cylinder. The radius is half of the diameter, so for a diameter of 20m, the radius is 10m. Substituting these values into the formula gives us V = (π × 10² × 5), which we can calculate as V = 3.1416 × 100 × 5 = 1,570.8 cubic meters, rounded to the nearest tenths place.

Look at the proof. Name the postulate you would use to prove the two triangles are congruent.


A. AAA Postulate

B. SSS Postulate SAS

C. SAS Postulate

Answers

Answer:

Option C, SAS Postulate

Step-by-step explanation:

I think that it is option C because it does not give you 3 angles or 3 sides, it gives you 2 angles and 1 side.

Answer:  Option C, SAS Postulate

A common computer programming rule is that names of variables must be between one and eight characters long. The first character can be any of the 26​ letters, while successive characters can be any of the 26 letters or any of the 10 digits. For​ example, allowable variable names include​ A, BB, and M3477K. How many different variable names are​ possible? (Ignore the difference between uppercase and lowercase​ letters.)

Answers

Answer:

Total number of possibilities 2,095,681,645,538.

Step-by-step explanation:

The variables can be 1 to 8 characters long.

The first space can be filled by any of the 26 letters.

The remaining n places can be filled by any of the 26 letters or any of the 10 digits.

For a single character variable the number of ways to select a variable name is,

n (1 character) = 26

For two character variable the number of ways to select a variable name is,

n (2 character) = 26 × 36 = 936

For three character variable the number of ways to select a variable name is,

n (3 character) = 26 × 36 × 36 = 26 × 36² = 33,696

For four character variable the number of ways to select a variable name is,

n (4 character) = 26 × 36 × 36 × 36 = 26 × 36³ = 1,213,056

And so on.

Similarly for the eight character variable the number of ways to select a variable name is,

n (8 character) = 26 × 36 × 36... × 36 = 26 × 36⁷ = 2,037,468,266,496

Total number of possibilities 2,095,681,645,538.

Canaries provide more food to their babies when the babies beg more intensely. Researchers wondered if begging was the main factor determining how much food baby canaries receive, or if parents also take into account whether the babies are theirs or not. To investigate, researchers conducted an experiment allowing canary parents to raise two broods: one of their own and one fostered from a different pair of parents. If begging determines how much food babies receive, then differences in the " begging intensities" of the broods should be strongly associated with differences in the amount of food the broods receive. The researchers decided to use the relative growth rates ( the growth rate of the foster babies relative to that of the natural babies, with values greater than 1 indicating that the foster babies grew more rapidly than the natural babies) as a measure of the difference in the amount of food received. They recorded the difference in begging intensities ( the begging intensity of the foster babies minus that of the natural babies) and relative growth rates. Here are data from the experiment:Difference in begging intensity -14 -12.5 -12 -8 -8 - 6.5 -5.5 -3.5 -3 -2 -1.5Relative growth rate 0.85 1 1.33 0.85 0.9 1.15 1 1.3 1.33 1.03 0.95Difference in begging intensit -1.5 0 0 2 2 3 4.5 7 8 8.5 Relative growth rate 1.15 1.13 1 1.07 1.14 1 0.83 1.15 0.93 0.7 Make a scatterplot that shows how relative growth rate responds to the difference in begging intensity.The scatterplot suggests that the relationship between relative growth rate and difference in begging intensityLinear or Not Linear ?

Answers

Answer:

The required scatterplot is given in attached file.

Step-by-step explanation:

From the scatterplot we see that two study variables are not linearly related. There may be some non-linear relation between the two variables.

Final answer:

The question asks about the relationship between canary chick begging intensity and their relative growth rate. This can be determined by creating and interpreting a scatterplot of the provided data. The relationship would be considered linear if there's a consistent rate of change between begging intensity and growth rate, and non-linear if the rate of change varies.

Explanation:

The question is asking if the relationship between the relative growth rate of canary chicks and the difference in begging intensity is linear or not. By plotting the data on a scatterplot, we would visualize whether there is a consistent, straight-line relationship (linear) or not (non-linear) between these two variables.

Without the actual scatterplot, I cannot definitively say if the relationship is linear or not. However, linear relationships typically involve variables moving in the same direction at a constant rate, while non-linear relationships involve variables moving at different rates or directions. Therefore, if the increase in begging intensity is consistently associated with an increase in relative growth rate (and vice versa), the relationship could be considered linear. On the other hand, if increases or decreases in begging intensity inconsistently affect the relative growth rate, the relationship would likely be non-linear.

An important part of this research is the ability to interpret scatterplots and understand the concepts of linear and non-linear relationships in biological data. Interpreting such relationships is integral in the study of animal behavior and understanding how different factors, such as parental care and chick begging, affect survival and growth in bird species like canaries.

Learn more about Linear Relationships here:

https://brainly.com/question/31693063

#SPJ3

Brainliest & 15 pts to whoever helps pls!!

You are comparing the heights of contemporary males and eighteenth-century males. The sample mean for a sample of 30 contemporary males is 70.1 inches with a sample standard deviation of 2.52 inches. The sample mean for eighteenth century males was 65.2 inches with a sample standard deviation of 3.51 inches. Is there sufficient data to conclude that contemporary males are taller than eighteenth-century males?
a. The P-value is less than 0.00001. There is insufficient data to reject the null hypothesis.
b. The P-value is greater than 0.00001. There is sufficient data to reject the null hypothesis.
c. The P-value is greater than 0.00001. There is insufficient data to reject the null hypothesis.
d. The P-value is less than 0.00001. There is sufficient data to reject the null hypothesis.

Answers

Answer:

D

Step-by-step explanation:

dont skip just help plz

Answers

(1,-3) is your answer

Answer:

(1,-3)

Step-by-step explanation:

the x-axis for A is positive and the y-axis is negative. point A's X value is 1 because it is 1 point away from the origin and the value of the Y is 3 units away from the origin and it has to be negative.

Find a degree 3 polynomial with real coefficients having zeros 3 and 3−3i and a lead coefficient of 1. Write P in expanded form.

Answers

Answer:

P =  x³ − 9x² + 36x − 54

Step-by-step explanation:

Complex roots come in conjugate pairs.  So if 3−3i is a zero, then 3+3i is also a zero.

P = (x − 3) (x − (3−3i)) (x − (3+3i))

P = (x − 3) (x − 3 + 3i) (x − 3 − 3i)

P = (x − 3) ((x − 3)² − (3i)²)

P = (x − 3) ((x − 3)² + 9)

P =  (x − 3)³ + 9 (x − 3)

P =  x³ − 9x² + 27x − 27 + 9x − 27

P =  x³ − 9x² + 36x − 54

If Naomi were to paint her living room alone, it would take 5 hours. Her sister Jackie could do the job in 8 hours. How many hours would it take them working together? Express your answer as a fraction reduced to lowest terms, if needed.

Answers

Answer:

40/13

The decimal form is going to be 3.076

My Notes Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution. Do not attempt to find the solution. (Enter your answer using interval notation.)t(t−4)y"+3ty'+4y=2,y(3)=0,y'(3)=−1

Answers

Answer:

The answer to the question is

The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is  (-∞, 4)

Step-by-step explanation:

To apply look for the interval, we divide the ordinary differential equation by (t-4) to

y'' + [tex]\frac{3t}{t-4}[/tex] y' + [tex]\frac{4}{t-4}[/tex]y = [tex]\frac{2}{t-4}[/tex]

Using theorem 3.2.1 we have p(t) =  [tex]\frac{3t}{t-4}[/tex], q(t) =  [tex]\frac{4}{t-4}[/tex], g(t) = [tex]\frac{2}{t-4}[/tex]

Which are undefined at 4. Therefore the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution, that is where p, q and g are continuous and defined is (-∞, 4) whereby theorem 3.2.1 guarantees unique solution satisfying the initial value problem in this interval.

Final answer:

The existence and uniqueness theorems for ODEs determine that the longest interval where the initial value problem has a unique and twice-differentiable solution is (0, 4), avoiding discontinuities at t=0 and t=4.

Explanation:

The initial value problem provided is a second-order linear ordinary differential equation (ODE) of the form:

t(t-4)y"+3ty'+4y=2, with initial conditions y(3)=0 and y'(3)=-1.

To determine the longest interval in which the solution is guaranteed to be unique and twice-differentiable, we need to consider the existence and uniqueness theorems for ODE's, which are predicated on the functions of the equation being continuous over the interval considered. Here, the coefficients of y" and y' are t(t-4) and 3t respectively. The problematic points occur where the coefficient of y" is zero because it will make the equation not well-defined, which occurs at t=0 and t=4. Therefore, the longest interval around the initial condition t=3 that avoids these points is (0, 4). Within this interval, the coefficients are continuous, and hence, the conditions for the existence and uniqueness of the solution are satisfied.

The Houston Astros fan population is 1,450,000 and is decreasing at an annual rate of 0.99% per year .Write an exponential equation to represent this situation after x years.

Answers

Answer:

Step-by-step explanation:

We would apply the formula for

exponential decay which is expressed as

A = P(1 - r)^t

Where

A represents the population after t years.

t represents the number of years.

P represents the initial population.

r represents rate of growth.

From the information given,

P = 1,450,000

r = 0.99% = 0.99/100 = 0.0099

t = x years

Therefore, an exponential equation to represent this situation after x years is

A = 1450000(1 - 0.0099)^t

A = 1450000(0.9901)^t

Suppose that an ordinary deck of 52 cards (which contains 4 aces) is randomly divided into 4 hands of 13 cards each. We are interested in determining p, the probability that each hand has an ace. Let
Ei
be the event that the ith hand has exactly one ace. Determine
p=P(E1E2E3E4)
by using the multiplication rule.

Answers

Answer:

P ( E_1*E_2*E_3*E_4 ) = 0.1055

Step-by-step explanation:

Given:

- 52 cards are dealt in 1 , 2 , 3 , 4 hands.

- Events:

             E_1       Hand 1 has exactly 1 ace

             E_2       Hand 2 has exactly 1 ace

             E_3       Hand 3 has exactly 1 ace

             E_4       Hand 4 has exactly 1 ace

Find:

p =P ( E_1*E_2*E_3*E_4 )

Solution:

Multiplication rule.

- For n ε N and events E_1 , E_2 , ... , E_n:

P ( E_1*E_2*......*E_n ) = P (E_1)*P(E_2|E_1)*P(E_3|E_2*E_1)*......*(E_n|E_1*E_2...E_n-1 )

- So for these events calculate 4 probabilities:-

-  For E_1, is to choose an ace multiplied by the number of ways to choose remaining 12 cards out of 48 non-aces:

                               P ( E_1 ) = 4C1 * 48C12 / 52C13

- For E_2 | E_1 , one ace and 12 other cards have already been chosen. there are 39C13 equally likely hands. The number of different one ace hand 2 is the number of ways to choose an ace from 3 remaining multiplied by the number of ways to choose the remaining 12 from 36, we have:

                               P ( E_2 | E_1  ) = 3C1 * 36C12 / 39C13

                               P ( E_3| E_2*E_1  ) = 2C1 * 24C12 / 26C13

                               P ( E_4 | E_3*E_2*E_1  ) = 1C1*12C12 / 13C13 = 1

- So the multiplication rule for n = 4 is as follows:

     P ( E_1*E_2*E_3*E_4 ) = P (E_1)*P(E_2|E_1)*P(E_3|E_2*E_1)*P ( E_4 | E_3*E_2*E_1  ) = [ 4C1 * 48C12 / 52C13 ] * [ 3C1 * 36C12 / 39C13 ] * [ 2C1 * 24C12 / 26C13 ]

     P ( E_1*E_2*E_3*E_4 ) = [ 4!*48! / (12!)^4 ] / [ 52! / (13!)^4 ]

     P ( E_1*E_2*E_3*E_4 ) = [ 4!*13^4 / (52*51*50*49) ]

    P ( E_1*E_2*E_3*E_4 ) = 0.1055

The probability that each hand in a deck of 52 cards gets exactly one ace is approximately 10.5%.

To determine the probability that each hand in a randomly divided deck of 52 cards has exactly one ace, we use the concept of conditional probability.
Let's find it step by step

Step 1 : consider the event E1 that the first hand has exactly one ace:

There are 4 aces and 52 total cards. The probabilities for drawing an ace for the first hand are affected by the decreasing number of both aces and cards.

The probability of the first hand receiving one ace is calculated as:

P(E1) = (4/52) * (48/51) * (47/50) * ... * (36/39)

Step 2 : consider the event E2 that the second hand receives exactly one ace, given that the first hand already has one:

With one ace already given to the first hand, there are 3 aces remaining and 39 cards left for the second hand.

The probability is calculated as:

P(E2|E1) = (3/39) * (35/38) * ... * (25/26)

Step 3 : Proceed similarly for the third and fourth hands:

P(E3|E1E2) = (2/26) * ... * (12/13)

P(E4|E1E2E3) = 1 (since only one ace remains for the last hand)

Step 4 : Using the multiplication rule, the overall probability P(E1E2E3E4) is calculated by multiplying the individual probabilities:

P(E1E2E3E4) = P(E1) * P(E2|E1) * P(E3|E1E2) * P(E4|E1E2E3)

Step 5 : After performing the calculations, we find:

The combined probability P(E1E2E3E4) = (4/52)*(3/39)*(2/26)(1/13) after simplifying is approximately 0.105 or 10.5%.

Tierra rode in a bike-a-thon. Her sponsors donated $7 for every 5 miles she biked. At the end of the bike-a-thon, Tierra had raised $147. How many miles did she ride?

Answers

Answer:

105 miles

Step-by-step explanation:

The question seeks to know the number of miles traveled by Tiera given that she received a certain amount of money in payment.

The total amount of money she received is $147. She receives $7 for every 5 miles traveled. The number of 5 miles traveled is calculated as 147/7 = 21

This means she traveled 5 miles 21 times.

Thus, the total number of miles she had traveled would be 21 * 5 = 105 miles in total

A scoop of ice cream has a 3 inch radius. How tall should the ice cream cone of the same radius be in order to contain all of the ice cream inside the cone?

Answers

Answer:

12cm

Step-by-step explanation:

The scoop of Ice Cream is in the shape of a circular solid which is a Sphere.

For the ice cream to fit into the cone, the volume of the cone must be equal to that of the sphere.

Radius of the Sphere=3cm

Volume of a Sphere = [tex]\frac{4}{3}\pi r^3[/tex]

Volume of a Cone=[tex]\frac{1}{3}\pi r^2h[/tex]

[tex]\frac{1}{3}\pi X 3^2h=\frac{4}{3}\pi X 3^3\\\frac{1}{3}h=\frac{4}{3} X 3\\\frac{1}{3}h=4\\h=4 X 3=12cm[/tex]

The Cone of same radius must be 12cm tall.

(04.01)

Which of the following shows the correct steps to find the value of 16 to the power of 1 over 4 ? (1 point)

Group of answer choices

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

16 to the power of 1 over 4 equals 4 to the power of 4 to the power of 1 over 4 equals 4 to the power of 4 multiplied by 1 over 4 equals 4

16 to the power of 1 over 4 equals 2 to the power of 8 to the power of 1 over 4 equals 8 to the power of 8 multiplied by 1 over 4 equals 4

16 to the power of 1 over 4 equals 8 to the power of 2 to the power of 1 over 4 equals 2 to the power of 2 multiplied by 1 over 4 equals 8

Answers

Answer:

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

Step-by-step explanation:

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

(16)^1/4 = (2^4)^1/4

4 cancels 4

2^1 = 2

Answer:

Step-by-step explanation:

The answer is the first one.

[tex]16^{\frac{1}{4}}[/tex]  simplifies down to

[tex](2^4)^{\frac{1}{4}}[/tex]  The power to power rule is that you multiply the exponents together:

[tex]2^{\frac{4}{4}}[/tex]  which is [tex]2^1[/tex]  which is 2

I'm assuming that you are also working with radicals (since radicals and exponents are inverses of each other).  The way to write this is as a radical and simplify it is:

[tex]16^{\frac{1}{4}[/tex]  as a radical is

[tex]\sqrt[4]{16^1}[/tex]

To simplify, try to write the radicand (the number under the square root) so it's a number with a power that matches the index (the number in the "arm" of the radical sign.  Our index is a 4).  

16 is the same as 2⁴:

[tex]\sqrt[4]{2^4}[/tex]

The power on the 2 is a 4, which is the same as the index.  When the power matches the index, you pull out the base as a single number:

[tex]\sqrt[4]{2^4}=2[/tex]

a bag contains 6 red jelly beans 4 green jelly beans 4 blue jelly beans

Answers

Answer:

12/91

Explanation:

The question is incomplete. The complete question is:

A bag contains 6 red jelly beans, 4 green jelly beans, and 4 blue jelly beans.

If we choose a jelly bean, then another jelly bean without putting the first one back in the bag, what is the probability that the first jelly bean will be green and the second will be red?

Solution

The probability that the first jelly bean will be green is the number of green jelly beans divided by the total number of jelly beans:

4/14

After chosing the first green jelly bean, there will be 13 jelly beans, from which 6 are red. Thus, the probability that the second jelly bean will be red is:

6/13

The probability of the joint events is the product of the two consecutive events:

(4/14) × (6/13) =12/91 ← answer

The probability that the first jelly bean will be green and the second will be red is 12/91.

We start by determining the total number of jelly beans in the bag, which is:

6 red + 4 green + 4 blue = 14 jelly beans.

Step 1: Probability of the first jelly bean being green

The probability of drawing a green jelly bean first is the number of green jelly beans divided by the total number of jelly beans:

P(Green first) = 4/14 = 2/7.

Step 2: Probability of the second jelly bean being red

Once the first green jelly bean is chosen, there are now 13 jelly beans left in the bag, with 6 being red:

P(Red second | Green first) = 6/13.

Step 3: Combined probability

The combined probability of both events happening (first green, then red) is given by multiplying their individual probabilities:

P(Green first and Red second) = (2/7) * (6/13) = 12/91.

Thus, the combined probability is 12/91.

Complete question: A bag contains 6 red jelly beans, 4 green jelly beans, and 4 blue jelly beans. If we choose a jelly bean, then another jelly bean without putting the first one back in the bag, what is the probability that the first jelly bean will be green and the second will be red?

The volume of a gas in a container at a constant temperature varies inversely as the pressure. The volume is 25 cubic centimeter at a pressure of 11 pounds. Use a proportion to find the pressure when the volume is 59 cubic centimeters.

Answers

Answer:

Pressure would be approximately 4.66 pounds.

Step-by-step explanation:

Given:

Volume of gas (V) = 25 cubic cm

Pressure of the  gas (P) = 11 pounds

We need to find the pressure when volume is 59 cubic cm.

Solution:

Now Given:

[tex]V[/tex] ∝ [tex]\frac{1}{P}[/tex]

so we can say that;

[tex]V =\frac kP[/tex]

where k is a constant.

When V = 25 cubic cm, P =11 pounds.

[tex]25 = \frac{k}{11}\\\\k= 25\times 11 = 275\ cm^3.pounds[/tex]

So the equation becomes as.

[tex]V = \frac{275}{P}[/tex]

Now we need to find the pressure when Volume is 59 cubic cm.

[tex]59 =\frac{275}{P}\\\\P=\frac{275}{59}\\\\P\approx 4.66\ pounds[/tex]

Hence Pressure would be approximately 4.66 pounds.

The average number of field mice per acre in a 5​-acre wheat field is estimated to be 14. ​(a) Find the probability that fewer than 12 field mice are found on a given acre. ​(b) Find the probability that fewer than 12 field mice are found on 2 of the next 3 acres inspected.

Answers

Answer:

(a) [tex]P(X < 12)=0.26[/tex]

(b) [tex]P(X=2)=0.15[/tex]

Step-by-step explanation:

Question a

This is a Poisson distribution. The average/mean, μ = 14

So, probability that fewer than 12 field mice are found on a given acre is:

[tex]P(X < 12) = e^{-14}(\frac{14^{0}}{0!} +\frac{14^{1}}{1!} + \frac{14^{2}}{2!} + \frac{14^{3}}{3!} +\frac{14^{4}}{4!} + \frac{14^{5}}{5!} +\frac{14^{6}}{6!}+\frac{14^{7}}{7!}+\frac{14^{8}}{8!} +\frac{14^{9}}{9!}+\frac{14^{10}}{10!}+\frac{14^{11}}{11!})\\ \\P(X < 12) = e^{-14}(1+14+98+457.33+1600.67+4481.87+10457.69+20915.38+36601.91+56936.31+79710.83+101450.15)\\\\P(X < 12) = 8.315*10^{-7}(312725.1248)=0.26 \\\\P(X < 12)=0.26[/tex]

Question b

This is a Binomial distribution with:

Probability of success, p = 0.26

n = 3

[tex]P(X=2)= (3C2)p^{2}(1-p)=\frac{3!}{2!(3-2)!}*(0.26^{2})*(1-0.26)\\ \\P(X=2)=3(0.0676)(0.74)=0.15\\\\P(X=2)=0.15[/tex]

Final answer:

To find the probability that fewer than 12 field mice are found on a given acre and on 2 of the next 3 acres inspected, use the cumulative distribution function (CDF) of the Poisson distribution and the binomial distribution.

Explanation:

To find the probability that fewer than 12 field mice are found on a given acre, we need to use the cumulative distribution function (CDF) of the Poisson distribution. The average number of field mice per acre is 14, so the parameter of the Poisson distribution is also 14.

(a) To find the probability that fewer than 12 field mice are found on a given acre, we calculate P(X < 12) = P(X = 0) + P(X = 1) + P(X = 2) + ... + P(X = 11), where X is the number of field mice found on a given acre

(b) To find the probability that fewer than 12 field mice are found on 2 of the next 3 acres inspected, we calculate P(X < 12) for each acre and use the binomial distribution to determine the probability of 2 successes out of 3 trials.

Last month 15 homes were sold in Town X. The average (arithmetic mean) sale price of the homes was $150,000 and the median sale price was $130,000. Which of the following statements must be true?
I. At least one of the homes was sold for more than $165,000.
II. At least one of the homes was sold for more than $130,0000 and less than $150,000
III. At least one of the homes was sold for less than $130,000.
A. I only
B. II only
C. III only
D. I and II
E. I and III

Answers

Answer:

A. I Only.

Step-by-step explanation:

To begin, we must first be clear that it is the median and that it is the arithmetic mean:

Median is the middle value of a sequence of ordered numbers, for example:

{4,4,4,4,4}, the median is 4 despite being the same numbers.

Now the arithmetic mean is the average value of the samples and is independent of the amplitudes of the intervals.

Then let's analyze each of our options:

I. At least one of the homes was sold for more than $ 165,000.

We know through the flushed:

X1 + X2 +. . . + X7 + (X8 = $130,000) + X9 +. . . + X15 = 15 ∗ 150,000 = $ 2,250,000

Now we will assume the lowest possible value from X1 to X8 = $ 130,000 and from X9 to X15 = X, which is what we want to calculate. That is to say:

X1 = X2 = X3 = X4 = X5 = X6 = X7 = X8 = 130 and X9 = X10 = X11 = X12 = X13 = X14 = X15 = X,

knowing that the total value must be the average of 15, which is equal to $ 2250000 , we have the following equation:

8 ∗ $ 130,000 + 7X = $ 2,250,000

Rearranging:

X = ($ 2,250,000 $ - $ 1,040,000) / 7

X = $ 172,857

Therefore the first statement is true, because at least one house was sold at $ 172,857 which is more than $ 165,000

Evaluating the second option

II. At least one of the homes was sold for more than $ 130,0000 and less than $ 150,000

As the example of the median in the previous case you could have 8 houses that were sold for $ 130,000 or less, therefore here it loses validity, statement II is false.

Evaluating the third option

III. At least one of the homes was sold for less than $ 130,000.

We know that the eighth house sold for $ 130,000, but houses 1 to 7 may also have been sold for that same price. The statement III is false.

Therefore the answer is A. I Only.

The paraboloid z = 6 − x − x2 − 5y2 intersects the plane x = 2 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point (2, 2, −20).

Answers

Answer:

x = 2

y = 2 +  t

z = -20 -20t

Step-by-step explanation:

First, we are going to find the equation for this parabola. We replace x = 2 in the equation of the paraboloid, thus:

[tex]z = 6-x-x^{2} -5y^{2}[/tex]

if x = 2, then

[tex]z = 6-(2)-2^{2}-5y^{2}[/tex]

[tex]z = -5y^{2}[/tex]

Now, we calculate the tangent line to this parabola at the point (2,2,-20)

The parametrization of the parabola is:

x = 2

y = t  

[tex]z = -5t^{2}[/tex]  since [tex]z = -5y^{2}[/tex]

We calculate the derivative

[tex]\frac{dx}{dt}= 0[/tex]

[tex]\frac{dy}{dt}= 1[/tex]

[tex]\frac{dz}{dt}= -10t[/tex]

we evaluate the derivative in t=2, since at the point (2,2,-20) y = 2 and y = t

Thus:

[tex]\frac{dx}{dt}= 0[/tex]

[tex]\frac{dy}{dt}= 1[/tex]

[tex]\frac{dz}{dt}= -10(2)= -20[/tex]

Then, the director vector for the tangent line is (0,1,-20)

and the parametric equation for this line is:

x = 2

y = 2 +  t

z = -20 -20t

The parametric equation of the tangent line is [tex]L(t)=(2,2+t,-20-20t)[/tex]

Parabola :

The equation of Paraboloid is,

                 [tex]z =6-x-x^{2} -5y^{2}[/tex]

Equation of parabola when [tex]x = 2[/tex] is,

       [tex]z=6-2-2^{2} -5y^{2} \\\\z=-5y^{2}[/tex]

The parametric equation of parabola will be,

     [tex]r(t)=(2,t,-5t^{2} )[/tex]

Now, we have to find Tangent vector to this parabola is,

    [tex]T(t)=\frac{dr(t)}{dt}=(0,1,-10t)[/tex]

We get, the point [tex](2, 2, -20)[/tex] when [tex]t=2[/tex]

The tangent vector will be,

 [tex]T(2)=(0,1,-20)[/tex]

The tangent line to this parabola at the point (2, 2, −20) will be,

     [tex]L(t)=(2,2,-20)+t(0,1,-20)\\\\L(t)=(2,2+t,-20-20t)[/tex]

Learn more about the Parametric equation here:

https://brainly.com/question/21845570

A pure acid measuring x liters is added to 300 liters of a 20% acidic solution. The concentration of acid, f(x), in the new substance is equal to the liters of pure acid divided by the liters of the new substance, or . Which statement describes the meaning of the horizontal asymptote? The greater the amount of acid added to the new substance, the more rapid the increase in acid concentration. The greater the amount of acid added to the new substance, the closer the acid concentration is to one-fifth. As more pure acid is added, the concentration of acid approaches 0. As more pure acid is added, the concentration of acid approaches 1.

Answers

Answer:

the answer is d

Step-by-step explanation:

Other Questions
which pair of expressions below are equivalent?A 7(2x)and 9xB 3x + 5x and 15xC 4(2x - 6)and 8x -24D x + x + x +x and x^{4} A simply supported wood beam with a span of L = 15 ft supports a uniformly distributed load of w0 = 270 lb/ft. The allowable bending stress of the wood is 1.95 ksi. If the aspect ratio of the solid rectangular wood beam is specified as h/b = 1.75, calculate the minimum width b that can be used for the beam. A proton with charge 1.602 x 10^-19 C moves at a speed of 300 m/s in a magnetic field at an angle of 65 degrees. If the strength of the magnetic field is 19 T, what would be the magnitude of the force the charge experiences? (1 point) 8.28 x 10^-16 N 13.78 x 10^-15 N 5.09 x 10^-14 N 7.75 x 10^-17 N Where are the magnetic field lines of a permanent magnet the strongest? (1 point) Near both the North and South Poles In the center of the magnet Far away from the North Pole Far away from the South Pole Look at the picture of a positive charge moving in a magnetic field. Using the right hand rule, which direction will the force be that the charge experiences? (1 point) The force will be pointing to the left of the positive charge The force will be into the screen, pointing away from you The force will be out of the screen, pointing towards you The force will be pointing to the right of the positive charge An alpha particle travelling at 2155 m/s enters a magnetic field of strength 12.2 T. The particle is moving horizontally and the magnetic field is vertical. If an alpha particle contains two protons, each with a charge of 1.602 x 10^-19 C and the particle has a mass of 6.64 x 10^-22 kg, what is the radius of the circular path the particle will travel in? (1 point) 0.366 m 0.918 m 0.106 m 0.672 m What is the cyclotron frequency of an electron entering a magnetic field of strength 0.0045 T? The charge of an electron is -1.602 x 10^-19 C and the mass of an electron is 9.31 x 10^-31 kg (1 point) 2.87 x 10^8 Hz 5.19 x 10^7 Hz 1.23 x 10^8 Hz 3.44 x 10^9 Hz If a charged particle is travelling in a helical shape as it moves through a magnetic field, but then the particle gains the opposite charge, what happens to it's travelling path? (1 point) The path remains helical, but it reverses in direction The path changes from helical to a spherical shape The path changes from helical to a triangular shape Nothing happens A conducting loop is placed in a magnetic field. What must be true for there to be a current induced in the loop? (1 point) There must be a source of charge The magnetic field must be changing Potential energy must change into kinetic energy The loop must be surrounded by insulating material A rectanglular loop of length 15 cm and width 8 cm is placed in a horizontal plane. A magnetic field of strength 5.5 T passes through the plane at 18 degrees above the horizontal. What is the flux through the loop? (1 point) 0.018 Tm^2 0.231 Tm^2 0.098 Tm^2 0.063 Tm^2 A conducting coil with 100 loops is placed in a magnetic field. The radius of each loop is 0.075 m. The magnetic field passes through the coil at an angle of 60 degrees. If the magnetic field increases at a rate of 0.250 T/s, what is the emf produced in the coil after 1 second? (1 point) 0.22 V 1.78 V 0.63 V 1.01 V A transformer coil has 20 turns on one end and 200 turns on the other end. An emf of 300 V comes into the 20 turn end. How much emf comes out of the 200 turn end of the transformer? (1 point) 3000 V 6000 V 13000 V 9000 V Describe, in your own words, the Right Hand Rule (3 points) According to Lenz's Law, the induced emf in any conducting wire will always be in what direction? Hint: How does the induced emf relate to the changing magnetic field? (3 points) Name at least two circumstances in which a charge will NOT experience a force from a magnetic field. Assume both the charge and field are strong enough to sense each other (2 points) According to Faraday's Law, given a loop of wire in a magnetic field, what two possible things can change to change the flux through the wire? (2 points) Briefly describe how an electromagnet works (3 points) The candidates for the office of President of the United States must be at least 35 years old and be born in the United States which is known as which of the following selections?Select one:A. law-of-blood citizenB. natural-born citizenC. none of theseD. naturalized citizen Can someone help me answer these questions? 1. The nucleic acids DNA and RNA carry genetic information and are made up of many . 2. Myoglobin is a protein that binds oxygen molecules and is a polymer of . 3. Insulin is a protein hormone that regulates blood glucose levels and is a polymer of . 4. Animals store energy in the form of glycogen, a carbohydrate made up of thousands of . 9.43 An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 300 K and 100 kPa and a fixed turbine inlet temperature of 1700 K. For the cycle, (a) determine the net work developed per unit mass flowing, in kJ/kg, and the thermal efficiency for a compressor pressure ratio of 8. (b) plot the net work developed per unit mass flowing, in kJ/kg, and the thermal efficiency, each versus compressor pressure ratio ranging from 2 to 50. Assume that the City of Juneau maintains its books and records to facilitate the preparation of its fund financial statements. The city pays its employees bi-weekly on Friday. The fiscal year ended on Wednesday, June 30. Employees had been paid on Friday, June 25. The employees paid from the general fund had earned $90,000 on Monday, Tuesday, and Wednesday (June 28, 29, and 30). What entry, if any, should be made in the citys general fund on June 30? Debit Expenditures $90,000; credit Accrued wages and salary $90,000 Debit Expenses $90,000; credit Accrued wages and salary $90,000 Debit Expenditures $90,000; credit Encumbrances $90,000 Debit Expenses $90,000; credit Encumbrances $90,000 A cellular phone company charges a $25 monthly fee and an additional $0.10 per minute. If m represents the number of minutes of phone usage, which equation can be used to determine the total monthly cost, c? What is the product of 4 and the sum of 3 and 7 Which of the following subsets of P2P2 are subspaces of P2P2? A. {p(t) | p(t){p(t) | p(t) is constant }} B. {p(t) | p(t)=p(t){p(t) | p(t)=p(t) for all t}t} C. {p(t) | p(6)=p(7)}{p(t) | p(6)=p(7)} D. {p(t) | 10p(t)dt=0}{p(t) | 01p(t)dt=0} E. {p(t) | p(t)+2p(t)+8=0}{p(t) | p(t)+2p(t)+8=0} F. {p(t) | p(5)=6}{p(t) | p(5)=6} A ______ macroeconomist believes that the economy is self-regulating and always at full employment. A ______ macroeconomist believes the economy requires active help from fiscal policy and monetary policy to maintain full employment. which statement about federalism is true?a)federalism gives more power to states than to the national government.b)Federalism gives all power to the national government.c)Federalism is a compromise between a unitary and a confederate government.d)Federalism provides a balance between local and state governments. Select the correct inference of the given passage from "The Cask of Amontillado.""These vaults," he said, "are extensive.""The Montresors," I replied, "were a great and numerous family.""I forget your arms.""A huge human foot d'or, in a field azure; the foot crushes a serpentrampant whose fangs are imbedded in the heel.""And the motto?""Nemo me impune lacessit.""Good!" he said.a. Fortunato likes the Montresor family motto.b. Fortunato is forgetful.c. Fortunato is jealous.d. Fortunato does not respect Montresor or his family. Dianna and Becky were playing on the same soccer team and took turns being goalie. They stoped 9 out of 10 shots made against them. If the other team scored 3 points, how many balls did Dianna and Becky stop from going into the net? Skin color is often one of the first traits people notice in each other. Studies in zebra fish uncovered a mutation that altered a transport protein and resulted in light-colored fish. This discovery led to the finding that the same gene in humans has a strong influence on skin pigmentation in many populations.Researchers compared the amino acid sequences of the transport protein in zebra fish, puffer fish, mice, and humans. They found many stretches with identical sequences in all four species. Does this mean that the corresponding mRNA base sequences are also the same in these four species? Explain why or why not.a. No because the redundancy of the genetic code means that it is possible for deferent codons to specify the same amino acids.b. Yes, because the amino acid sequences synthesized on base of mRNA sequence base is a result of translation, so if amino acid sequences are identical, the mRNA base sequences will be identical too. c. Yes. because ail codons specify the same amino acids in all organisms. d. No. because stretches with identical sequences in this species mean that the corresponding rRNA base sequences are also the same. Some smartphones use ______ text, where you press one key on the keyboard or keypad for each letter in a word, and software on the phone suggests words you may want. Erythromycin is a drug that has been proposed to possibly lower the risk of premature delivery. A related area of interest is its association with the incidence of side effects during pregnancy. Assume that 30% of all pregnant women complain of nausea between the 24th and 28th week of pregnancy. Furthermore, suppose that of 195 women who are taking erythromycin regularly during this period, 65 complain of nausea. Find the p-value for testing the hypothesis that incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman. The six metals have the work functions, W.Part A Rank these metals on the basis of their cutoff frequency. Rank from largest to smallest. To rank items as equivalent, overlap them.Part B Rank these metals on the basis of the maximum wavelength of light needed to free electrons from their surface. Rank from largest to smallest. To rank items as equivalent, overlap them.Part C Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted electrons. (If no electrons are emitted from a metal, the maximum kinetic energy is zero, so rank that metal as smallest.) Rank from largest to smallest. To rank items as equivalent, overlap them.Cesium= w= 2.1 eV Aliminium= w= 4.1 eV Beryllium= 5.0 eV Potassium= 2.3 eV Platinium= w= 6.4 eV Magnisium=w= 3.7 eV If the activation energy for a given compound is found to be 103 kJ/mol, with a frequency factor of 4.0 1013 s-1, what is the rate constant for this reaction at 398 K?