Please someone help me on 2 problems 25 points ya boy be struggling

Please Someone Help Me On 2 Problems 25 Points Ya Boy Be Struggling

Answers

Answer 1

Answer:

6) x = 17 ft

7) 42 in

Step-by-step explanation:

6) length of the tangents are equal.

2x - 7 = 27

2x = 34

x = 17

7) if you draw a line from T passing through the centre of the circle, it will divide the triangle into two congruent triangles

Perimeter = 2(5+7+9) = 42 in

Answer 2
all you need to know is that two tangents to a circle from the same point are equal one to the other so for the first problem you got 27=2x-7, solve that and you get 17. then in the second one you can get the left measurements of the triangle because of the tangents. you get TA=9, NG=7 and ER=5. add everything up to get 42 and that’s the answer

Related Questions

You and your friend are skiing down a hill, your friend is almost at the finish line, and you want to catch up with him, how many seconds will it take you to reach him?

Answers

Answer:It depends

Step-by-step explanation:

Help with this please! a, b, and c

Answers

Answer:

y = 3.6(sine( 6.2(x-4.2))+4.4

Step-by-step explanation:

(8.2-.6)/2 = altitude = 3.6

6.2 = Wavelength

(8.2+.6)/2 = 4.4 The "line" (the horizontal central line thingy whose name I forgot cuz it's 12:00)

4.2 = x shift

y = 3.6(sine( 6.2(x-4.2))+4.4

Solve the following equation: [tex]p-\frac{1}{4} = \frac{7}{8}[/tex]

Answers

The solution for the equation is [tex]p=\frac{9}{8}[/tex]

Explanation:

The given equation is [tex]p-\frac{1}{4}=\frac{7}{8}[/tex]

We need to solve the equation.

The solution of the equation can be determined by finding the value for p.

Thus, from the equation, let us add both sides of the equation by [tex]\frac{1}{4}[/tex]

Hence, we have,

[tex]p-\frac{1}{4}+\frac{1}{4}=\frac{7}{8}+\frac{1}{4}[/tex]

Simplifying the equation, we get,

[tex]p=\frac{7}{8}+\frac{1}{4}[/tex]

Taking LCM for 4 and 8, we get,

[tex]p=\frac{7+2}{8}[/tex]

Adding the numerator, we have,

[tex]p=\frac{9}{8}[/tex]

Thus, the value of p is [tex]p=\frac{9}{8}[/tex]

Hence, the solution for the equation is [tex]p=\frac{9}{8}[/tex]

Last month 15 homes were sold in Town X. The average (arithmetic mean) sale price of the homes was $150,000 and the median sale price was $130,000. Which of the following statements must be true?
I. At least one of the homes was sold for more than $165,000.
II. At least one of the homes was sold for more than $130,0000 and less than $150,000
III. At least one of the homes was sold for less than $130,000.
A. I only
B. II only
C. III only
D. I and II
E. I and III

Answers

Answer:

A. I Only.

Step-by-step explanation:

To begin, we must first be clear that it is the median and that it is the arithmetic mean:

Median is the middle value of a sequence of ordered numbers, for example:

{4,4,4,4,4}, the median is 4 despite being the same numbers.

Now the arithmetic mean is the average value of the samples and is independent of the amplitudes of the intervals.

Then let's analyze each of our options:

I. At least one of the homes was sold for more than $ 165,000.

We know through the flushed:

X1 + X2 +. . . + X7 + (X8 = $130,000) + X9 +. . . + X15 = 15 ∗ 150,000 = $ 2,250,000

Now we will assume the lowest possible value from X1 to X8 = $ 130,000 and from X9 to X15 = X, which is what we want to calculate. That is to say:

X1 = X2 = X3 = X4 = X5 = X6 = X7 = X8 = 130 and X9 = X10 = X11 = X12 = X13 = X14 = X15 = X,

knowing that the total value must be the average of 15, which is equal to $ 2250000 , we have the following equation:

8 ∗ $ 130,000 + 7X = $ 2,250,000

Rearranging:

X = ($ 2,250,000 $ - $ 1,040,000) / 7

X = $ 172,857

Therefore the first statement is true, because at least one house was sold at $ 172,857 which is more than $ 165,000

Evaluating the second option

II. At least one of the homes was sold for more than $ 130,0000 and less than $ 150,000

As the example of the median in the previous case you could have 8 houses that were sold for $ 130,000 or less, therefore here it loses validity, statement II is false.

Evaluating the third option

III. At least one of the homes was sold for less than $ 130,000.

We know that the eighth house sold for $ 130,000, but houses 1 to 7 may also have been sold for that same price. The statement III is false.

Therefore the answer is A. I Only.

Jake buys a fruit smoothie and a protein bar for​ $5.90. Kobe buys 2 fruit smoothies and 4 protein bars. He pays​ $16.80. What is the cost of each fruit smoothie and each protein​ bar?

Answers

Answer:

Fruit smoothie: $3.4

Protein bar: $2.5

Step-by-step explanation:

Let x represent cost of fruit smoothie and y represent cost of protein bar.

We have been given that Jake buys a fruit smoothie and a protein bar for​ $5.90. We can represent this information in an equation as:

[tex]x+y=5.90...(1)[/tex]

[tex]x=5.90-y...(1)[/tex]

We are also told that Kobe buys 2 fruit smoothies and 4 protein bars. He pays​ $16.80. We can represent this information in an equation as:

[tex]2x+4y=16.80...(2)[/tex]

Upon substituting equation (1) in equation (2), we will get:

[tex]2(5.90-y)+4y=16.80[/tex]

[tex]11.80-2y+4y=16.80[/tex]

[tex]2y=16.80-11.80[/tex]

[tex]2y=5[/tex]

[tex]y=\frac{5}{2}=2.5[/tex]

Therefore, each protein bar costs $2.5.

Upon substituting [tex]y=2.5[/tex] in equation (1), we will get:

[tex]x=5.90-2.5=3.4[/tex]

Therefore, each fruit smoothie costs $3.4.

Each fruit smoothie costs [tex]3.40\ dollars[/tex], and each protein bar costs [tex]2.50\ dollars[/tex].

To solve for the cost of each fruit smoothie [tex](\( x \))[/tex] and each protein bar [tex](\( y \))[/tex], we'll use the given system of equations:

1. [tex]\( x + y = 5.90 \)[/tex]

2. [tex]\( 2x + 4y = 16.80 \)[/tex]

Let's solve this step by step.

Step 1: Solve the first equation for [tex]\( x \)[/tex]

[tex]\[ x + y = 5.90 \][/tex]

[tex]\[ x = 5.90 - y \][/tex]

Step 2: Substitute [tex]\( x = 5.90 - y \)[/tex] into the second equation:

[tex]\[ 2(5.90 - y) + 4y = 16.80 \][/tex]

[tex]\[ 11.80 - 2y + 4y = 16.80 \][/tex]

[tex]\[ 2y = 16.80 - 11.80 \][/tex]

[tex]\[ 2y = 5 \][/tex]

[tex]\[ y = \frac{5}{2} \][/tex]

[tex]\[ y = 2.50 \][/tex]

Step 3: Substitute [tex]\( y = 2.50 \)[/tex] back into [tex]\( x = 5.90 - y \)[/tex]

[tex]\[ x = 5.90 - 2.50 \][/tex]

[tex]\[ x = 3.40 \][/tex]

Nanette earns $14 per hour. Last week, she worked 2 hours on Monday, 10 hours on Tuesday, and 9 hours on Wednesday. She had Thursday off, and then she worked 8 hours on Friday. How much money did Nanette earn in all last week?

Answers

Answer: $406

Step-by-step explanation:

Answer: she earned $406 last week.

Step-by-step explanation:

Last week, she worked 2 hours on Monday, 10 hours on Tuesday, and 9 hours on Wednesday. This means that the number of hours that she worked for the first three days is

2 + 10 + 9 = 21 hours

She had Thursday off, and then she worked 8 hours on Friday. Therefore, the total number of hours that she worked for the week is 21 + 8 = 29 hours.

If Nanette earns $14 per hour, then the total amount of money that Nanette earned in all last week is

29 × 14 = $406

The volume of a gas in a container at a constant temperature varies inversely as the pressure. The volume is 25 cubic centimeter at a pressure of 11 pounds. Use a proportion to find the pressure when the volume is 59 cubic centimeters.

Answers

Answer:

Pressure would be approximately 4.66 pounds.

Step-by-step explanation:

Given:

Volume of gas (V) = 25 cubic cm

Pressure of the  gas (P) = 11 pounds

We need to find the pressure when volume is 59 cubic cm.

Solution:

Now Given:

[tex]V[/tex] ∝ [tex]\frac{1}{P}[/tex]

so we can say that;

[tex]V =\frac kP[/tex]

where k is a constant.

When V = 25 cubic cm, P =11 pounds.

[tex]25 = \frac{k}{11}\\\\k= 25\times 11 = 275\ cm^3.pounds[/tex]

So the equation becomes as.

[tex]V = \frac{275}{P}[/tex]

Now we need to find the pressure when Volume is 59 cubic cm.

[tex]59 =\frac{275}{P}\\\\P=\frac{275}{59}\\\\P\approx 4.66\ pounds[/tex]

Hence Pressure would be approximately 4.66 pounds.

(04.01)

Which of the following shows the correct steps to find the value of 16 to the power of 1 over 4 ? (1 point)

Group of answer choices

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

16 to the power of 1 over 4 equals 4 to the power of 4 to the power of 1 over 4 equals 4 to the power of 4 multiplied by 1 over 4 equals 4

16 to the power of 1 over 4 equals 2 to the power of 8 to the power of 1 over 4 equals 8 to the power of 8 multiplied by 1 over 4 equals 4

16 to the power of 1 over 4 equals 8 to the power of 2 to the power of 1 over 4 equals 2 to the power of 2 multiplied by 1 over 4 equals 8

Answers

Answer:

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

Step-by-step explanation:

16 to the power of 1 over 4 equals 2 to the power of 4 to the power of 1 over 4 equals 2 to the power of 4 multiplied by 1 over 4 equals 2

(16)^1/4 = (2^4)^1/4

4 cancels 4

2^1 = 2

Answer:

Step-by-step explanation:

The answer is the first one.

[tex]16^{\frac{1}{4}}[/tex]  simplifies down to

[tex](2^4)^{\frac{1}{4}}[/tex]  The power to power rule is that you multiply the exponents together:

[tex]2^{\frac{4}{4}}[/tex]  which is [tex]2^1[/tex]  which is 2

I'm assuming that you are also working with radicals (since radicals and exponents are inverses of each other).  The way to write this is as a radical and simplify it is:

[tex]16^{\frac{1}{4}[/tex]  as a radical is

[tex]\sqrt[4]{16^1}[/tex]

To simplify, try to write the radicand (the number under the square root) so it's a number with a power that matches the index (the number in the "arm" of the radical sign.  Our index is a 4).  

16 is the same as 2⁴:

[tex]\sqrt[4]{2^4}[/tex]

The power on the 2 is a 4, which is the same as the index.  When the power matches the index, you pull out the base as a single number:

[tex]\sqrt[4]{2^4}=2[/tex]

The average number of field mice per acre in a 5​-acre wheat field is estimated to be 14. ​(a) Find the probability that fewer than 12 field mice are found on a given acre. ​(b) Find the probability that fewer than 12 field mice are found on 2 of the next 3 acres inspected.

Answers

Answer:

(a) [tex]P(X < 12)=0.26[/tex]

(b) [tex]P(X=2)=0.15[/tex]

Step-by-step explanation:

Question a

This is a Poisson distribution. The average/mean, μ = 14

So, probability that fewer than 12 field mice are found on a given acre is:

[tex]P(X < 12) = e^{-14}(\frac{14^{0}}{0!} +\frac{14^{1}}{1!} + \frac{14^{2}}{2!} + \frac{14^{3}}{3!} +\frac{14^{4}}{4!} + \frac{14^{5}}{5!} +\frac{14^{6}}{6!}+\frac{14^{7}}{7!}+\frac{14^{8}}{8!} +\frac{14^{9}}{9!}+\frac{14^{10}}{10!}+\frac{14^{11}}{11!})\\ \\P(X < 12) = e^{-14}(1+14+98+457.33+1600.67+4481.87+10457.69+20915.38+36601.91+56936.31+79710.83+101450.15)\\\\P(X < 12) = 8.315*10^{-7}(312725.1248)=0.26 \\\\P(X < 12)=0.26[/tex]

Question b

This is a Binomial distribution with:

Probability of success, p = 0.26

n = 3

[tex]P(X=2)= (3C2)p^{2}(1-p)=\frac{3!}{2!(3-2)!}*(0.26^{2})*(1-0.26)\\ \\P(X=2)=3(0.0676)(0.74)=0.15\\\\P(X=2)=0.15[/tex]

Final answer:

To find the probability that fewer than 12 field mice are found on a given acre and on 2 of the next 3 acres inspected, use the cumulative distribution function (CDF) of the Poisson distribution and the binomial distribution.

Explanation:

To find the probability that fewer than 12 field mice are found on a given acre, we need to use the cumulative distribution function (CDF) of the Poisson distribution. The average number of field mice per acre is 14, so the parameter of the Poisson distribution is also 14.

(a) To find the probability that fewer than 12 field mice are found on a given acre, we calculate P(X < 12) = P(X = 0) + P(X = 1) + P(X = 2) + ... + P(X = 11), where X is the number of field mice found on a given acre

(b) To find the probability that fewer than 12 field mice are found on 2 of the next 3 acres inspected, we calculate P(X < 12) for each acre and use the binomial distribution to determine the probability of 2 successes out of 3 trials.

Given the cost function, C(x), and the revenue function, R(x), find the number of units x that must be sold to break even.
C(x)= 9000x +72,000
R(x)= 15,000x

Answers

Answer:

12

Step-by-step explanation:

15000x = 9000x +72000

6000x = 72000

x = 12

Answer: the number of units that must be sold to break even is 12

Step-by-step explanation:

The cost function is expressed as

C(x)= 9000x +72000

The revenue function is expressed as

R(x) = 15000x

Profit = Revenue - cost

At the point of break even, the total revenue is equal to the total cost. This means that profit is zero. The expression becomes

Revenue - cost = 0

Revenue = cost

R(x) = C(x)

Therefore,

15000x = 9000x +72000

15000x - 9000x = 72000

6000x = 72000

x = 72000/6000

x = 12

What is the volume of a cylinder, in cubic m, with a height of 5m and a base diameter of 20m? Round to the nearest tenths place

Answers

What is the volume of a cylinder, in cubic m, with a height of 5m and a base diameter of 20m? Round to the nearest tenths place.

Answer: 1570.8

The volume of a cylinder with a height of 5m and a base diameter of 20m is approximately 1,570.8 cubic meters when rounded to the nearest tenths place.

To find the volume of a cylinder with a height of 5m and a base diameter of 20m, we will use the formula for the volume of a cylinder: V = πr²h , where V is volume, r is the radius of the base, and h is the height of the cylinder. The radius is half of the diameter, so for a diameter of 20m, the radius is 10m. Substituting these values into the formula gives us V = (π × 10² × 5), which we can calculate as V = 3.1416 × 100 × 5 = 1,570.8 cubic meters, rounded to the nearest tenths place.

Someone please help me... I need it with step by step explanation!

Answers

Assuming it is .005y^2 + 10y not .005*y*2 + 10y

Profit = Revenue - Cost

Profit = (.005y^2 + 10y) - (20y + 1,000,000)

Profit at 30,000 cars so y = 30000

Profit = (.005(30000)^2 + 10(30000)) - (20(30000) + 1,000,000)

Profit = $3,200,000

dont skip just help plz

Answers

(1,-3) is your answer

Answer:

(1,-3)

Step-by-step explanation:

the x-axis for A is positive and the y-axis is negative. point A's X value is 1 because it is 1 point away from the origin and the value of the Y is 3 units away from the origin and it has to be negative.

Which expression is a sum of cubes?


A) -27a^ b^6 + 8a^9 b^12

B) -9a^3 b^6 + a^9 b^10

C) 9a^3 b^6 + 8a^9 b^12

D) 27a^3 b^6 + 8a^9 b^12

Answers

[tex]A) -27a^3 b^6 + 8a^9 b^{12}\\D) 27a^3 b^6 + 8a^9 b^{12}[/tex]

Step-by-step explanation:

Here, the given expressions are:

[tex]A) -27a^3 b^6 + 8a^9 b^{12}\\= (-3)^3(a^3)(b^2)^3 + (2)^3(a^3)3(b^4)^3\\= (-3ab^2)^3 +(2a^3b^4)^3[/tex]

So, the above expression is "sum of cubes".

[tex]B) -9a^3 b^6 + a^9 b^{10}\\[/tex]

But (-9) can not be expressed as a Perfect cube root.

So, the above expression is not "sum of cubes".

[tex]C) 9a^3 b^6 + 8a^9 b^{12}\\[/tex]

But (9) can not be expressed as a Perfect cube root.

So, the above expression is not "sum of cubes".

[tex]D) 27a^3 b^6 + 8a^9 b^{12}\\\\= (3)^3a^3(b^2)^3 + (2)^3(a^3)^3(b^4)^3\\= (3ab^2)^3+ (2a^3b^4)^3[/tex]

So, the above expression is  "sum of cubes".

Power (denoted by PPP) can be defined as a function of work (denoted by WWW) and time (denoted by ttt) using this formula: P=\dfrac{W}{t}P= t W ​ P, equals, start fraction, W, divided by, t, end fraction Work is measured in \dfrac{\text{kg}\cdot\text{m}^2}{\text{s}^2} s 2 kg⋅m 2 ​ start fraction, start text, k, g, end text, dot, start text, m, end text, squared, divided by, start text, s, end text, squared, end fraction, and time is measured in \text{s}sstart text, s, end text.

Answers

Answer: kg*m^2 / s^3

Answer:

Answer: kg*m^2 / s^3

Step-by-step explanation:

Tierra rode in a bike-a-thon. Her sponsors donated $7 for every 5 miles she biked. At the end of the bike-a-thon, Tierra had raised $147. How many miles did she ride?

Answers

Answer:

105 miles

Step-by-step explanation:

The question seeks to know the number of miles traveled by Tiera given that she received a certain amount of money in payment.

The total amount of money she received is $147. She receives $7 for every 5 miles traveled. The number of 5 miles traveled is calculated as 147/7 = 21

This means she traveled 5 miles 21 times.

Thus, the total number of miles she had traveled would be 21 * 5 = 105 miles in total

please help!
"solving proportions" is what needs done
please show all work clearly!​

Answers

23) x = [tex]\frac{-60}{9}[/tex] = -6.666.

24) x = [tex]\frac{-12}{7}[/tex] = -1.7142.

25) x = [tex]\frac{-37}{5}[/tex] = -7.4.

Step-by-step explanation:

Step 1; For [tex]\frac{x+6}{3}[/tex] = [tex]\frac{x+4}{12}[/tex], we cross multiply the denominators and get,

3 × (x + 4) = 12 × (x + 6),

3x + 12 = 12x + 72.

We take all the x terms to the LHS and keep the constants on the RHS.

3x - 12x = 72 - 12,

-9x = 60, x = [tex]\frac{-60}{9}[/tex] = -6.6666.

Step 2; For [tex]\frac{-5}{x-4}[/tex] = [tex]\frac{9}{x+12}[/tex], we cross multiply the denominators and get,

-5 × (x + 12) = 9 × (x - 4),

-5x - 60 = 9x - 36.

We take all the x terms to the LHS and keep the constants on the RHS.

-5x - 9x = -36 + 60,

-14x = 24, x = [tex]\frac{-24}{14}[/tex] = -1.7142.

Step 3; For [tex]\frac{6}{11}[/tex] = [tex]\frac{x-1}{x-8}[/tex], we cross multiply the denominators and get,

6 × (x - 8) = 11 × (x - 1),

6x - 48 = 11x - 11.

We take all the x terms to the LHS and keep the constants on the RHS.

6x - 11x = -11 + 48,

-5x = 37, x = [tex]\frac{-37}{5}[/tex] = -7.4.

PLEASE HELP!!!!
ERGF is inscribed in a circle.
Find the measure of angle E.

Answers

In a cyclic quadrilateral ( a quadrilateral that is inscribed in a circle),

opposite angles add up to 180 degrees. So you can form an equation and solve for x, and thus angle E.

Therefore:

(-2 + 6x) + (7x - 13) = 180

13x - 15 = 180

13x = 195

x = 15

So angle E = 5x

                 = 5 (15)

                 = 75 degrees

Universal pet house sells vinyl doghouses and treated lumber doghouses. It takes the company 5 hours to build a vinyl doghouse and 2 hours to build a treated lumber doghouse

Answers

Answer:

Step-by-step explanation:

What is the question

My Notes Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution. Do not attempt to find the solution. (Enter your answer using interval notation.)t(t−4)y"+3ty'+4y=2,y(3)=0,y'(3)=−1

Answers

Answer:

The answer to the question is

The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is  (-∞, 4)

Step-by-step explanation:

To apply look for the interval, we divide the ordinary differential equation by (t-4) to

y'' + [tex]\frac{3t}{t-4}[/tex] y' + [tex]\frac{4}{t-4}[/tex]y = [tex]\frac{2}{t-4}[/tex]

Using theorem 3.2.1 we have p(t) =  [tex]\frac{3t}{t-4}[/tex], q(t) =  [tex]\frac{4}{t-4}[/tex], g(t) = [tex]\frac{2}{t-4}[/tex]

Which are undefined at 4. Therefore the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution, that is where p, q and g are continuous and defined is (-∞, 4) whereby theorem 3.2.1 guarantees unique solution satisfying the initial value problem in this interval.

Final answer:

The existence and uniqueness theorems for ODEs determine that the longest interval where the initial value problem has a unique and twice-differentiable solution is (0, 4), avoiding discontinuities at t=0 and t=4.

Explanation:

The initial value problem provided is a second-order linear ordinary differential equation (ODE) of the form:

t(t-4)y"+3ty'+4y=2, with initial conditions y(3)=0 and y'(3)=-1.

To determine the longest interval in which the solution is guaranteed to be unique and twice-differentiable, we need to consider the existence and uniqueness theorems for ODE's, which are predicated on the functions of the equation being continuous over the interval considered. Here, the coefficients of y" and y' are t(t-4) and 3t respectively. The problematic points occur where the coefficient of y" is zero because it will make the equation not well-defined, which occurs at t=0 and t=4. Therefore, the longest interval around the initial condition t=3 that avoids these points is (0, 4). Within this interval, the coefficients are continuous, and hence, the conditions for the existence and uniqueness of the solution are satisfied.

Canaries provide more food to their babies when the babies beg more intensely. Researchers wondered if begging was the main factor determining how much food baby canaries receive, or if parents also take into account whether the babies are theirs or not. To investigate, researchers conducted an experiment allowing canary parents to raise two broods: one of their own and one fostered from a different pair of parents. If begging determines how much food babies receive, then differences in the " begging intensities" of the broods should be strongly associated with differences in the amount of food the broods receive. The researchers decided to use the relative growth rates ( the growth rate of the foster babies relative to that of the natural babies, with values greater than 1 indicating that the foster babies grew more rapidly than the natural babies) as a measure of the difference in the amount of food received. They recorded the difference in begging intensities ( the begging intensity of the foster babies minus that of the natural babies) and relative growth rates. Here are data from the experiment:Difference in begging intensity -14 -12.5 -12 -8 -8 - 6.5 -5.5 -3.5 -3 -2 -1.5Relative growth rate 0.85 1 1.33 0.85 0.9 1.15 1 1.3 1.33 1.03 0.95Difference in begging intensit -1.5 0 0 2 2 3 4.5 7 8 8.5 Relative growth rate 1.15 1.13 1 1.07 1.14 1 0.83 1.15 0.93 0.7 Make a scatterplot that shows how relative growth rate responds to the difference in begging intensity.The scatterplot suggests that the relationship between relative growth rate and difference in begging intensityLinear or Not Linear ?

Answers

Answer:

The required scatterplot is given in attached file.

Step-by-step explanation:

From the scatterplot we see that two study variables are not linearly related. There may be some non-linear relation between the two variables.

Final answer:

The question asks about the relationship between canary chick begging intensity and their relative growth rate. This can be determined by creating and interpreting a scatterplot of the provided data. The relationship would be considered linear if there's a consistent rate of change between begging intensity and growth rate, and non-linear if the rate of change varies.

Explanation:

The question is asking if the relationship between the relative growth rate of canary chicks and the difference in begging intensity is linear or not. By plotting the data on a scatterplot, we would visualize whether there is a consistent, straight-line relationship (linear) or not (non-linear) between these two variables.

Without the actual scatterplot, I cannot definitively say if the relationship is linear or not. However, linear relationships typically involve variables moving in the same direction at a constant rate, while non-linear relationships involve variables moving at different rates or directions. Therefore, if the increase in begging intensity is consistently associated with an increase in relative growth rate (and vice versa), the relationship could be considered linear. On the other hand, if increases or decreases in begging intensity inconsistently affect the relative growth rate, the relationship would likely be non-linear.

An important part of this research is the ability to interpret scatterplots and understand the concepts of linear and non-linear relationships in biological data. Interpreting such relationships is integral in the study of animal behavior and understanding how different factors, such as parental care and chick begging, affect survival and growth in bird species like canaries.

Learn more about Linear Relationships here:

https://brainly.com/question/31693063

#SPJ3

a bag contains 6 red jelly beans 4 green jelly beans 4 blue jelly beans

Answers

Answer:

12/91

Explanation:

The question is incomplete. The complete question is:

A bag contains 6 red jelly beans, 4 green jelly beans, and 4 blue jelly beans.

If we choose a jelly bean, then another jelly bean without putting the first one back in the bag, what is the probability that the first jelly bean will be green and the second will be red?

Solution

The probability that the first jelly bean will be green is the number of green jelly beans divided by the total number of jelly beans:

4/14

After chosing the first green jelly bean, there will be 13 jelly beans, from which 6 are red. Thus, the probability that the second jelly bean will be red is:

6/13

The probability of the joint events is the product of the two consecutive events:

(4/14) × (6/13) =12/91 ← answer

The probability that the first jelly bean will be green and the second will be red is 12/91.

We start by determining the total number of jelly beans in the bag, which is:

6 red + 4 green + 4 blue = 14 jelly beans.

Step 1: Probability of the first jelly bean being green

The probability of drawing a green jelly bean first is the number of green jelly beans divided by the total number of jelly beans:

P(Green first) = 4/14 = 2/7.

Step 2: Probability of the second jelly bean being red

Once the first green jelly bean is chosen, there are now 13 jelly beans left in the bag, with 6 being red:

P(Red second | Green first) = 6/13.

Step 3: Combined probability

The combined probability of both events happening (first green, then red) is given by multiplying their individual probabilities:

P(Green first and Red second) = (2/7) * (6/13) = 12/91.

Thus, the combined probability is 12/91.

Complete question: A bag contains 6 red jelly beans, 4 green jelly beans, and 4 blue jelly beans. If we choose a jelly bean, then another jelly bean without putting the first one back in the bag, what is the probability that the first jelly bean will be green and the second will be red?

The Houston Astros fan population is 1,450,000 and is decreasing at an annual rate of 0.99% per year .Write an exponential equation to represent this situation after x years.

Answers

Answer:

Step-by-step explanation:

We would apply the formula for

exponential decay which is expressed as

A = P(1 - r)^t

Where

A represents the population after t years.

t represents the number of years.

P represents the initial population.

r represents rate of growth.

From the information given,

P = 1,450,000

r = 0.99% = 0.99/100 = 0.0099

t = x years

Therefore, an exponential equation to represent this situation after x years is

A = 1450000(1 - 0.0099)^t

A = 1450000(0.9901)^t

A painting is drawn on a cardboard 22cm long and 12cm wide such that there is a margin of 2.5 meter cm along each side. Find the total are of the margin

Answers

Answer:

[tex]\text{Area of margin}=145\text{ cm}^2[/tex]

Step-by-step explanation:

We have been given that a painting is drawn on a cardboard 22 cm long and 12 cm wide such that there is a margin of 2.5 meter cm along each side. We are asked to find the area of the margin.

The total area of the margin would be equal to area of whole cardboard minus area of painting.

[tex]\text{Area of whole cardboard}=22\text{ cm}\times 12\text{ cm}[/tex]

[tex]\text{Area of whole cardboard}=264\text{ cm}^2[/tex]

Since there is a margin of 2.5 meter cm along each side, so sides of painting would be 2,5 cm smaller on four sides. The sides painting would be [tex]22-5=17[/tex] and [tex]12-5=7[/tex].

[tex]\text{Area of painting}=17\text{ cm}\times 7\text{ cm}[/tex]

[tex]\text{Area of painting}=119\text{ cm}^2[/tex]

[tex]\text{Area of margin}=264\text{ cm}^2-119\text{ cm}^2[/tex]

[tex]\text{Area of margin}=145\text{ cm}^2[/tex]

Therefore, the total area of the margin is 145 squared cm.

A ladder 5 feet long leans against a wall and makes an angle of 65% with the ground. a. Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

Answers

Answer: 2.1 feet

Step-by-step explanation:

The ladder forms a right angle triangle with the wall and the ground. The length of the ladder represents the hypotenuse of the right angle triangle. The height from the top of the ladder to the base of the wall represents the opposite side of the right angle triangle.

The distance, d from the bottom of the ladder to the base of the wall represents the adjacent side of the right angle triangle.

To determine the distance, d from the bottom of the ladder to the base of the wall, we would apply we would apply the cosine trigonometric ratio.

Cos θ = adjacent side/hypotenuse. Therefore,

Cos 65 = d/5

d = 5Cos 65 = 5 × 0.4226

d = 2.1 feet

Find all solutions to the equation in the interval [0, 2π). (3 points) sin 2x - sin 4x = 0

pi divided by six , pi divided by two , five pi divided by six , seven pi divided by six , three pi divided by two , eleven pi divided by six

0, pi divided by six , pi divided by two , five pi divided by six , π, seven pi divided by six , three pi divided by two , eleven pi divided by six

0, two pi divided by three , four pi divided by three

0, pi divided by three. , two pi divided by three. , π, four pi divided by three. , five pi divided by three.

Answers

To solve the equation sin 2x - sin 4x = 0, we apply the identity for the difference of two sines and set each term equal to zero. The solutions in the interval [0, 2π) are x = 0, π/6, 5π/6, π.

The equation given is sin 2x - sin 4x = 0. To find the solutions to this equation in the interval [0, 2π), we can use the trigonometric identity for the difference of two sines, sin A - sin B = 2 sin((A - B)/2) cos((A + B)/2). Applying this identity:

2 sin(-2x/2) cos(6x/2) = 0
2 sin(-x) cos(3x) = 0

Since sin(-x) = -sin(x), we can rewrite the equation further:

-2 sin(x) cos(3x) = 0

To find the solutions, set each part equal to zero:

sin(x) = 0

cos(3x) = 0

For sin(x) = 0, the solutions in [0, 2π) are x = 0, π, 2π. However, since the interval is [0, 2π), 2π is not included.

For cos(3x) = 0, the solutions are x = π/6, 5π/6 since cos(x) has a period of 2π and 3x adds additional repetitions of the solutions in the interval.

The complete set of solutions in the interval [0, 2π) are therefore:

0

π/6

5π/6

π

A common computer programming rule is that names of variables must be between one and eight characters long. The first character can be any of the 26​ letters, while successive characters can be any of the 26 letters or any of the 10 digits. For​ example, allowable variable names include​ A, BB, and M3477K. How many different variable names are​ possible? (Ignore the difference between uppercase and lowercase​ letters.)

Answers

Answer:

Total number of possibilities 2,095,681,645,538.

Step-by-step explanation:

The variables can be 1 to 8 characters long.

The first space can be filled by any of the 26 letters.

The remaining n places can be filled by any of the 26 letters or any of the 10 digits.

For a single character variable the number of ways to select a variable name is,

n (1 character) = 26

For two character variable the number of ways to select a variable name is,

n (2 character) = 26 × 36 = 936

For three character variable the number of ways to select a variable name is,

n (3 character) = 26 × 36 × 36 = 26 × 36² = 33,696

For four character variable the number of ways to select a variable name is,

n (4 character) = 26 × 36 × 36 × 36 = 26 × 36³ = 1,213,056

And so on.

Similarly for the eight character variable the number of ways to select a variable name is,

n (8 character) = 26 × 36 × 36... × 36 = 26 × 36⁷ = 2,037,468,266,496

Total number of possibilities 2,095,681,645,538.

Suppose that an ordinary deck of 52 cards (which contains 4 aces) is randomly divided into 4 hands of 13 cards each. We are interested in determining p, the probability that each hand has an ace. Let
Ei
be the event that the ith hand has exactly one ace. Determine
p=P(E1E2E3E4)
by using the multiplication rule.

Answers

Answer:

P ( E_1*E_2*E_3*E_4 ) = 0.1055

Step-by-step explanation:

Given:

- 52 cards are dealt in 1 , 2 , 3 , 4 hands.

- Events:

             E_1       Hand 1 has exactly 1 ace

             E_2       Hand 2 has exactly 1 ace

             E_3       Hand 3 has exactly 1 ace

             E_4       Hand 4 has exactly 1 ace

Find:

p =P ( E_1*E_2*E_3*E_4 )

Solution:

Multiplication rule.

- For n ε N and events E_1 , E_2 , ... , E_n:

P ( E_1*E_2*......*E_n ) = P (E_1)*P(E_2|E_1)*P(E_3|E_2*E_1)*......*(E_n|E_1*E_2...E_n-1 )

- So for these events calculate 4 probabilities:-

-  For E_1, is to choose an ace multiplied by the number of ways to choose remaining 12 cards out of 48 non-aces:

                               P ( E_1 ) = 4C1 * 48C12 / 52C13

- For E_2 | E_1 , one ace and 12 other cards have already been chosen. there are 39C13 equally likely hands. The number of different one ace hand 2 is the number of ways to choose an ace from 3 remaining multiplied by the number of ways to choose the remaining 12 from 36, we have:

                               P ( E_2 | E_1  ) = 3C1 * 36C12 / 39C13

                               P ( E_3| E_2*E_1  ) = 2C1 * 24C12 / 26C13

                               P ( E_4 | E_3*E_2*E_1  ) = 1C1*12C12 / 13C13 = 1

- So the multiplication rule for n = 4 is as follows:

     P ( E_1*E_2*E_3*E_4 ) = P (E_1)*P(E_2|E_1)*P(E_3|E_2*E_1)*P ( E_4 | E_3*E_2*E_1  ) = [ 4C1 * 48C12 / 52C13 ] * [ 3C1 * 36C12 / 39C13 ] * [ 2C1 * 24C12 / 26C13 ]

     P ( E_1*E_2*E_3*E_4 ) = [ 4!*48! / (12!)^4 ] / [ 52! / (13!)^4 ]

     P ( E_1*E_2*E_3*E_4 ) = [ 4!*13^4 / (52*51*50*49) ]

    P ( E_1*E_2*E_3*E_4 ) = 0.1055

The probability that each hand in a deck of 52 cards gets exactly one ace is approximately 10.5%.

To determine the probability that each hand in a randomly divided deck of 52 cards has exactly one ace, we use the concept of conditional probability.
Let's find it step by step

Step 1 : consider the event E1 that the first hand has exactly one ace:

There are 4 aces and 52 total cards. The probabilities for drawing an ace for the first hand are affected by the decreasing number of both aces and cards.

The probability of the first hand receiving one ace is calculated as:

P(E1) = (4/52) * (48/51) * (47/50) * ... * (36/39)

Step 2 : consider the event E2 that the second hand receives exactly one ace, given that the first hand already has one:

With one ace already given to the first hand, there are 3 aces remaining and 39 cards left for the second hand.

The probability is calculated as:

P(E2|E1) = (3/39) * (35/38) * ... * (25/26)

Step 3 : Proceed similarly for the third and fourth hands:

P(E3|E1E2) = (2/26) * ... * (12/13)

P(E4|E1E2E3) = 1 (since only one ace remains for the last hand)

Step 4 : Using the multiplication rule, the overall probability P(E1E2E3E4) is calculated by multiplying the individual probabilities:

P(E1E2E3E4) = P(E1) * P(E2|E1) * P(E3|E1E2) * P(E4|E1E2E3)

Step 5 : After performing the calculations, we find:

The combined probability P(E1E2E3E4) = (4/52)*(3/39)*(2/26)(1/13) after simplifying is approximately 0.105 or 10.5%.

There are 5 blue chips, 4 red chips and 3 yellow chips in a bag. One chip is drawn from the bag. That chip is placed back into the bag, and a second chip is drawn. What is the probability that the two selected chips are of different colors? Express your answer as a common fraction.

Answers

The probability of drawing two chips of different colors from the bag is 35/33.

The probability of drawing the chips:

Calculate the total number of ways to draw 2 chips: 12 chips total, so 12C2 = 66 ways.

Calculate the number of ways to draw 2 chips of different colors: (5 blue chips × 7 non-blue chips) + (7 non-blue chips × 5 blue chips) = 70 ways.

Probability = Number of favorable outcomes / Total outcomes = 70/66 = 35/33.

the probability that the two selected chips are of different colors is [tex]\( \frac{94}{144} \), which simplifies to \( \frac{47}{72} \).[/tex]

To find the probability that the two selected chips are of different colors, we can use the concept of complementary probability.

The complementary event of selecting two chips of different colors is selecting two chips of the same color.

Let's calculate the probability of selecting two chips of the same color and then subtract that from 1 to find the probability of selecting two chips of different colors.

1. Probability of selecting two blue chips:

[tex]\[ P(\text{blue, blue}) = \frac{5}{12} \times \frac{5}{12} = \frac{25}{144} \][/tex]

2. Probability of selecting two red chips:

[tex]\[ P(\text{red, red}) = \frac{4}{12} \times \frac{4}{12} = \frac{16}{144} \][/tex]

3. Probability of selecting two yellow chips:

[tex]\[ P(\text{yellow, yellow}) = \frac{3}{12} \times \frac{3}{12} = \frac{9}{144} \][/tex]

Now, let's add these probabilities together because any of these scenarios results in two chips of the same color:

[tex]\[ P(\text{same color}) = P(\text{blue, blue}) + P(\text{red, red}) + P(\text{yellow, yellow}) \]\[ P(\text{same color}) = \frac{25}{144} + \frac{16}{144} + \frac{9}{144} = \frac{50}{144} \][/tex]

Finally, we subtract this probability from 1 to find the probability of selecting two chips of different colors:

[tex]\[ P(\text{different colors}) = 1 - P(\text{same color}) \]\[ P(\text{different colors}) = 1 - \frac{50}{144} = \frac{144}{144} - \frac{50}{144} = \frac{94}{144} \][/tex]

So, the probability that the two selected chips are of different colors is [tex]\( \frac{94}{144} \), which simplifies to \( \frac{47}{72} \).[/tex]

Brainliest & 15 pts to whoever helps pls!!

You are comparing the heights of contemporary males and eighteenth-century males. The sample mean for a sample of 30 contemporary males is 70.1 inches with a sample standard deviation of 2.52 inches. The sample mean for eighteenth century males was 65.2 inches with a sample standard deviation of 3.51 inches. Is there sufficient data to conclude that contemporary males are taller than eighteenth-century males?
a. The P-value is less than 0.00001. There is insufficient data to reject the null hypothesis.
b. The P-value is greater than 0.00001. There is sufficient data to reject the null hypothesis.
c. The P-value is greater than 0.00001. There is insufficient data to reject the null hypothesis.
d. The P-value is less than 0.00001. There is sufficient data to reject the null hypothesis.

Answers

Answer:

D

Step-by-step explanation:

Other Questions
| Solve-15 =5m/7 find m Provide an example of how two populations could become isolated and explain how that isolation could lead to the evolution of a new species. how long did the spanish rule the incas This statistical category is the sum of employed and unemployed persons who are 16 years or older, not full time students, and are actively seeking employment. "Women in two developed countries have similar total fertility rates of 3.5. However, women in country A typically have their children about 2 years earlier than women in country B. How will the populations of the two countries compare The purpose of many business messages is to make a request or to reply to previously received communication. Familiarize yourself with the organization of these messages so you can communicate your purpose and achieve a positive outcome. Read the scenario. Your manager asks you for advice about a request e-mail she is composing to a customer. What advice would you give?A. Give an approximate date for the deadline in the body.B. Place the deadline in the opening.C. Set an end date to take action in the closing. Read the following request message.To: Customer Support From: Helen Martin Subject: Warranty Information for Netbook ComputerRevision A: 1. Where do I find my warranty information?2. How long does the average netbook repair take?3. Do I need to mail in my netbook for repairs or bring it to your local repair shop?Revision B: 1. Where is my warranty information? B. How long does the average repair take? C. Do I have to mail in my netbook?Revision C: Where do I find the information?How long does it take?Can I take it to my local shop?Which of the preceding revisions is the best revision for the body of this message?A. Revision BB. Revision CC. Revision AComplete the following sentence with the drop-down menu.Direct response messages might _______.a. include long, flowery descriptions.b. use the "me" view.c. supply explanations and additional information.Read the scenario: You manage the social media presence of a company that manufactures travel apparel and gear. A customer posts an angry comment about a suitcase that failed to function properly after its first use. This is not the first complaint the product has received. How should you respond to the customer?A. Acknowledge the problem, and let the customer know that the company is working to rectify the situation.B. Document and delete the comment. You dont want news of the flawed product to spread.C. Let the comment stand. No response is necessary. Transworld Import Company and USA Export, Inc., form a business organization to engage in importing and exporting. Its property is held in the names of the members and its shareholders have personal liability. This organization is ______.A) a business trustB) a joint stock company.C) a joint venture.D) a syndicate. An anthropologist knows nothing about a group of people before he goes to live among them. true or false????? In Society in America, __________ examined religion, politics, child rearing, slavery, and immigration to the United States, paying special attention to social distinctions based on class, race, and gender. Charlie used a regression calculator to generate theequation f(x) = -0.15x + 20.1 for the ordered pairs (2,15), (4, 21), (6, 26), (8, 20), and (10, 14).Is a linear representation the best way to represent thedata? If it is, explain why. If not, explain why and suggesta better alternative. What values of a and b make the equation true? StartRoot 648 EndRoot = StartRoot 2 Superscript a Baseline times 3 Superscript b Baseline EndRoot a = 3, b = 2 a = 2, b = 3 a = 3, b = 4 a = 4, b = 3 If a person does not consume sufficient carbohydrates in food, the body will make glucose from _______ for a fuel source. This results in an undesirable breakdown of body tissue. Solve each problem.(8 +5i) + (6 - 7i) One hundred teachers attended a seminar on mathematical problem solving. The attitudes of representative sample of 12 of the teachers were measured before and after the seminar. A positive number for change in attitude indicates that a teacher's attitude toward math became more positive. The twelve change scores are as follows...... 4; 7; -1; 1; 0; 5; -2; 2; -1; 6; 5; -3What is the mean change score? (Round your answer to two decimal places.)What is the standard deviation for this population? (Round your answer to two decimal places.)What is the median change score? (Round your answer to one decimal place.)Find the change score that is 2.2 standard deviations below the mean. (Round your answer to one decimal place.) ZipCar has learned that Urban Boomers, baby boomers that have spent most of their time living in the suburbs but then later move into the city, drive less frequently, making them more ______ to ZipCars offerings than their counterparts in the suburbs. Look at the image, read the question and sentences, and choose the correct option. A two window room with a chair, a door, and a side table Qu hay? Hay dos ventanas. Hay es tres ventanas. Hay dos tapetes. Hay es tres tapetes. Instead of the traditional route of upward mobility as a way to achieve assimilation, immigrants increasingly appear to follow a variety of different pathways. Sociologists call this __________. Ottoman leader Suleyman and Safavid leader Abbas were different for the following reason:A - Suleyman laid the foundation for his empire to crumble, while Abbas' actions helped to consolidate power.B - Abbas gained new territories that his empire had never previously controlled, while Suleyman lost lands.C - Suleyman gained new territories that his empire had never previously controlled, while Abbas lost lands.D - Abbas laid the foundation for his empire to crumble, while Suleyman's actions helped to consolidate power. a baseball player lost 20% of the games he pitched. If he pitched 40 ball games how many games dis he win? Answe idk General Inertia Corporation made a distribution of $50,000 to Henry Tiara in partial liquidation of the company on December 31, 20X3. Henry owns 500 shares (50%) of General Inertia. The distribution was in exchange for 250 shares of Henry's stock in the company. After the partial liquidation, Henry continued to own 50% of the remaining stock in General Inertia. At the time of the distribution, the shares had a fair market value of $200 per share. Henry's income tax basis in the shares was $100 per share. General Inertia had total E&P of $800,000 at the time of the distribution. What are the tax consequences to Henry because of the transaction? A. Henry has dividend income of $50,000 and a tax basis in his remaining shares of $100 per share. B. Henry has capital gain of $25,000 and a tax basis in his remaining shares of $100 per share. C. Henry has dividend income of $50,000 and a tax basis in his remaining shares of $200 per share. D. Henry has capital gain of $25,000 and a tax basis in his remaining shares of $200 per share.