Answer:
336 ft^2
Step-by-step explanation:
We are given the dimensions of a rectangle, length 24 feet and width 14 feet, and we are to find the area of this rectangle.
We know that the formula of area of rectangle is given by:
Area of a rectangle = l × w
Substituting the given values in the above formula to get:
Area of rectangle = 24 × 14 = 336 ft^2
Answer:
Area = 336 ft^2
Step-by-step explanation:
Given
Width of rectangle = w = 14 ft
Length of rectangle = l = 24 feet
The formula for finding the area of rectangle is:
Area = Length * width
It can also be denoted as:
A = l*w
Putting the given values of length and width, the area of given rectangle will be:
A = 24 ft * 14 ft
A = 336 ft^2
So, the area of given rectangle is 336 ft^2 ..
This question is the on I need help with
let's recall that there are 16oz in 1 lbs, so then 12lbs is 12*16 = 192oz, plus 5, that makes it 197oz, so then 12lb 5oz is really 197oz.
likewise, 7lb is 7*16 = 112oz, plus 10 that makes it 122oz.
197 - 122 = 75 oz
and 75 oz is just 16+16+16+16+11, 4lbs and 11 oz.
21. The members of a book club are
33, 33, 38, 35, 57, 37, and 40
years old. To the nearest tenth, what
is the mean of this data set with and
without the outlier?
A 36, 38.8
C 39, 36
B 39, 30.9
D 45.5, 30.9
Answer:
C
Step-by-step explanatio
33 + 33 + 38 + 35 +37 + 40 + 57 = 273
273 / 7 = 39
33 + 33 + 38 + 35 +37 + 40 = 216
216 / 6 = 36
The mean (average) of the data set without the outlier is 36 and including the outlier is 39. The outlier here being the value 57 which deviates most from the other values in data set.
Explanation:To find the mean (or average) of a data set, you add all the values together and then divide by the count of the values.
Firstly, for the mean without the outlier, we add 33+33+38+35+37+40 = 216, which we then divide by the 6 values, giving us 36. So, the mean without considering the outlier is 36.
For the mean considering all values including the outlier (57), calculate 33+33+38+35+57+37+40 = 273, then divide by the 7 values, which gives us approximately 39. The answer to the nearest tenth is 39.0. Therefore, the mean of this data set with the outlier is 39.0 and without the outlier is 36.0.
Learn more about Outlier here:https://brainly.com/question/3631910
#SPJ2
an energy plant is looking into putting in a system to remove harmful pollutants from its emissions going into Earth's atmosphere. The cost of removing the pollutants can be modeled using the function C = 25000P/100 -P what is the vertical asymptote?
Answer:
The vertical asymptote is at P = 100
Step-by-step explanation:
* Lets explain what are the vertical asymptotes
- Vertical asymptotes are vertical lines which correspond to the zeroes
of the denominator of a rational function
- Vertical asymptotes can be found by solving the equation n(x) = 0
where n(x) is the denominator of the function t(x)/n(x)
- Note: this only applies if the numerator t(x) is not equal zero for the
same value of x
# Example: to find the vertical asymptote to [tex]f(x)=\frac{3x-1}{x-5}[/tex]
put the denominator x - 5 = 0, and solve it
the value of x = 5, then the vertical asymptote is at x = 5
* Lets solve the problem
- The equation of the cost is [tex]C=\frac{25000P}{100-P}[/tex]
∵ The denominator of C is (100 - P)
- To find the vertical asymptote equate the denominator by zero
∴ 100 - P = 0 ⇒ add P for both sides
∴ P = 100
∴ There is a vertical asymptote at P = 100
* The vertical asymptote is at P = 100
Can someone help please
x+(6x+10)+(x+2)=180
8x=180-12
x=168÷8
x=21°
Hope i helped.
Answer:
a) x = 21
b) 136º
Step-by-step explanation:
The sum of all the angle measures within a triangle is equal to 180º. Therefore, we can use an equation to find x and find the measure of angle C.
x + 6x + 10 + x + 2 = 180
Let's add together all the x's.
8x + 10 + 2 = 180
Now let's add together 10 + 2.
8x + 12 = 180.
To solve for x, we must first isolate 8x. To do this, we subtract 12 from both sides.
8x + 12 - 12 = 180 - 12.
8x = 168
To solve for x, we must divide 8 from both sides.
8x / 8 = 168 / 8
x = 21
Now we have the answer to the first part.
We can use this answer to solve for the measure of angle C.
Angle C = 6x + 10.
We just have to plug in 21 for x and solve for angle C.
6(21) + 10 = 136.
Angle C has a measure of 136º.
Find the difference.
(8ab+a+2) - (3ab+6)
Answer:
5ab+a-4
Step-by-step explanation:
the perimeter of a triangle is 12cm. which one of the following is not possible sides of a trianglr? a)1 b)5 c)6 d)none of thish
Perimeter of triangle = 3(side)
P = 3(s)
12 = 3s
12/3 = s
4 = s
I think there is a typo in your post.
The question should be: WHICH ONE OF THE FOLLOWING IS A POSSIBLE SIDE OF THE TRIANGLE?
In that case, 4 cm is the answer. However, 4 cm is not listed among the choices. So, choice d is the answer.
Find the angle between u = (8.- 3) and v = (-3,- 8) Round to the nearest tenth of a degree.
a. 180
c. 0
b. 90
d. 450
Answer:
90°Step-by-step explanation:
First you must calculate the module or the magnitude of both vectors
The module of u is:
[tex]|u|=\sqrt{(8)^2 + (-3)^2} \\\\|u|=\sqrt{64 + 9}\\\\|u|=8.544[/tex]
The module of v is:
[tex]|v|=\sqrt{(-3)^2 + (-8)^2} \\\\|u|=\sqrt{9 + 64}\\\\|u|=8.544[/tex]
Now we calculate the scalar product between both vectors
[tex]u*v = 8*(-3) + (-3)*(-8)\\\\u*v = -24+ 24=0[/tex]
Finally we know that the scalar product of two vectors is equal to:
[tex]u*v = |u||v|*cos(\theta)[/tex]
Where [tex]\theta[/tex] is the angle between the vectors u and v. Now we solve the equation for [tex]\theta[/tex]
[tex]0 = 8.544*8.544*cos(\theta)\\\\0 = cos(\theta)\\\\\theta= arcos(0)\\\\\theta=90\°[/tex]
the answer is 90°
Whenever the scalar product of two vectors is equals to zero it means that the angle between them is 90 °
Answer:
B
Step-by-step explanation:
edge answer
need help, what is the answer???
Answer:
x = 14 and z = 96
Step-by-step explanation:
The 2 marked angles are vertical and congruent, hence
9x - 42 = 5x + 14 ( subtract 5x from both sides )
4x - 42 = 14 ( add 42 to both sides )
4x = 56 ( divide both sides by 4 )
x = 14
Hence 5x + 14 = (5 × 14) + 14 = 70 + 14 = 84°
z and 5x + 14 form a straight angle and are supplementary, hence
z + 84 = 180 ( subtract 84 from both sides )
z = 96
Can someone PLEASE help me with my assignment? PLEASE?
I've been asking several times and I didn't get any help.
I'm sorry if it sounds like I'm begging, but I just want to finish this and understand how to solve this problem. I've been googling the topic for my assignment and for some reason, I can't find ANY problem that's similar to my homework. It's very frustrating. This has been going on for several hours and I need help.
I would really, REALLY appreciate it.
* I need help with the second picture. I attached the first one for context.
Step-by-step explanation:
Let's start with the y-intercept. (0, 50) is shifted 10 units to the right and becomes (10, 50). Next, we know the slope is 5. We can use this to plot more points, or we can use it to write an equation in point-slope form:
y - 50 = 5 (x - 10)
y - 50 = 5x - 50
y = 5x
So the new y-intercept is (0, 0).
What this means is that Jeremy's savings account will be worth $50 in ten years.
If we compare the new y-intercept to the old one, we see that the 10 unit shift to the right is the same as a 50 unit shift down. Shifting graph B up 50 units will bring us back to the original graph.
G is between E and H, and F is the midpoint of EG. If FH=11 and FG=4 , find EH
Answer: 15
Step-by-step explanation:
Answer:
Step-by-step explanation:
EH =15
What are the excluded values? m+5/mn+3m
values that are excluded from the domain of a rational expression are values that make the denominator 0, since if that's so, the rational will be undefined. That happens when the denominator is zero out, let's do so
[tex]\bf mn+3m=0\implies m(n+3)=0\implies \begin{cases} m=0\\ n=-3 \end{cases}[/tex]
so, if ever m = 0, the denominator will become 0 and the rational becomes undefined, and whenever n = -3, the same will happen to the rational, thus those values are excluded.
Final answer:
The excluded values for the expression (m + 5) / (mn + 3m) are m = 0 and n = -3, as these would make the denominator equal to zero, which is undefined.
Explanation:
The question appears to relate to the concept of excluded values in an algebraic expression, specifically one that involves division by a variable term. The excluded values are the values that the variables cannot take on because they would make the denominator equal to zero, which is undefined in mathematics. However, the given information seems to be related to physics, particularly quantum mechanics, which involves quantum numbers and the Pauli exclusion principle. It is important to have the correct expression to identify the excluded values properly. Assuming the expression is (m + 5) / (mn + 3m), we need to determine the values of m and n that would make the denominator zero.
To find the excluded values for the variable m and n, we need to set the denominator equal to zero and solve for the variables:
mn + 3m = 0
m(n + 3) = 0
From this, we can see that m must not be zero, and when m is not zero, n must not be -3. Therefore, the excluded values are m = 0 and n = -3.
Sarah Jones earns $525 per week selling life insurance for Farmer’s Insurance plus 5% of sales over $5,750. Sarah’s sales this month (four weeks) are $20,000. How much does Sarah earn this month?
Answer:
$2,812.50
Step-by-step explanation:
Let
y ----> amount that Sarah earn this month
x ----> amount of sales over $5,750
we know that
5%=5/100=0.05
The linear equation that represent this situation is
y=4(525)+0.05(x)
Find the value of x
x=20,000-5750=$14,250
substitute
y=4(525)+0.05(14,250)=$2,812.50
Sarah Jones earned $9,725 this month.
Explanation:Sarah Jones earns $525 per week selling life insurance for Farmer’s Insurance plus 5% of sales over $5,750. Sarah’s sales this month (four weeks) are $20,000. To find out how much Sarah earns this month, we need to calculate her base salary and her commission earned from sales over $5,750:
Step 1: Calculate Sarah's base salary for 4 weeks: $525 per week * 4 weeks = $2,100 Step 2: Calculate Sarah's commission on sales over $5,750: ($20,000 - $5,750) * 5% = $7,625 Step 3: Add Sarah's base salary and commission: $2,100 + $7,625 = $9,725Therefore, Sarah earns $9,725 this month.
Learn more about Calculating earnings here:https://brainly.com/question/11921889
#SPJ3
Simplify(x^2/3)^4/5
Answer:
Step-by-step explanation:
Note that (x^a)^b = x^ab.
Thus, (x^2/3)^4/5 = x^(2/3 * 4/5) = x^(8/15)
To simplify the expression (x^2/3)^4/5, multiply the exponents and provide the resulting exponent x^8/15.
Explanation:To simplify the expression (x2/3)4/5, we can use the rule of exponents which states that when raising a power to another power, we multiply the exponents. In this case, the exponent 4/5 applies to both the x and the 2/3. Multiplying the exponents gives us 2/3 * 4/5 = 8/15. Therefore, the simplified expression is x8/15.
Learn more about Exponents here:https://brainly.com/question/33831961
#SPJ1
what is the slope of the line that contains the points (-2,7) and (2,3)
The formula for slope is
[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
In this case...
[tex]y_{2} =3\\y_{1} =7\\x_{2} =2\\x_{1} =-2[/tex]
^^^Plug these numbers into the formula for slope...
[tex]\frac{3-7}{2 - (-2)}[/tex]
[tex]\frac{-4}{4}[/tex] -------------------> Simplifies to -1
^^^This is your slope
Hope this helped!
~Just a girl in love with Shawn Mendes
A new video game is expected to sell 100 copies the first hour at a local game store. After that, the sales will follow the function s(x) = 12(x − 1) where x is the number of hours. What is the function that shows total sales, including the first hour?
Answer:
T(x) = 88 + 12x
Step-by-step explanation:
Givens:
1st hour = 100 copies
subsequent hours s(x) = 12( x - 1), where x is number of hours
Let total sales be represented by T(x)
Total sales, T(x)
= sales in first hour + sales in subsequent hours
= 100 + 12 (x - 1)
= 100 + 12x - 12
= 88 + 12x
Answer: Total sales function is [tex]S(x)=88+12x[/tex]
Step-by-step explanation:
Since we have given that
Number of copies the first hour he sell at a local game = 100
Sales function is expressed as
[tex]s(x)=12(x-1)=12x-12[/tex]
so, function that shows total sales including the first hour is given by
[tex]S(x)=100+s(x)\\\\S(x)=100+12x-12\\\\S(x)=88+12x[/tex]
Hence, total sales function is [tex]S(x)=88+12x[/tex]
The label on the car's antifreeze container claims to protect the car between −40°C and 140°C. To covert Celsius temperature to Fahrenheit temperature, the formula is C=5/9(F-32). Write a compound inequality to determine the Fahrenheit temperature range at which the antifreeze protects the car.
The Fahrenheit temperature range at which the antifreeze protects the car, converted from Celsius, is -40°F ≤ F ≤ 284°F.
Explanation:To convert the Celsius range to a Fahrenheit range, you can use the conversion formula, F = (9/5)*C + 32. Using this formula, for -40°C the Fahrenheit equivalent would be F = (9/5)*(-40) + 32 which equals -40°F, and for 140°C the Fahrenheit equivalent would be F = (9/5)*(140) + 32 = 284°F. Therefore, the compound inequality representing the Fahrenheit temperature range at which the antifreeze protects the car is -40°F ≤ F ≤ 284°F.
Learn more about Temperature Conversion here:https://brainly.com/question/30451535
#SPJ12
find the value of x. the diagram is not to scale
180° - 113° - 53° = 14°
The answer is b. 14
Translate this sentence into an algebraic equation.
9 more than the product of 4 and x is 20.
Answer:
4x + 9 = 20
Step-by-step explanation:
4x + 9 = 20 is the pertinent equation.
9 more than (this means the same thing as addition or sum, so replace this with an addition sign) the product of (product of means that it's multiplying two numbers together. In this case the two numbers are 4 and x) 4 and x is (this is another word for equal to, so replace with an equal sign) 20
This said the algebraic equation is:
9 + 4x = 20
Hope this helped!
~Just a girl in love with Shawn Mendes
Fill out the following chart to find the temperatures for t=12 (noon) and t=24 (midnight).
Answer:
t(12)=40 t(24)=-3.2
Step-by-step explanation:
t(12)=40 because, if you replace 12 with t in the equation, everything but 40 cancels out.
t(24)=-3.2 because, if you plug in 24 for t it will be the same as the first equation where t is 0.
If one of the longer sides is 6.3 centimeters, what is the length of the base
Answer: 3.1 cm
Step-by-step explanation:isosollese triangle has 2 equal sides that are longer than legnth of base
perimiter=15.7
equation is 2a+b=15.7
so if the longer side is 6.3, wat is legnth of base
we know that identical sides are bigger so 6.3 is one of the identical sides
2a means the 2 idneical sides
2(6.3)+b=15.7
12.6+b=15.7
subtract 12.6 from btohs ides
b=3.1
answer is base=3.1 cm
If f(x)=3x+1 and f^-1=x-1/3, then f^-1(7)=
[tex]f^{-1}(7)=\dfrac{7-1}{3}=\dfrac{6}{3}=2[/tex]
The inverse of a function is f⁻¹(7) equals 2.
The correct option is B.
To find the value of f⁻¹(7), we need to substitute 7 into the inverse function f⁻¹(x) = x - 1/3.
f⁻¹(7) = (7 - 1)/3
f⁻¹(7) = 6/3
Since 6 divided by 3 is equal to 2, we have:
f⁻¹(7) = 2
Therefore, f⁻¹(7) equals 2.
Learn more about Inverse of function here:
https://brainly.com/question/29141206
#SPJ2
Which expression is equivalent to
For this case we must indicate an expression equivalent to:
[tex]x ^ {- \frac {5} {3}}[/tex]
By definition of power properties we have to:
[tex]a ^ {- 1} = \frac {1} {a ^ 1} = \frac {1} {a}[/tex]
Then, we can rewrite the expression as:
[tex]\frac {1} {x ^ {\frac {5} {3}}}[/tex]
We also have that by definition of properties of powers it is fulfilled that:
[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]
Then, the expression is like:
[tex]\frac {1} {\sqrt [3] {x ^ 5}}[/tex]
ANswer:
Option B
What would you have to do to change 10 cubic feeet into cubic inches
Answer:
You would multiply by 1728.
So 10 cubic feet = 10 * 1728 = 17,280 cubic inches.
Step-by-step explanation:
There are 12 inches in a foot so there are 12^3 = 1728 cubic inches in a cubic foot.
Final answer:
To convert 10 cubic feet to cubic inches, multiply the volume in cubic feet (10) by the conversion factor of 1,728 to get 17,280 cubic inches.
Explanation:
To change 10 cubic feet into cubic inches, you need to use the conversion factor that 1 cubic foot equals 1,728 cubic inches (since 1 foot equals 12 inches, cubing both sides gives us 123 = 1,728). You then multiply the volume in cubic feet by this conversion factor.
Here is the calculation step by step:
Start with the volume in cubic feet: 10 cubic feet.
Multiply this amount by the conversion factor to get the volume in cubic inches: 10 cubic feet * 1,728 cubic inches/cubic foot = 17,280 cubic inches.
So, 10 cubic feet is equal to 17,280 cubic inches.
1. Does PY=PZ?
2. Is PB>PY?
3. Must the slant height be greater than the altitude?
4. Can all edges have the same length?
5. Given the regular square pyramid with RS=6 and PX=4 then XY=3 true or false?
6. Given a regular square pyramid with RS=6 and PX=4 find PY
A. 5
B. 5 square root 3
C. 6
Answer:
PY = PZ is true.
Step-by-step explanation:
We are given a figure of a regular square pyramid and we are to determine whether PY is equal to PZ or not.
From the figure, we can see that ∠PXY and ∠PXZ are right angles and since the base is a square so sides AB and BC are equal in length and Y and Z are their mid points respectively.
Therefore, the hypotenuses created by PY and PZ are equal.
Check the picture below.
all slant-heights are the same in a square pyramid, so yes, PY = PZ.
if you notice in the picture, the green line is longer than the black dashed line, now, we're using some values for the sake of examplifying, so the side at the base for the slant-height is shorter than the the side at the base for the corner of the pyramid, and therefore PY > PB.
must the slant-height be greater than the altitude? well, notice on that yellow triangle, the slant-height is the hypotenuse and the hypotenuse is always greater than the other sides in a right-triangle.
could the edges be the same length? well, we can squeeze that well for the base sides and the slant-heights, but we can't for the corners, the corners must always be longer than the slant-heights, so nope.
2^a = 5^b = 20^c, express c in terms of and b
Answer:
c=ab/(2b+a)
Step-by-step explanation:
20^c = 4^c * 5^c
20^c= (2^2)^c * 5^c
20^c= (2 )^(2c) * ( 5 )^c
Raise both sides to power a
20^(ca)=(2^a)^(2c) * (5 )^(ac)
20^(ca)=(20^c)^(2c) * (5 )^(ac)
Raise both sides to power b
20^(cab)=(20)^(2c^2b)*(5^b)^(ac)
20^(cab)=20^(2c^2b) * (20^c)^(ac)
20^(cab)=20^(2c^2b) * 20^(ac^2)
Rewriting using law of exponents on right hand side
20^(cab)=20^(2c^2b+ac^2)
Now bases are same so that means the exponents have to be the same, that is we have:
cab=2c^2b+ac^2
assuming c is not 0, divide by c on both sides
ab=2cb+ac
Factor the right hand side
ab=c(2b+a)
Divide both sides by (2b+a)
c=ab/(2b+a)
C is expressed in terms of b as c = [tex](5^b) / 2.[/tex]
To express c in terms of b in the equation [tex]2^a = 5^b = 20^c[/tex], we need to use the property of exponents that states:
[tex]a^(m * n) = (a^m)^n[/tex]
Let's first express [tex]20^c[/tex] in terms of 2 and 5:
[tex]20^c = (2^2 * 5)^c = 2^(2c) * 5^c[/tex]
Now, we have the equation:
[tex]2^a = 5^b = 2^(2c) * 5^c[/tex]
Since the bases (2) and (5) are equal, the exponents must also be equal:
a = 2c
Now, we can express c in terms of b:
Divide both sides of the equation by 2:
c = a/2
Since we know that a = [tex]5^b[/tex], we can substitute it into the equation:
[tex]c = (5^b) / 2[/tex]
So, c is expressed in terms of b as c = (5^b) / 2.
To know more about express here
https://brainly.com/question/935228
#SPJ2
for which rational expression is 8 an excluded value ? check all that apply
Answer:
The correct answer options are C. [tex]\frac{x^2+5}{x-8}[/tex] and D. [tex]\frac{x^2-x-56}{x^2-64}[/tex].
Step-by-step explanation:
The values which make the denominator equal to zero are called the excluded values.
Here, we can substitute 8 for x and check if it makes the denominator 0.
[tex]\frac{x-8}{x+8} = \frac{8-8}{8+8} =\frac{0}{16} =0[/tex]
[tex]\frac{x-2}{x^2-4} = \frac{8-2}{8^2-4} =\frac{6}{60} =\frac{1}{10}[/tex]
[tex]\frac{x^2+5}{x-8} = \frac{8^2+5}{8-8} =\frac{69}{0}[/tex]
[tex]\frac{x^2-x-56}{x^2-64} = \frac{8^2-8-56}{8^2-64} = \frac{0}{0} =0[/tex]
[tex]\frac{8x^2-2}{x^2-16} = \frac{8(8)^2-2}{8^2-16} =\frac{510}{48}[/tex]
Answer:
C. x^2+5/x-8
D. x^2-x-56/x^2-64
Step-by-step explanation:
just did the assignment and can confirm the answer above me is correct
What is the graph of f(x)=x^2-2x+3
Answer:
The graph in the attached figure
Step-by-step explanation:
we have
[tex]f(x)=x^{2}-2x+3[/tex]
This is the equation of a vertical parabola open upwards
The vertex is a minimum
The vertex is the point (1,2)
The y-intercept is the point (0,3)
The function does not have x-intercepts
see the attached figure
Identify the inverse g(x) of the given relation f(x).
f(x) = {(8, 3), (4, 1), (0, –1), (–4, –3)}
Answer:
The inverse g(x) = 2x + 2
Step-by-step explanation:
* Lets explain the inverse of a function
- To find the inverse of any function we switch the x and y then
we solve to find the new y
- The domain of the function is the values of x and the range of
the function is the values of y
- The domain of the inverse function is the values of y and the
range of the inverse function is the values of x
- Lets solve the problem
∵ f(x) = {(8 , 3) , (4 , 1) , (0 , -1) , (-4 , -3)}
- To find the inverse g(x) lets find f(x) from the order pairs
∵ x-coordinates are decreases by 4 and y-coordinates are
decreases by 2
∴ The relation represents the linear function
- The form of the linear function is f(x) = mx + c , where m is the
slope of the line and c is the y-intercept
∵ The slope of the line whose endpoints are (x1 , y1) and (x2 , y2)
is m = (y2 - y1)/(x2 - x1)
- We can find the slope from any two order pairs
∵ (x1 , y1) = (8 , 3) and (x2 , y2) = (4 , 1)
∴ m = [1 - 3]/[4 - 8] = -2/-4 = 1/2
∵ f(x) = mx + c
∴ f(x) = 1/2 x + c
- The y-intercept means the line intersect the y-axis
at point (0 , c)
∵ There is a point (0 , -1)
∴ c = -1
∴ f(x) = 1/2 x - 1
- To find the inverse of the function switch x and y and solve to
find the new y
∵ y = 1/2 x - 1 ⇒ switch x and y
∴ x = 1/2 y - 1 ⇒ add 1 to both sides
∴ x + 1 = 1/2 y ⇒ Multiply both sides by 2
∴ 2(x + 1) = y
∴ y = 2x + 2
∵ g(x) is the inverse of f(x)
∵ The inverse of f(x) is 2x + 2
∴ g(x) = 2x + 2
Answer:
g(x) = {(3, 8), (1, 4), (–1, 0), (–3, –4)}
Step-by-step explanation:
I got it right on edge
The graph of f(x) = |x| is reflected across the x-axis and translated to the right 6 units. Which statement about the domain and range of each function is correct?
A: Both the domain and range of the transformed function are the same as those of the parent function.
B: Neither the domain nor the range of the transformed function are the same as those
of the parent function.
C: The range but not the domain of the transformed function is the same as that of the parent function.
D: The domain but not the range of the transformed function is the same as that of the parent function.
Answer: (D) The domain but not the range of the transformed function is the same as that of the parent function.
Step-by-step explanation: Because domain is on the X-axis, and the graph would go infinitely, the domain would not change. The range would change from X>0 to X<0.
Answer:
The answer is The domain of the transformed function is the same as the parent function, but the ranges of the functions are different
I took test on edg 2020 and i got right believe me
Step-by-step explanation:
Evaluate 7+ (-4x^2) for x = 0
If x is zero then you must replace x with zero and use the rules of PEMDAS (Parentheses, Exponent, Multiplication, Division, Addition, Subtraction) to solve
7 + (-4(0)^2)
7 + (-4(0))
7 + 0
7
If x is 0 then the expression equals 7
Hope this helped
~Just a girl in love with Shawn Mendes
Answer:
[tex]\boxed{7}[/tex]
X=0 is 7.
7 is the correct answer.
The answer should have a positive sign.
Step-by-step explanation:
Order of operations
Parenthesis
Exponent
Multiply
Divide
Add
Subtract
from left to right.
Distributive property: a(b+c)=ab+ac
[tex]7+(-4x^2)[/tex]
[tex]7+-4x^2[/tex]
[tex]7-4*0^2[/tex]
Do exponent.
[tex]0^2=0*0=0[/tex]
[tex]7-0=7[/tex]
7 is the correct answer.
Hope this helps you!
Thanks!
Have a nice day! :)
-Charlie