Positive Test Result Negative Test Result
Hepatitis C 335 10
No Hepatitis C 2 1153

Based on the results of this study, how many false negatives should you expect out of 1000 tests

Answers

Answer 1

Answer:

In a sample of 1000 test the expected number of false negatives is 8.6.

Step-by-step explanation:

The table provided is:

                             Positive      Negative    TOTAL

Hepatitis C             335                  10            345

No Hepatitis C           2               1153           1155

TOTAL                     337               1163          1500

A false negative test result implies that, the person's test result for Hepatitis C was negative but actually he/she had Hepatitis C.

Compute the probability of false negative as follows:

[tex]P(Negative|No\ Hepapatits\ C)=\frac{n(Negative\cap No\ Hepapatits\ C)}{n(No\ Hepapatits\ C)} \\=\frac{10}{1163}\\ =0.0086[/tex]

Compute the expected number of false negatives in a sample is n = 1000 tests as follows:

E (False negative) = n × P (Negative|No Hepatitis C)

                              [tex]=1000\times0.0086\\=8.6[/tex]

Thus, in a sample of 1000 test the expected number of false negatives is 8.6.


Related Questions

According to a recent​ study, 23% of U.S. mortgages were delinquent last year. A delinquent mortgage is one that has missed at least one payment but has not yet gone to foreclosure. A random sample of twelve mortgages was selected. What is the probability that greater than 5 of these mortgages are delinquent?

Answers

Answer:

P ( X > 5) = 0.0374

Step-by-step explanation:

Given:

n = 12

p = 0.23

Using Binomial distribution formula,

X ~ Binomial ( n = 12, p = 0.23)

[tex]=\frac{n!}{(n-x)! x!}. p^{x} q^{n-x}[/tex]

Substitute for n = 12, p = 0.23, q = 1-0.23 for  x = 6,7,8,9,10,11 and 12

P (X > 5)  = P(X=6) + P(X=7) + P(X=8) + P(X=9) + P(X=10) + P(X=11) + P(X=12)

P ( X > 5 ) = 0.0285 + 0.007299 + 0.00136 + 0.000181 + 0.0000162 + 1E-6 + 1E-6

P ( X > 5) = 0.0374

A corporation has 11 manufacturing plants. Of these, seven are domestic and four are outside the United States. Each year a performance evaluation is conducted for four randomly selected plants. What is the probability that a performance evaluation will include at least one plant outside the United States

Answers

Answer:

The probability that a performance evaluation will include at least one plant outside the United States is 0.836.

Step-by-step explanation:

Total plants = 11

Domestic plants = 7

Outside the US plants = 4

Suppose X is the number of plants outside the US which are selected for the performance evaluation. We need to compute the probability that at least 1 out of the 4 plants selected are outside the United States i.e. P(X≥1). To compute this, we will use the binomial distribution formula:

P(X=x) = ⁿCₓ pˣ qⁿ⁻ˣ

where n = total no. of trials

           x = no. of successful trials

           p = probability of success

           q = probability of failure

Here we have n=4, p=4/11 and q=7/11

P(X≥1) = 1 - P(X<1)

          = 1 - P(X=0)

          = 1 - ⁴C₀ * (4/11)⁰ * (7/11)⁴⁻⁰

          = 1 - 0.16399

P(X≥1) = 0.836

The probability that a performance evaluation will include at least one plant outside the United States is 0.836.

If two events are independent, then Group of answer choices the sum of their probabilities must be equal to one. they must be mutually exclusive. their intersection must be zero. None of the above.

Answers

Answer:

For this case we can define the following two events A and B.

In order to classify A and B as independent we needd to satisfy this condition:

[tex] P(A \cap B) = P(A) *P(B)[/tex]

None of the above.

True, because none of the options were correct.

See explanation below

Step-by-step explanation:

For this case we can define the following two events A and B.

In order to classify A and B as independent we need to satisfy this condition:

[tex] P(A \cap B) = P(A) *P(B)[/tex]

So let's analyze one by one the possible options:

the sum of their probabilities must be equal to one.

False, the sum of the probabilities can be <1 so this statement is not true

they must be mutually exclusive.

False when we talk about mutually exclusive events we are saying that:

[tex] P(A \cap B) =0[/tex]

But independence not always means that we have mutually exclusive events

their intersection must be zero.

False the intersection of the probabilities is 0 just if we have mutually exclusive events, not independent events

None of the above.

True, because none of the options were correct.

Final answer:

Independent events refer to the concept in which the outcome of one event doesn't influence the outcome of another. If two events are independent, the probability of both events taking place is the product of their individual probabilities.

Explanation:

In mathematics, when we say that events are independent, it means that the outcome of one event does not affect the outcome of the other. The correct statement is: 'If two events are independent, the probability of both events happening is the product of the probabilities of each event.' When the sum of their probabilities is equal to one, they are mutually exclusive, not independent. And their intersection being zero also refers to mutually exclusive events not independent ones.

Learn more about Independent Events here:

https://brainly.com/question/32716243

#SPJ3

slove this problem find the value of x.​

Answers

Answer:

x = 6 units.

Step-by-step explanation:

By Geometric mean property:

[tex]x = \sqrt{3 \times 12} = \sqrt{36} = 6 \\ \hspace{20 pt} \huge \orange{ \boxed{ \therefore \: x = 6}}[/tex]

Hence, x = 6 units.

For a data set of weights​ (pounds) and highway fuel consumption amounts​ (mpg) of eight types of​ automobile, the linear correlation coefficient is found and the​ P-value is 0.044. Write a statement that interprets the​ P-value and includes a conclusion about linear correlation.

The​ P-value indicates that the probability of a linear correlation coefficient that is at least as extreme is [WHAT PERCENT] which is [LOW OR HIGH] so there [IS OR IS NOT] sufficient evidence to conclude that there is a linear correlation between weight and highway fuel consumption in automobiles.

​(Type an integer or a decimal. Do not​ round.)

Answers

Answer:

The​ P-value indicates that the probability of a linear correlation coefficient that is at least as extreme is 4.4 which is LOW so there IS sufficient evidence to conclude that there is a linear correlation between weight and highway fuel consumption in automobiles.

Step-by-step explanation:

Hello!

Remember:

The p-value is defined as the probability corresponding to the calculated statistic if possible under the null hypothesis (i.e. the probability of obtaining a value as extreme as the value of the statistic under the null hypothesis).

Let's say that the significance level of this correlation test is α: 0.05

If the p-value is the probability of obtaining

you can express it as a percentage: 4.4%Is a very low probability. The decision rule using the p-value is:

p-value < α ⇒ Reject the null hypothesis

p-value ≥ α ⇒ Do not reject the null hypothesis.

The p-value is less than the significance level, the decision is to reject the null hypothesis.

In a linear correlation analysis the statement "there is no linear correlation between the two variables" is always in the null hypothesis, so if you reject it, you can conclude that there is a linear correlation between the variables.

I hope it helps!

Final answer:

In statistical analysis, a P-value of 0.044 indicates there is a 4.4% chance of obtaining a linear correlation as extreme as the observed correlation coefficient. A P-value under 0.05 provides enough evidence to reject the null hypothesis of no correlation, therefore suggesting a significant correlation. Hence, there is sufficient evidence of a linear correlation between car weight and highway fuel consumption.

Explanation:

The P-value of 0.044 in this context represents the likelihood of obtaining a linear correlation coefficient for the data points in your dataset that is as extreme as, or more extreme than, the one you calculated, assuming there is no linear relationship between the two variables (weight and highway fuel consumption in automobiles). This probability is 4.4% - rather low. A common threshold for significance in many fields is 0.05, or 5%. If your P-value is below this threshold, we reject the null hypothesis that there is no correlation and conclude there may be a correlation. Therefore, as the P-value is 0.044, which is below the 0.05 threshold, there is sufficient evidence to conclude that there is a linear correlation between weight and highway fuel consumption in automobiles.

Learn more about P-value and Linear Correlation here:

https://brainly.com/question/33892681

#SPJ3

Here are summary statistics for randomly selected weights of newborn​ girls: nequals202​, x overbarequals28.3 ​hg, sequals6.1 hg. Construct a confidence interval estimate of the mean. Use a 95​% confidence level. Are these results very different from the confidence interval 27.8 hgless thanmuless than29.6 hg with only 17 sample​ values, x overbarequals28.7 ​hg, and sequals1.8 ​hg? What is the confidence interval for the population mean mu​? nothing hgless thanmuless than nothing hg ​(Round to one decimal place as​ needed.) Are the results between the two confidence intervals very​ different? A. ​Yes, because the confidence interval limits are not similar. B. ​Yes, because one confidence interval does not contain the mean of the other confidence interval. C. ​No, because each confidence interval contains the mean of the other confidence interval. D. ​No, because the confidence interval limits are similar.

Answers

Answer:

The confidence interval is 27.5 hg less than mu less than 29.1 hg

(A) Yes, because the confidence interval limits are not similar.

Step-by-step explanation:

Confidence interval is given as mean +/- margin of error (E)

mean = 28.3 hg

sd = 6.1 hg

n = 202

degree of freedom = n-1 = 202-1 = 201

confidence level (C) = 95% = 0.95

significance level = 1 - C = 1 - 0.95 = 0.05 = 5%

critical value corresponding to 201 degrees of freedom and 5% significance level is 1.97196

E = t×sd/√n = 1.97196×6.1/√202 = 0.8 hg

Lower limit = mean - E = 28.3 0.8 = 27.5 hg

Upper limit = mean + E = 28.3 + 0.8 = 29.1 hg

95% confidence interval is (27.5, 29.1)

When mean is 28.3, sd = 6.1 and n = 202, the confidence limits are 27.5 and 29.1 which is different from 27.8 and 29.6 which are the confidence limits when mean is 28.7, sd = 1.8 and n = 17

Final answer:

The confidence intervals for the two experiments have overlapping intervals, suggesting that the results are not very different.

Explanation:

The first experiment resulted in a 95% confidence interval of 3.070-3.164 g for the population mean weight of newborn girls. The second experiment had a 95% confidence interval of 3.035-3.127 g. Although the two confidence intervals are not identical, the mean for each experiment is within the confidence interval of the other experiment. This suggests that the results are not very different and there is an appreciable overlap between the two intervals. Therefore, the answer is C. No, because each confidence interval contains the mean of the other confidence interval.

The graph shows the relationship between the number of months different students practiced baseball and the number of games they won:

The title of the graph is Baseball Games. On x axis, the label is Number of Months of Practice. On y axis, the label is Number of Games Won. The scale on the y axis is from 0 to 22 at increments of 2, and the scale on the x axis is from 0 to 12 at increments of 2. The points plotted on the graph are the ordered pairs 0, 1 and 1, 3 and 2, 5 and 3, 9 and 4, 10 and 5, 12 and 6, 13 and 7, 14 and 8,17 and 9, 18 and 10,20. A straight line is drawn joining the ordered pairs 0, 1.8 and 2, 5.6 and 4, 9.2 and 6, 13 and 8, 16.5 and 10, 20.5.

Part A: What is the approximate y-intercept of the line of best fit and what does it represent? (5 points)

Part B: Write the equation for the line of best fit in slope-intercept form and use it to predict the number of games that could be won after 13 months of practice. Show your work and include the points used to calculate the slope.

Answers

Answer:

A) from the line of best fit, the approximately y-intercept is (0,1.8). This means without any practice, 1h.8 games are won.

B) slope: (5.6-1.8)/(2-0) = 1.9

y = 1.9x + 1.8

(Line of best fit)

x = 13,

y = 1.9(13) + 1.8 = 26.5

Predicted no. of games won after 13 months of practice is 26.5

Final answer:

The y-intercept, representing initial games won and the equation for line of best fit predicting future games won, are determined from the graph data.

Explanation:

Part A:

The y-intercept of the line of best fit is approximately 1.8.It represents the initial number of games won when the number of months of practice is zero.

Part B:

The equation for the line of best fit in slope-intercept form is y = 1.4x + 1.8.

To predict the number of games won after 13 months of practice, substitute x = 13 into the equation:

y = 1.4(13) + 1.8 = 19.5

So, the predicted number of games that could be won after 13 months of practice is 19.5.

Suppose that the waiting time for an elevator at a local shopping mall is uniformly distributed from 0 to 90 seconds.
What is the probability that a customer waits for more than 60 seconds?

Answers

Answer:

1/3

Step-by-step explanation:

60-90 is 30 numbers, right? So it is 30/90, or 1/3

Can someone please help me find the missing lengths in the following diagram?

Answers

Answer:

Step-by-step explanation:

18 a)Since line DE is parallel to line BC, it means that triangle ADE is similar to triangle ABC. Therefore,

AB/AD = AC/AE = BC/DE

AC = AE + CE = 18 + 9

AC = 27

AB = AD + DB

AB = AD + 5

Therefore,

27/18 = (AD + 5)/AD

Cross multiplying, it becomes

27 × AD = 18(AD + 5)

27AD = 18AD + 90

27AD - 18AD = 90

9AD = 90

AD = 90/9

AD = 10

b) AC = AE + EC = 13 + 3

AC = 16

To find AD,

16/13 = 24/AD

16 × AD = 13 × 24

16AD = 312

AD = 312/16

AD = 19.5

DB = 24 - 19.5

DB = 4.5

What is the product?

Answers

Answer: the third option is correct

Step-by-step explanation:

The first matrix is a 2 × 3 matrix while the second matrix is a 3 × 2 matrix. To get the product of both matrices, we would multiply each term in each row by the terms in the corresponding column and add.

1) row 1, column 1

1×2 + 3×3 + 1×4 = 2 + 9 + 4 = 15

2) row 1, column 2

1×-2 + 3×5 + 1×1 = - 2 + 15 + 1 = 14

3) row 2, column 1

-2×-2 + 1×3 + 0×4 = - 4 + 3 + 0 = - 1

4) row 2, column 2

- 2×-2 + 1×5 + 0×1 = 4 + 5 = 9

The solution becomes

15 14

- 1 9

Professor stan der Deviation can take one of two routes on his way home from work. On the first route, there are four railroad crossings. The probability that he will be stopped by a train at any particulare on the the crossings is .1, and trains operate independently at the four crossings. The other route is longer but there are only two crossings, also independent of one another, with the same stoppage probability for each as on the first route. On a particular day, Professor Deviation has a meeting scheduled at home for a certain time. Whichever route he takes, he calculates that he will be late if he is stopped by trains at at least half of the crossings encountered.

A.) Which route should he take to minimize the probability of being late to the meeting?
B.) If he tosses a fair coin to decide on a route and is late, what is the probability he took the four crossing route?

Answers

Answer:

A) He should take the route with 4 crossings

B) The probability that he took the 4 crossing route is 0.2158

Step-by-step explanation:

Lets call X the number of crossings he encounters, A if he takes route 1 and B if he takes route 2.

Note that X given A is a binomial random variable with parameters n = 4 p = 0.1, and X given B has parameters n = 2, p = 0.1

The probability that the Professor is on time on route 1 is equal to

P(X|A = 0) + P(X|A = 1) = 0.9⁴ + 0.9³*0.1*4 = 0.9477

On the other hand, the probability that the professor is on time on route 2 is

P(X|B = 0) = 0.9² = 0.81

Hence, it is more likely for the professor to be late on route 2, thus he should take the route 1, the one with 4 crossings.

B) Lets call L the event 'The professor is late'. We know that

P(L|A) = 1-0.9477 = 0.0524

P(L|B) = 1-0.81 = 0.19

Also

P(A) = P(B) = 1/2 (this only depends on the result of the coin.

For the Bayes theorem we know, therefore that

[tex]P(A|L) = \frac{P(L|A) * P(A)}{P(L|A)*P(A) + P(L|B)*P(B)} = \frac{0.0523*0.5}{0.0523*0.5 + 0.19*0.5 } = 0.2158[/tex]

Hence, the probability that he took the 4 crossing route is 0.2158.

Your body loses sodium when you sweat. Researchers sampled 38 random tennis players. The average sodium loss was 500 milligrams per pound and the standard deviation was 62 milligrams per pound. Construct and interpret a 99% confidence interval to estimate the mean loss in sodium in the population.

Answers

Answer:

The 99% confidence interval to estimate the mean loss in sodium in the population is between 474.10 milligrams and 525.90 milligrams. This means that we are 99% that the true mean loss in sodium in the population is between 474.10 milligrams and 525.90 milligrams.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.99}{2} = 0.005[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.005 = 0.995[/tex], so [tex]z = 2.575[/tex]

Now, find M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

[tex]M = 2.575*\frac{62}{\sqrt{38}} = 25.90[/tex]

The lower end of the interval is the mean subtracted by M. So it is 500 - 25.90 = 474.10 milligrams.

The upper end of the interval is the mean added to M. So it is 500 + 25.90 = 525.90 milligrams

The 99% confidence interval to estimate the mean loss in sodium in the population is between 474.10 milligrams and 525.90 milligrams. This means that we are 99% that the true mean loss in sodium in the population is between 474.10 milligrams and 525.90 milligrams.

Answer:

Option A

Step-by-step explanation:

The 99% confidence interval is (472.69, 527.31). We are 99% confident that the true population mean of sodium loss for tennis players will be between 472.69 milligrams per pound and 527.31 milligrams per pound.

derived the MOM and MLE for an exponential distribution with parameter ????. Conduct a Bootstrap simulation to compare the estimation of λ with sample sizes of n = 10, n = 100, and n = 500. Choose true value λ = 0.2 and use B = 1000. Calculate and compare the mean and standard error for each set of simulations to each other as well as their theoretical values.

Answers

Answer:

rm(list=ls(all=TRUE))

set.seed(12345)

N=c(10,100,500)

Rate=0.2

B=1000

MN=SE=rep()

for(i in 1:length(N))

{

n=N[i]

X=rexp(n,rate=Rate)

EST=1/mean(X)

ESTh=rep()

for(j in 1:B)

{

Xh=rexp(n,rate=EST)

ESTh[j]=1/mean(Xh)

}

MN[i]=mean(ESTh)

SE[i]=sd(ESTh)

}

cbind(N,Rate,MN,SE)

According to the American Lung Association, 7% of the population has lung disease. Of those having lung disease, 90% are smokers; and of those not having lung disease, 25% are smokers. What is the probability that a smoker has lung disease?

Answers

Answer:

Probability that a smoker has lung disease = 0.2132

Step-by-step explanation:

Let L = event that % of population having lung disease, P(L) = 0.07

So,% of population not having lung disease, P(L') = 1 - P(L) = 1 - 0.07 = 0.93

S = event that person is smoker

% of population that are smokers given they are having lung disease, P(S/L) = 0.90

% of population that are smokers given they are not having lung disease, P(S/L') = 0.25

We know that, conditional probability formula is given by;

                        P(S/L) = [tex]\frac{P(S\bigcap L)}{P(L)}[/tex]  

                        [tex]P(S\bigcap L)[/tex] = P(S/L) * P(L)

                                      = 0.90 * 0.07 = 0.063

So,  [tex]P(S\bigcap L)[/tex] = 0.063 .

Now, probability that a smoker has lung disease is given by = P(L/S)

      P(L/S) = [tex]\frac{P(S\bigcap L)}{P(S)}[/tex]

P(S) = P(S/L) * P(L) + P(S/L') * P(L')

       = 0.90 * 0.07 + 0.25 * 0.93 = 0.2955

Therefore, P(L/S) = [tex]\frac{0.063}{0.2955}[/tex] = 0.2132

Hence, probability that a smoker has lung disease is 0.2132 .

A tennis club offers two payment options:
Option1: $35 monthly fee plus $4/hour for court rental
Option 2: No monthly fee but $6.50/hour for court rental.
Let x = hours per month of court rental time.
a) Write a mathematical model representing the total monthly cost, C, in terms of x for the following:
Option 1: C= _________________
Option 2: C=_________________
b) How many hours would you have to rent the court so that the monthly cost of option 1, is less than option 2. Set up an inequality and show your work algebraically using the information in part a.

Answers

Multiply the cost per hour by number of hours x and for option 1 you need to add the monthly fee:

A) option 1: C= 4x +35

Option2: C = 6.50x

B)

4x+35 < 6.50x

Subtract 4x from both sides:

35 < 2.50x

Divide both sides by 2.50 :

X < 14

You would need to rent more than 14 hours for option 1 to be cheaper.

Suppose the coffee industry claimed that the average adult drinks 1.7 cups of coffee per day. To test this​ claim, a random sample of 40 adults was​ selected, and their average coffee consumption was found to be 1.9 cups per day. Assume the standard deviation of daily coffee consumption per day is 0.6 cups. Using alphaequals0.10​, complete parts a and b below. a. Is the coffee​ industry's claim supported by this​ sample? Determine the null and alternative hypotheses.

Answers

Answer:

(a) No, the coffee industry's claim is not supported by this sample.

(b) Null hypothesis: The average adult drinks 1.7 cups of coffee per day.

Alternate hypothesis: The average adult drinks more than 1.7 cups of coffee per day.

Step-by-step explanation:

(a) Test statistic (z) = (sample mean - population mean) ÷ sd/√n

sample mean = 1.9 cups per day

population mean = 1.7 cups per day

sd = 0.6 cups per day

n = 40

z = (1.9 - 1.7) ÷ 0.6/√40 = 0.2 ÷ 0.095 = 2.11

The test is a one-tailed test. Using alpha (significance level) = 0.1, the critical value is 2.326.

Conclusion:

Reject the null hypothesis because the test statistic 2.11 falls within the rejection region of the critical value 2.326.

The coffee industry's claim is contained in the null hypothesis, hence it is not supported by the sample because the null hypothesis is rejected.

(b) A null hypothesis is a statement from a population parameter which is either rejected or accepted (fail to reject) upon testing. It is expressed using the equality sign.

An alternate hypothesis is also a statement from the population parameter which negates the null hypothesis and is accepted if the null hypothesis is rejected. It is expressed using any of the inequality signs.

The lengths of the sides of a rectangle are consecutive prime numbers. The area of the rectangle is represented by a three-digit number composed only of the two smallest prime digits and it will not change if we reverse it . What is the perimeter of the rectangle?
WILL MARK BRAINLIEST!

Answers

Answer:

Perimeter = 72

Step-by-step explanation:

Mathematics Puzzle

The area of a rectangle is the product of the base and the height

A=b.h

We know the base and the height are two consecutive prime numbers, not much of useful information so far.

We also know the area is composed only of the two smallest prime digits. Those digits are 2 and 3. If the number is reversed and it's not changed, then we only have two possible values for the area: 232 and 323.

We only need to find two consecutive prime numbers which product is one of the above. The number 232 has no prime factors: 232 = 8*29.

The number 323 is the product of 17 and 19, two consecutive prime numbers, thus the dimensions of the rectangle are 17 and 19.

The perimeter of that rectangle is 2*17+2*19= 72

Answer:

72 units

Step-by-step explanation:

72 units

Which of the following are continuous variables, and which are discrete? (a) number of traffic fatalities per year in the state of Florida continuous discrete (b) distance a golf ball travels after being hit with a driver continuous discrete (c) time required to drive from home to college on any given day continuous discrete (d) number of ships in Pearl Harbor on any given day continuous discrete (e) your weight before breakfast each morning continuous discrete

Answers

Answer:

a) Discrete

b) Continuous

c) Continuous

d) Discrete

e) Continous

Step-by-step explanation:

Continuous:

Real numbers, can be integer, decimal, etc.

Discrete:

Only integer(countable values). So can be 0,1,2...

(a) number of traffic fatalities per year in the state of Florida

You cannot have half of a traffic fatality, for example. So this is discrete

(b) distance a golf ball travels after being hit with a driver

The ball can travel 10.25m, for example, which is a decimal number. So this is continuous.

(c) time required to drive from home to college on any given day

You can take 10.5 minutes, for example, which is a decimal value. So this is continuous.

(d) number of ships in Pearl Harbor on any given day

There is no half ship, for example. So this is discrete.

(e) your weight before breakfast each morning continuous discrete

You can weigh 80.4kg, for example, which is a decimal number. So this is continuous.

a) Discrete

b) Continuous

c) Continuous

d) Discrete

e) Continuous

Discrete data is the numerical type of data which includes whole, concrete numbers that has specific and fixed data values. therefore, they can be determined by counting.

example: Number of students in the class, ect.,

Continuous type of data includes complex numbers or the varying data values that are measured over a specific time interval.

example: Height of students in a school, etc.,

(a) Number of traffic fatalities per year in the state of Florida.

This is a Discrete data, as it is a countable data and will be always a whole be number. Number of traffic fatalities per year will be 75, 150, 200, etc.

(b) distance a golf ball travels after being hit with a driver.

This is a Discrete data, as the data can be measures and will be not always be a whole number. distance a golf ball travels after being hit can be 1.25 meters,  10.9 meters, 21.1 meters, etc.

(c) time required to drive from home to college on any given day.

This is a Discrete data, as the data can be measures and will be not always be a whole number. time required to drive from home to college can be 5minutes 30 seconds, 15 minutes 26 seconds.

(d) number of ships in Pearl Harbor on any given day.

This is a Discrete data, as it is a countable data and will be always a whole number. number of ships in Pearl Harbor on any given day will be always 1, 10, 8, etc.

(e) your weight before breakfast each morning.

This is a Discrete data, as the data can be measures and will be not always be a whole number. weight can be 44.56 kgs., 52.3 kgs, etc.

To know more visit:

https://brainly.com/question/9972704

1. Using R, construct time series (line) plots for both stock prices and return series. R functions ts.plot or plot can create the plot. Describe the patterns and compare the plots.

Answers

Answer:

The code in R for the time series is given as below.

Step-by-step explanation:

As the complete question is not presented thus a sample code for the variables is given as below

# Libraries

library(ggplot2)

library(dplyr)

library(plotly)

library(hrbrthemes)

# Load dataset

filepath=" Your dataset path here in csv format"

data <- read.table("filepath", header=T)

data$date <- as.Date(data$date)

# plot

data %>%

 ggplot( aes(x=date, y1=value1,x=date, y2=value2)) +

   geom_line(color="#69b3a2") +

   ylim(0,22000) +

   theme_ipsum()

Final answer:

In R, stock prices and return series can be visualized using the ts.plot() or plot() functions in a line graph. The time series graph will then help in identifying and understanding trends and patterns in the data over time. Comparing the plots of the stock prices and the return series can provide insights into market behavior.

Explanation:

To plot both stock prices and return series using R, one would use either the ts.plot or plot function. Firstly, you need to import or generate the stock prices and the return series data. The horizontal axis of the plot corresponds to the date or time increments, while the vertical axis corresponds to the values of the variable (i.e., stock prices or return series).

Load your time series data in R.Next, use the ts.plot() or plot() functions to visualize your data in a line graph.Pay attention to the patterns that emerge. Line graphs are an effective method to show the relationships between two changing variables such as time and stock price.Detail the trends and patterns you observe in your data. Are there seasonal trends, cyclical fluctuations or random variations? Is the trend increasing or decreasing over time? Comparatively analyze the plots for the stock prices and the return series.

Time series graphs facilitate spotting trends and are used to graphically represent the same variable values recorded over an extended period of time. In the context of stock prices and return series, these patterns over time can provide valuable insights into market behavior and investment opportunities.

Learn more about Time Series Graphs here:

https://brainly.com/question/30438476

#SPJ12

19) If an average of 12 customers are served per hour, what is the probability that the next customer will arrive in 3 minutes or less? Note: λ = 12/60

Answers

Answer:

The probability that the next customer will arrive in 3 minutes or less is 0.45.

Step-by-step explanation:

Let N (t) be a Poisson process with arrival rate λ. If X is the time of the next arrival then,

[tex]P(X>t)=e^{-\lambda t}[/tex]

Given:

[tex]\lambda=\frac{12}{60}[/tex]

t = 3 minutes

Compute the probability that the next customer will arrive in 3 minutes or less as follows:

P (X ≤ 3) = 1 - P (X > 3)

              [tex]=1-e^{-\frac{12}{60}\times3}\\=1-e^{-0.6}\\=1-0.55\\=0.45[/tex]

Thus, the probability that the next customer will arrive in 3 minutes or less is 0.45.

The probability that the next customer will arrive in 3 minutes or less is; 0.4512

This is a Poisson distribution problem with the formula;

P(X > t) = e^(-λt)

Where;

λ is arrival rate

t is arrival time

We are given;

λ = 12/60

t = 3 minutes

We want to find the probability that the next customer will arrive in 3 minutes or less. This is expressed as;

P (X ≤ 3) = 1 - (P(X > 3))

Thus;

P (X ≤ 3) = 1 - e^((12/60) × 3)

P (X ≤ 3) = 1 - 0.5488

P (X ≤ 3) = 0.4512

Read more about Poisson distribution at; https://brainly.com/question/7879375

QUESTION 7 A Randstad/Harris interactive survey reported that 25% of employees said their company is loyal to them. Suppose 9 employees are selected randomly and will be interviewed about company loyalty. What is the probability that none of the 9 employees will say their company is loyal to them? g

Answers

Answer:

7.51% probability that none of the 9 employees will say their company is loyal to them.

Step-by-step explanation:

For each employee, there are only two possible outcomes. Either they think that their company is loyal to them, or they do not think this. The probability of an employee thinking that their company is loyal to them is independent of other employees. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

25% of employees said their company is loyal to them.

This means that [tex]p = 0.25[/tex]

9 employees are selected randomly

This means that [tex]n = 9[/tex]

What is the probability that none of the 9 employees will say their company is loyal to them?

This is P(X = 0).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{9,0}.(0.25)^{0}.(0.75)^{9} = 0.0751[/tex]

7.51% probability that none of the 9 employees will say their company is loyal to them.

What is the age distribution of adult shoplifters (21 years of age or older) in supermarkets? The following is based on information taken from the National Retail Federation. A random sample of 895 incidents of shoplifting gave the following age distribution. Estimate the mean age, sample variance, and sample standard deviation for the shoplifters. For the class 41 and over, use 45.5 as the class midpoint. (Enter your answers to one decimal place.)

Age range (years) 21-30 31-40 41 and over
Number of shoplifters 280 368 247

Answers

Final answer:

We can estimate the mean, variance, and standard deviation by using class midpoints and the number of observations. First, find the midpoint of each age group. Then, to find the mean, multiply each midpoint by the number of shoplifters in that age group, sum those products, and divide by the total number of observations. To find the variance, subtract the mean from each midpoint, square the result, multiply by the number of shoplifters in that group, sum those products, and divide by the total number of observations minus one. The standard deviation is the square root of the variance.

Explanation:

To estimate the mean age, sample variance, and sample standard deviation for the shoplifters from a random sample of 895 incidents we need to follow a few steps. Here's how to do it:

Calculate the midpoint of each class: For the age ranges 21-30 and 31-40, the midpoints are 25.5 and 35.5 respectively. The problem already provides 45.5 as the class midpoint for the range '41 and over'.Calculate the estimated mean (µ) by multiplying the midpoint of each class by the number of observations in that class, summing these values, and dividing by the total number of observations.Calculate the estimated variance (σ²) by subtracting the estimated mean from each class midpoint, squaring the result, multiplying by the number of observations in that class, summing these values, and dividing by the total number of observations - 1.Finally, calculate the standard deviation (σ) by taking the square root of the estimated variance.

Learn more about Statistics here:

https://brainly.com/question/31538429

#SPJ11

1. You have an aluminum bar of dimensions 2cm*5cm*10 cm. You want to put it into electric circuit such a way that this bar will demonstrate the smallest possible resistance. You should connect your bar to the opposite faces with dimensions of:

Answers

Answer:

( 5 x 10 ) cm

Step-by-step explanation:

Given:

- The dimensions of the bar are:

                                  ( 2 x 5 x 10 ) cm

Find:

Which two faces with dimensions ( _x _ ) should be connected to get smallest possible resistance.

Solution:

- The electrical resistance R of any material with density ρ and corresponding dimensions is expressed as:

                                R = ρ*L / A

- Where, A: cross sectional Area

              L: The length in between the two faces.

- We need to minimize the electrical resistance of the bar. For that the Area must be maximized and Length should be minimized.

-                               A_max & L_min ---- > R_min

                               (5*10) & ( 2) ------> R_min

Hence, the electrical resistance is minimized by connecting the face with following dimensions ( 5 x 10 ) cm

Circle your answer and justify it by showing your work. (a) T F: (b) T F: Let A be any square matrix, then ATA, AAT, and A + AT are all symmetric. If S is invertible, then ST is also invertible. If a row exchange is required to reduce matrix A into upper triangular form U, then (c) T F: A can not be factored as A = LU. (d) T F: Suppose A reduces to upper triangular U but U has a 0 in pivot position, then A has no LDU factorization. (e) T F: If A2 is not invertible, then A is not invertible. 10 10. [10points] (a) T F: All(x,y,z)∈R3 withx=y+z+1isasubspaceofR3 (b) T F: All(x,y,z)∈R3 withx+z=0isasubspaceofR3 (c) T F: All 2 × 2 symmetric matrices is a subspace of M22. (Here M22 is the vector space of all 2 × 2 matrices.) (d) T F: All polynomials of degree exactly 3 is a subspace of P5. (Here P5 is the vector space of all polynomials a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 of degree less than or equal to 5.) (e) T F: P3 is a subspace of P5. (Here Pi is the vector space of all polynomials aixi+ai−1xi−1+ ai−2x1−2 + ... + a2x2 + a1x + a0 of degree less than or equal to i.)a. TrueB. False.

Answers

Answer:

a-True

b-True

c-True

d- False

e-True

f-True

g-True

h- False

i-True

j- False

Step-by-step explanation:

See the attached pictures.

Let X1,X2......X7 denote a random sample from a population having mean μ and variance σ. Consider the following estimators of μ:

θ1=X1+X2+......+X7 / 7
θ2= (2X1-X3+X5) / 2

a. Is either estimator unbiased?
b. Which estimator is best? In what sense is it best? Calculate the relative efficiency of the 2 estimtors.

Answers

Answer:

a) In order to check if an estimator is unbiased we need to check this condition:

[tex] E(\theta) = \mu[/tex]

And we can find the expected value of each estimator like this:

[tex] E(\theta_1 ) = \frac{1}{7} E(X_1 +X_2 +... +X_7) = \frac{1}{7} [E(X_1) +E(X_2) +....+E(X_7)]= \frac{1}{7} 7\mu= \mu[/tex]

So then we conclude that [tex] \theta_1 [/tex] is unbiased.

For the second estimator we have this:

[tex] E(\theta_2) = \frac{1}{2} [2E(X_1) -E(X_3) +E(X_5)]=\frac{1}{2} [2\mu -\mu +\mu] = \frac{1}{2} [2\mu]= \mu[/tex]

And then we conclude that [tex]\theta_2[/tex] is unbiaed too.

b) For this case first we need to find the variance of each estimator:

[tex] Var(\theta_1) = \frac{1}{49} (Var(X_1) +...+Var(X_7))= \frac{1}{49} (7\sigma^2) = \frac{\sigma^2}{7}[/tex]

And for the second estimator we have this:

[tex] Var(\theta_2) = \frac{1}{4} (4\sigma^2 -\sigma^2 +\sigma^2)= \frac{1}{4} (4\sigma^2)= \sigma^2[/tex]

And the relative efficiency is given by:

[tex] RE= \frac{Var(\theta_1)}{Var(\theta_2)}=\frac{\frac{\sigma^2}{7}}{\sigma^2}= \frac{1}{7}[/tex]

Step-by-step explanation:

For this case we assume that we have a random sample given by: [tex] X_1, X_2,....,X_7[/tex] and each [tex] X_i \sim N (\mu, \sigma)[/tex]

Part a

In order to check if an estimator is unbiased we need to check this condition:

[tex] E(\theta) = \mu[/tex]

And we can find the expected value of each estimator like this:

[tex] E(\theta_1 ) = \frac{1}{7} E(X_1 +X_2 +... +X_7) = \frac{1}{7} [E(X_1) +E(X_2) +....+E(X_7)]= \frac{1}{7} 7\mu= \mu[/tex]

So then we conclude that [tex] \theta_1 [/tex] is unbiased.

For the second estimator we have this:

[tex] E(\theta_2) = \frac{1}{2} [2E(X_1) -E(X_3) +E(X_5)]=\frac{1}{2} [2\mu -\mu +\mu] = \frac{1}{2} [2\mu]= \mu[/tex]

And then we conclude that [tex]\theta_2[/tex] is unbiaed too.

Part b

For this case first we need to find the variance of each estimator:

[tex] Var(\theta_1) = \frac{1}{49} (Var(X_1) +...+Var(X_7))= \frac{1}{49} (7\sigma^2) = \frac{\sigma^2}{7}[/tex]

And for the second estimator we have this:

[tex] Var(\theta_2) = \frac{1}{4} (4\sigma^2 -\sigma^2 +\sigma^2)= \frac{1}{4} (4\sigma^2)= \sigma^2[/tex]

And the relative efficiency is given by:

[tex] RE= \frac{Var(\theta_1)}{Var(\theta_2)}=\frac{\frac{\sigma^2}{7}}{\sigma^2}= \frac{1}{7}[/tex]

Both θ1 and θ2 are unbiased estimators of the population mean μ. However, θ1 is more efficient due to having a lower variance compared to θ2. The relative efficiency of θ1 compared to θ2 is 10.5.

To determine if the estimators [tex](\theta_1)[/tex] and [tex](\theta_2)[/tex] are unbiased and which one is best, we follow these steps:

A. Evaluating Unbiasedness

Estimator [tex](\theta_1):\theta_1=\frac{X_1+X_2+\\cdots+X_7}{7}[/tex][tex]\(E[\theta_1]=\frac{E[X_1+X_2+\cdots+X_7]}{7}=\frac{7\\mu}{7}=\mu\)[/tex]Thus, [tex](\theta_1)[/tex] is an unbiased estimator of \\(\\mu\\).Estimator [tex](\theta_2=\frac{2X_1-X_3+X_5}{2})[/tex][tex]\(E[\theta_2]=E[\frac{2X_1-X_3+X_5}{2}]=\frac{2E[X_1]-E[X_3]+E[X_5]}{2}=\frac{2\mu-\mu+\mu}{2}=\mu\)[/tex]Thus,[tex](\theta_2)[/tex] is also an unbiased estimator of [tex](\mu)[/tex].

B. Evaluating Efficiency

Variance of [tex](\theta_1):\theta_1=\frac{X_1+X_2+\cdots+X_7}{7}[/tex][tex]\(Var(\theta_1)=Var(\frac{X_1+X_2+\cdots+X_7}{7})=\frac{\sigma^2}{7}\)[/tex]Variance of[tex](\theta_2):\theta_2=\frac{2X_1-X_3+X_5}{2})[/tex][tex]\(Var(\theta_2)=Var(\frac{2X_1-X_3+X_5}{2})=\frac{4Var(X_1)+Var(X_3)+Var(X_5)}{4}=\frac{4\sigma^2+\sigma^2+\sigma^2}{4}=\frac{6\sigma^2}{4}=1.5\sigma^2)[/tex]Since[tex](Var(\theta_1)=\frac{\sigma^2}{7}) is less than \(Var(\theta_2)=1.5\sigma^2), (\theta_1)[/tex] is the more efficient estimator

The relative efficiency of [tex](\theta_1)[/tex] to [tex](\theta_2)[/tex] is:

[tex]\(RE=\frac{Var(\theta_2)}{Var(\theta_1)}=\frac{1.5\sigma^2}{\frac{\sigma^2}{7}}=10.5\)[/tex]

Both [tex](\theta_1)[/tex] and [tex](\theta_2)[/tex] are unbiased estimators of [tex](\mu)[/tex], but [tex](\theta_1)[/tex] is the best in terms of efficiency since it has a lower variance.

In a sample of 60 electric motors, the average efficiency (in percent) was 85 and the standard deviation was 2. Section 05.01 Exercise 12.a - Compute confidence interval; Find necessary sample size Find a 95% confidence interval for the mean efficiency. Round the answers to three decimal places.

Answers

Answer:

95% confidence interval for the mean efficiency is [84.483 , 85.517].

Step-by-step explanation:

We are given that in a sample of 60 electric motors, the average efficiency (in percent) was 85 and the standard deviation was 2.

So, the pivotal quantity for 95% confidence interval for the population mean efficiency is given by;

          P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, [tex]\mu[/tex] = sample average efficiency = 85

            [tex]\sigma[/tex] = sample standard deviation = 2

            n = sample of motors = 60

            [tex]\mu[/tex] = population mean efficiency

So, 95% confidence interval for the mean efficiency, [tex]\mu[/tex] is ;

P(-2.0009 < [tex]t_5_9[/tex] < 2.0009) = 0.95

P(-2.0009  < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.0009 ) = 0.95

P( [tex]-2.0009 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.0009 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.95

P( [tex]\bar X -2.0009 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +2.0009 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X -2.0009 \times {\frac{s}{\sqrt{n} }[/tex] , [tex]\bar X +2.0009 \times {\frac{s}{\sqrt{n} }[/tex] ]

                                                 = [ [tex]85 -2.0009 \times {\frac{2}{\sqrt{60} }[/tex] , [tex]85 +2.0009 \times {\frac{2}{\sqrt{60} }[/tex] ]

                                                 = [84.483 , 85.517]

Therefore, 95% confidence interval for the population mean efficiency is [84.483 , 85.517].

Final answer:

The 95% confidence interval for the mean efficiency of electric motors, given a sample mean of 85, a standard deviation of 2, and a sample size of 60, is approximately (84.494, 85.506) when rounded to three decimal places.

Explanation:

To calculate the 95% confidence interval for the mean efficiency of electric motors, we use the sample mean, standard deviation, and the sample size along with the z-score for the 95% confidence level. Since the sample size is large (n > 30), we can use the z-distribution to approximate the sampling distribution of the sample mean.

The formula for a confidence interval is:

Confidence Interval = sample mean "+/-" (z-score * (standard deviation / sqrt(n)))

Given that the sample mean is 85, the standard deviation is 2, and the sample size (n) is 60, and using the z-score of approximately 1.96 for 95% confidence, we can compute the confidence interval.

Confidence Interval = 85 "+/-" (1.96 * (2 / √(60)))

After the calculation, we get the two ends of the interval:

Lower Limit = 85 - (1.96 * (2 / √(60))) = 84.494

Upper Limit = 85 + (1.96 * (2 / √(60))) = 85.506

Rounding these to three decimal places, the 95% confidence interval for the mean efficiency of electric motors is approximately (84.494, 85.506). This means we can be 95% confident that the true average efficiency of all electric motors is between 84.494% and 85.506%.

Mrs. Porcelli's classroom bulletin board is 2 % feet long. Ms. Smith's bulletin board is 3
| times as long as Mrs. Porcelli's. How long is Ms. Smith's bulletin board.

Answers

Answer: 0.06 ft long

Step-by-step explanation:

Porcelli's board = 2% feet long; to convert 2% into fraction, divide by 100= 2/100 = 0.02 ft

Smith's board, from the question is 3 times porcelli's board = 3 x 0.02= 0.06 ft

I hope this helps.

Your large corporation manufactures a certain popular brand of robot lawn mower. After manufacture, all mowers go through a standard quality control check. The Portland factory, which manufactures 30% of your mowers, has a probability of .8 that each mower will pass the quality control check. The Dallas factory, which manufactures 50% of your mowers, has a probability of .7 that each mower will pass the quality control check. For the Buffalo factory,
which manufactures the remaining 20% of your mowers, you have been unable to learn what the probability is that each mower will pass inspection. But, the corporation’s annual report claims that the overall probability that one of their manufactured mowers will pass the quality control check is .72

a) What do you conclude is the probability that a mower manufactured at the Buffalo factory will pass the quality control check?
b) A customer orders one of your mowers, and of course receives one that has passed the quality control check. What is the probability it was manufactured in Dallas?

Answers

Answer:

(a) The probability that a mower manufactured at the Buffalo factory will pass the quality control check is 0.65.

(b) The probability that a mower was manufactured in Dallas given that it passes the quality check is 0.4861.

Step-by-step explanation:

Denote the events as follows:

X = a mower is manufactured at the Portland factory

Y = a mower is manufactured at the Dallas factory

Z= a mower is manufactured at the Buffalo factory

A = a mower passes the quality check.

The information provided is:

[tex]P(X)=0.30\\P(A|X)=0.80\\P(Y)=0.50\\P(A|Y)=0.70\\P(Z)=0.20\\P(A)=0.72[/tex]

(a)

The probability that a mower manufactured at the Buffalo factory will pass the quality control check is:

P (A|Z)

Compute the value of P (A|Z) as follows:

[tex]P(A)=P(A\cap X)+P(A\cap Y) + P (A\cap Z)\\0.72=(0.80\times0.30)+(0.70\times0.50)+(0.20\times P(A|Z))\\0.20\times P(A|Z)=0.72-0.24-0.35\\P(A|Z)=\frac{0.13}{0.20}\\=0.65[/tex]

Thus, the probability that a mower manufactured at the Buffalo factory will pass the quality control check is 0.65.

(b)

Compute the value of P (Y|A) as follows:

[tex]P(Y|A)=\frac{P(A|Y)P(Y)}{P(A)}=\frac{0.70\times0.50}{0.72}=0.4861[/tex]

Thus, the probability that a mower was manufactured in Dallas given that it passes the quality check is 0.4861.

Final answer:

The probability that a mower from the Buffalo factory will pass the quality control check is 13%, and if a customer receives a mower that has passed the check, there is a 49% probability that it was manufactured in Dallas.

Explanation:

To find the probability that a robot lawn mower made at the Buffalo factory will pass the quality control check, we first understand that the total probability of a mower passing the check is a sum of all the probabilities from the three factories. This is given as 0.72.

The Portland factory which makes 30% of the mowers has a 0.8 probability of passing the check. Therefore, the contribution of Portland to the total probability is 0.3*0.8 = 0.24. Similarly, the Dallas factory makes 50% of the mowers and each has a passing probability of 0.7, so the Dallas contribution is 0.5*0.7 = 0.35.  

Knowing this, we can subtract the total contributions of Portland and Dallas from the overall probability of 0.72 to get Buffalo's contribution, which is the Buffalo passing probability. Therefore, the Buffalo passing probability becomes 0.72 - 0.24 - 0.35 = 0.13 or 13%.

In the second part, if the customer receives a mower that has passed the quality control check, the probability that it was manufactured in Dallas is the contribution of the Dallas factory to the passing mowers i.e., 0.35 ÷ 0.72 = 0.486 or approximately 49%.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ3

A certain vibrating system satisfies the equation u'' + γu' + u = 0. Find the value of the damping coefficient γ for which the quasi period of the damped motion is 90% greater than the period of the corresponding undamped motion.

Answers

Final answer:

In damped harmonic motion, we calculate damping coefficient γ by comparing the periods of damped and undamped motion. For the given situation where the quasi-period is 90% greater than the undamped period, the damping coefficient is approximately 0.7416.

Explanation:

The subject of this question involves Damped Harmonic Motion, a concept in Physics, related to vibrations and waves. The equation given, u'' + γu' + u = 0, describes the motion where γ denotes the damping coefficient. Here, we have to calculate this damping coefficient when the quasi period of the damped motion is 90% greater than the period of the corresponding undamped motion.

To solve this, we must use the relationship between damped and undamped periods. The quasi-period T' of a damped harmonic motion relates to the undamped period T as: T' = T/(sqrt(1 - (γ/2)^2)). Now, given that T' = 1.9T, we can but these two equations together:

1.9 = 1/(sqrt(1 - (γ/2)^2))

Solving this for γ, we get γ ≈ 0.7416. Hence, the damping coefficient γ for which the quasi period of the damped motion is 90% greater than the period of the corresponding undamped motion is approximately 0.7416.

Learn more about Damped Harmonic Motion here:

https://brainly.com/question/34795407

#SPJ12

Final answer:

The value of the damping coefficient γ for which the quasi period of the damped motion is 90% greater than the period of the undamped motion is the one that satisfies γ=2*ω*0.9, where ω is the natural frequency of oscillation.

Explanation:

The given equation is for a damped harmonic oscillator, a physical system that oscillates under both a restoring force and a damping force proportional to the velocity of the system. The damping coefficient γ determines the behavior of the system and in this case, we need to find the value of γ such that the quasi period of the damped motion is 90% greater than the period of the undamped motion.

The period of the undamped motion, T₀, is calculated by the formula T₀=2π/sqrt(ω), where ω is the natural frequency of oscillation. The quasi period of the damped motion, Td, is increased by a factor of 1+η (in this case, 1.9 as the increase is 90%) and calculated by the formula Td=T₀(1+η) = T₀*1.9.

The damping ratio η is determined by the damping coefficient γ as η=γ/2ω. Therefore, by combining these expressions and rearranging the terms, we extract γ from these formulas as γ=2ω*η => γ=2*ω*(0.9). Thus, the value of the damping coefficient γ for which the quasi period of the damped motion is 90% greater than the period of the corresponding undamped motion is the one which satisfies γ=2*ω*0.9.

Learn more about Damped Harmonic Oscillation here:

https://brainly.com/question/13152216

#SPJ2

A map uses the scale 1.5 cm = 25 mi. Two cities are 190 miles apart. How far apart are the cities on the map?

Please answer quickly and I will give brainiest to whoever is correct fastest.

Answers

Use simple unitary method:

∵ 1.5 cm on map = 25 miles in reality

∴ x cm on map = 190 miles in reality

[tex]\frac{1.5}{x} = \frac{25}{190}\\ x = 11.4 cm[/tex]

Thus, the two cities are 11.4 cm apart on the map

Final answer:

To determine the map distance between two cities that are 190 miles apart using the scale 1.5 cm = 25 miles, divide the actual distance by the scale ratio (16.67 miles/cm), resulting in 11.4 cm.

Explanation:

For the map with scale 1.5 cm = 25 miles, we first calculate how many miles one centimeter represents by dividing the miles by the centimeters in the scale:

25 miles / 1.5 cm = 16.67 miles/cm

Next, we find the map distance for 190 miles by dividing the actual distance by the distance one centimeter represents:

190 miles / 16.67 miles/cm = 11.4 cm

So, the two cities are 11.4 cm apart on the map.

Other Questions
Preliminary treatment includes wastewater screening and blank When we try to explain misha's behavior as she struggles with her computer, we might ask if she also has difficulty using other computers on campus. the answer to this question would provide us with information about:_____________ If you were to embezzle money from your employer, you likely would face two separate and distinct lawsuits as a consequence of your embezzlement: a criminal lawsuit and a civil lawsuit. Why do we have separate lawsuits for torts (civil) and crimes (criminal) that arise from a single occurrence? What are the differences between these two types of lawsuits? Carolina Plating Company reported a cost of goods manufactured of $520,000, with the firm's yearendbalance sheet revealing work in process and finished goods of $70,000 and $134,000, respectively.If supplemental information disclosed raw materials used in production of $80,000, direct labor of$140,000, and manufacturing overhead of $240,000, the company's beginning work in process must havebeen:A. $130,000.B. $10,000.C. $66,000.D. $390,000.E. some other amount. When a job application asks an applicant where he or she heard about this particular employment opportunity, the company is collecting _____.demographic dataquantitative dataqualitative dataEEOC statistics Solve for n.4 x n= 21.6 Assume that you have $60 a week to spend on bottled water and chips. A bottle of water costs $2 and a bag of chips costs $3. If you buy 15 bottles of water, how many bags of chips can you purchase The balance in the unearned fees account, before adjustment at the end of the year, is $12,960. Required: Journalize the adjusting entry required if the amount of unearned fees at the end of the year is $6,960. Refer to the Chart of Accounts for exact wording of account titles. Peter Drucker stated that a knowledge society would emerge in the future that meant ________. processing knowledge would be as important as processing land, labor, or capital. professionals would possess many different computer devices. knowledge workers are typically professionals who are well educated. a society would be computer literate. knowledge workers would lead society. Discuss how biodiversity affect the increase and decline of the elephant population . What is the expected impact of increased security measures imposed by the federal government on airlines and consumers? What do you predict will happen to airline fares and volume of travel? Instructions: Draw a parallel shift in the demand and supply curves by grabbing, dragging, and then dropping the curves to the new positions. b. The impact of increased security measures on airline fares . The impact of increased security measures on the volume of travel The cybersecurity defense strategy and controls that should be used depend on __________. Select one: a. The source of the threat b. Industry regulations regarding protection of sensitive data c. What needs to be protected and the cost-benefit analysis d. The available IT budget please help as soon as possible Which is a unit of length in the metric system?inchesfeetmetersyards Which is true?A) Avg sea level air pressure is 29.92mb or 1013.25 in B) Air pressure decreases, temp decreases, wind increases with increasing altitudeC) Oxygen concentration and water vapor decreases with increasing altitude and aD) Avg sea level air pressure is 1013.25mb and 29.92in and bE) With increasing altitude air expands, cools and becomes drier . A square window has a perimeter of 60 inches.What is the area of the window? A rooster with white feathers is mated with a gray hen of the same phenotype. Among their offspring, 28 chicks are gray 31 are white. What is the simplest explanation for the inheritance of these colors in chickens? jamies mother is making a quilt. the block shown below is made from a series of similar triangles Michael is preparing the company's cash budget. when preparing the cash disbursements section, he includes inventory, labor, overhead, selling expenses, administrative expenses, depreciation, dividends, and income taxes. what error did michael make? will cash disbursements be too high or too low as a result of this mistake?a.michael failed to include credit sales in his estimate, which would make cash disbursements too low.b.michael included depreciation in his estimate, which would make cash disbursements too high.c.michael failed to include financing in his estimate, which would make cash disbursements too low.d.michael included income taxes in his estimate, which would make cash disbursements too high. How did the Democratic Party manage to capture the presidency in the election of 1856 even though it had lost so many of its northern supporters?