Answer:
x ≥ - 8
Step-by-step explanation:
Given
[tex]\frac{x}{2}[/tex] ≥ - 4
Multiply both sides by 2 to eliminate the fraction
x ≥ - 8
Answer:
Step-by-step explanation:
x ≥ - 8
A teacher reviews 4-1/2 papers per hour, how many papers will that teacher review in 6-1/3 hours
Answer:
[tex]28\frac{1}{2}\ papers[/tex]
Step-by-step explanation:
step 1
Convert mixed numbers to an improper fractions
[tex]4\frac{1}{2}=\frac{4*2+1}{2}=\frac{9}{2}[/tex]
[tex]6\frac{1}{3}=\frac{6*3+1}{3}=\frac{19}{3}[/tex]
step 2
we know that
A teacher reviews 9/2 papers per hour
using proportion
Find how many papers will the teacher review in 19/3 hours
Let
x-----> the number of papers
[tex](9/2)/1=x/(19/3)[/tex]
[tex]x=(19/3)(9/2)[/tex]
[tex]x=28.5\ papers[/tex]
Convert to mixed numbers
[tex]28.5=28\frac{1}{2}\ papers[/tex]
A teacher that reviews 4.5 papers an hour would be able to review approximately 28 papers in 6-1/3 hours, rounding down to the nearest whole paper.
Explanation:To solve this math problem, you'll need to multiply the amount of papers that the teacher can review in one hour by the total amount of hours they worked. The teacher reviews 4.5 papers per hour, and they will be working for 6.33 hours (which is the decimal equivalent of 6-1/3 hours). Let's do the math:
4.5 papers/hour * 6.33 hours = 28.485 papers
Therefore, the teacher would be able to review approximately 28 papers in 6-1/3 hours. Please note that the number of papers reviewed has been rounded down in this scenario to remain realistic - a paper can either be reviewed or not reviewed and we cannot count half-reviewed papers.
Learn more about Multiplication here:https://brainly.com/question/5992872
#SPJ11
If 8=x+y and y>0, then x is
Answer:
x<8
Step-by-step explanation:
We have one equation and one inequation:
8=x+y [1]
y>0 [2]
Solving [1] for 'y' we have:
8=x+y → y = 8-x
If y>0, then 'x' must be less than 0. Given that if 'x' is equal or greater than 8, 'y' will take negative values.
Then: x<8
3. Kim ran 3 one-mile races, 6 two-mile races, 4 five-mile races, and 1 ten-mile race. What is the mean number of miles Kim ran in the races? Show your work.
Answer:
3.2 miles
Step-by-step explanation:
The "mean" of a set of numbers is the average. To get this, you add up all of the numbers and then divide by however many there are. So, let's lay out the races that Kim ran.
1, 1, 1, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5, 10
These numbers add up to 45 total miles ran. You can add them up individually or make an equation.
x = (3 × 1) + (6 × 2) + (4 × 5) + (1 × 10)
x = 3 + 12 + 20 + 10
x = 15 + 30
x = 45
Now, divide by the total number of races, 3 + 6 + 4 + 1 = 14
So, the mean will be
45 ÷ 14 = 3.21 or about 3.2
Answer:
Straight to the point : 3.2
Explanation is above me my friends.
evaluate the expression xy for x = 6 and y=3
Substitute the numbers for xy
(6)(3)
= 18
Answer is 18
The expression xy for x = 6 and y = 3 is 18.
We have to evaluate, the expression xy for x = 6 and y = 3.
According to the question,
To find the expression xy calculation must be done in a single unit following all the steps given below.
The value of x = 6 and y = 3,
Then,
The multiplication of xy is,
[tex]= x\times y \\\\= 6 \times 3\\\\= 18[/tex]
Hence, The expression xy for x = 6 and y = 3 is 18.
To know more about the Expression click the link given below.
https://brainly.com/question/20797973
Three points are collinear
-always
-sometimes
-never
Answer:
Sometimes
Step-by-step explanation:
Note that the word "collinear" means lying on the same line.
The three points can be on the same line, but not always. For example, the three points can form a triangle, a square-u, etc.
~
Answer:
sometimes
Step-by-step explanation:
Three points are sometimes collinear
There are infinite points on a line, so they can be collinear.
But 3 points make a triangle, so they are not on a line, so they are not collinear.
What is the slope of a line that is parallel to y=3x+5
Answer: Slope = 3
Step-by-step explanation:
On a 2D-Plane, any two lines with the same slope and a different y-intercept will be parallel
Knowing this, any line with the same slope as our given line and a different y-intercept will be parallel to it
Therefore, any line with a slope of 3 and a y-intercept other than 5 will be parallel to y = 3x + 5
The answer you are looking for is a slope of 3.
Parallel lines have the same slope (M value in Y = MX + B), but different y-intercepts (B value in Y = MX + B) For example, y = 3x + 7 would be parallel to the line given above, since they slope is the same, but the y-intercept is different.
I hope this helps!
Cindy sold her camera for $300, thus making a profit
of $60. What was her percent of profit?
A) 10%
B) 15%
C) 20%
D) 25%
Answer:
c. 20%
Step-by-step explanation:
60 is 20% of 300
The answer to the question is 25%
The percent of profit can be calculated by using the formula:
Profit Percentage = (Profit / Cost Price) x 100%
Given that Cindy made a profit of $60 by selling her camera for $300, her profit percentage would be:
Profit Percentage = (60 / 240) x 100% = 25%
Solve the given system of equations. 2y= -x+9 , 3x-6= -15
Answer:
x = -3, y = 6 → (-3, 6)Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}2y=-x+9\\3x-6=-15&\text{add 6 to both sides}\end{array}\right\\\left\{\begin{array}{ccc}2y=-x+9\\3x=-9&\text{divide both sides by 3}\end{array}\right\\\left\{\begin{array}{ccc}2y=-x+9\\x=-3\end{array}\right\qquad\text{put the value of x to the first equation}\\\left\{\begin{array}{ccc}2y=-(-3)+9\\x=-3\end{array}\right\\\left\{\begin{array}{ccc}2y=3+9\\x=-3\end{array}\right\\\left\{\begin{array}{ccc}2y=12&\text{divide both sides by 2}\\x=-3\end{array}\right\\\left\{\begin{array}{ccc}y=6\\x=-3\end{array}\right[/tex]
ASAP On the coordinate plane below, quadrilaterals TRAP and HELP are similar to each other.
Determine the ratio of the perimeter of HELP to TRAP.
2:1
3:2
1:2
2:5
Answer:
1 : 2
Step-by-step explanation:
Since the quadrilaterals are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{HP}{TP}[/tex] = [tex]\frac{2}{4}[/tex] = [tex]\frac{1}{2}[/tex]
Thus the ratio of perimeters is also 1 : 2
Answer:
1:2.
Step-by-step explanation:
HP and TP are corresponding sides and their lengths are 2 and 4.
Thats a ratio of 1 :2.
The perimeter is also one dimensional so the ratio of the perimeters is also 1:2.
What is the value of y?
Answer:
A. 44°
Step-by-step explanation:
180° (straight line) - 88°
= 92
180° - 92°
= 88°
2y = 88°
y = 44°
Answer:
A 44
Step-by-step explanation:
The exterior angle is equal to the sum of the opposite interior angles
88 = y+y
88 =2y
Divide by 2
88/2 = 2y/2
44 = y
Factor completely, then place the factors in the proper location on the grid. 3y4 - 2y2 - 5
Answer:
[tex] (3y^2-5)(y^2+1) [/tex]
Step-by-step explanation:
Let's see if we can think of two numbers that multiply to be 3(-5)=-15
andd add up to be -2
How about -5 and 3? That work's! :)
[tex]3y^4-5y^2+3y^2-5[/tex]
Factor by grouping!
[tex]y^2(3y^2-5)+1(3y^2-5)\\(3y^2-5)(y^2+1)[/tex]
The polynomial 3y^4 - 2y^2 - 5 does not appear to be factorable with integer values. The reference to placing the factors in a particular location on a grid would likely relate to a tool or diagram provided by your instructional material.
Explanation:To factor the cubic polynomial 3y4 - 2y2 - 5, we first find the common factor which in this case is none. The next step is to try grouping, and if that's not possible, we can solve the polynomial using the quadratic formula or synthetic division. However, this polynomial does not seem to be factorable with integer values.
Unfortunately, without additional context, it's not clear what grid the problem refers to, or where the location you're supposed to place the factors is. It's likely this refers to some sort of tool or diagram provided by your teacher or textbook. In general, you would write down the factors in their proper locations in that tool or diagram, according to the rules or guidelines you were given.
Learn more about Factoring Polynomials:https://brainly.com/question/34290719
#SPJ2
Two cylinders. The smaller cylinder has height labeled as 6 cm. The larger cylinder has height labeled as 18 cm.
The cylinders are similar. The volume of the larger cylinder is 40,635 cubic centimeters. What is the volume of the smaller cylinder?
1505 cm3
2578 cm3
1145 cm3
2123 cm3
Answer: first option.
Step-by-step explanation:
You know that the height of the smaller cylinder is 6 cm and the height of the larger cylinder is 18 cm, then you can find the volume ratio. This is:
[tex]Volume\ ratio=(\frac{6cm}{18cm})^3\\\\Volume\ ratio=\frac{1}{27}[/tex]
Knowing that the volume of the larger cylinder is 40,635 cubic centimeters, you need to multiply it by the volume ratio to find the volume of the smaller cylinder.
Therefore:
[tex]V_{smaller}=\frac{1}{27}(40,635\ cm^3)\\\\V_{smaller}=1,505\ cm^3[/tex]
A test has multiple choice questions with 5 choices for each answer; only one answer is correct for each question.
Suppose a student guesses the answer to each question. Assuming the guesses are independent, find the probability
that the student will guess correctly when answering two questions.
o 1/5
1/10
01/25
Answer:
1/25
Step-by-step explanation:
The probability of guessing the first question correct is 1/5
The probability of guessing the second question correct is 1/5
Since they are independent
P(correct, correct) = P(1st correct) * P(2nd correct)
= 1/5 * 1/5
= 1/25
George and his dad are planning to attend the state fair. An adult tickets is $19.00. The price of an adult tickets is 1/3 the price of a student ticket plus $15.00. Write an equation to determine how much George will pay for a student ticket
Answer:
$12
Step-by-step explanation:
If x is the price that George pays for a student ticket, then:
19 = ⅓ x + 15
To solve for x, first subtract 15 from both sides:
19 - 15 = ⅓ x
4 = ⅓ x
Then multiply both sides by 3:
4 × 3 = x
12 = x
Answer:
1/3x + 15 = 19
Step-by-step explanation:
Well this is a simple equation where you write it out EXCACTLY like the question says, the 1/3 is the 1/3 the price of a student ticket and add the x to represent the unknown amount (student ticket), the 15 represents the plus $15.00 which equals 19
Hope this helps,
(btw dont >EVER TRUST< the -->"TRUSTED ANSWERS"<-- because all it means is that they are expirienced NOT that the answer is right)
Solve x2 + 6x = 7 by completing the square. Which is the solution set of the equation? {–7, 1} {1, 7}
Answer:
[tex]\large\boxed{\{-7,\ 1\}}[/tex]
Step-by-step explanation:
[tex]x^2+6x=7\\\\x^2+2(x)(3)=7\qquad\text{add}\ 3^2=9\ \text{to both sides}\\\\x^2+2(x)(3)+3^2=7+9\qquad\text{use}\ (a+b)^2=a^2+2ab+b^2\\\\(x+3)^2=16\Rightarrow x+3=\pm\sqrt{16}\\\\x+3=-4\ \vee\ x+3=4\qquad\text{subtract 3 from both sides}\\\\x=-7\ \vee\ x=1[/tex]
How will you write 5 x 5 x 5 x 5 x 5 as an exponential expression?
OA. 5x5
OB. 55
Oc. 545
OD. 5
Reset
Next
Answer:
Step-by-step explanation:
5 * 5 * 5 * 5 * 5 = 5^5
Written in Latex, which is the best way to show this, the answer is
[tex]5^{5}[/tex]
I think you might mean B. If you do then it is correct, but it must be shown as 5^5
Danny is older than Felicia. The difference between their ages is 21. The sum of their ages is 35. How old is Felicia?
Answer:
Felicia is 7 years old
Explanation:
The variable, d, can represent Danny's age.
The variable, f, can represent Felicia's age.
Basically, using the information provided, you can make two equations.
1.) d - f = 21
2.) d + f = 35
This is a system of equations. To solve for this, I'm going to subtract the 2 equations:
d - f = 21
- d + f = 35
-------------------------
-2f = -14
f = 7
If Felicia is 7, and they're total ages added is 35, subtract 7 form 35
35 - 7 = 28
So, Danny would be 28.
To double check your answers;
28 + 7 = 35
28 - 7 = 21
So Felicia is 7 years old. I hope this helps! :)
Simplify (x^4-9x+5x^7)+(5x-10+3x^4-2x^2)
Answer:
5x^7 + 4x^4 - 2x^2 - 4x - 10
Step-by-step explanation:
(x^4-9x+5x^7)+(5x-10+3x^4-2x^2) = 4x^4 - 9x + 5x^7 + 5x - 10 - 2x^2
= 4x^4 - 9x + 5x^7 + 5x - 10 - 2x^2
= 4x^4 - 4x + 5x^7 - 10 - 2x^2
= 5x^7 + 4x^4 - 2x^2 - 4x - 10
Use the compound interest formula A = P(1 + r) and the given information to solve for r.
A = $3,000,000, P = $20,000, t = 40
Step-by-step explanation:
A=P(1+R)
A/P=1+R
(A/P)-1=r
(3000000/20000)-1=r
149=r
[tex]\textbf{Answer:}[/tex]
[tex]r\approx 0.13345[/tex]
[tex]\textbf{Step-by-step explanation:}[/tex]
[tex]\text{Your formula is missing something: t}[/tex]
[tex]\text{It should read }A=P(1+r)^t[/tex] [tex]\text{Where A is the final amount, P is the principal, r is rate in decimal, and t is time in years}[/tex]
[tex]\text{Given that A=3000000, P=20000, and t=40, we can subsitute and solve}[/tex]
[tex]A=P(1+r)^t[/tex]
[tex]\text{subsitute}[/tex]
[tex]3000000=20000(1+r)^{40}[/tex][tex]\text{ now solve for r}[/tex]
[tex]\text{Divide both sides by 20000}[/tex]
[tex]150=(1+r)^{40}[/tex]
[tex]\text{Take the 40th root of both sides }(\sqrt[40]{})[/tex]
[tex]\sqrt[40]{150}=1+r[/tex]
[tex]\text{subtract 1 from both sides}[/tex]
[tex]\sqrt[40]{150}-1=r[/tex] [tex]\text{ or in approximate form, }[/tex][/tex]r\approx 0.13345[/tex]
Solve y = x^2 - 18 for x.
O A. x= ty - 18
O B. x= y +18
O c. x= y - 18
O D. x= + y + 18
Answer:
x = √y+18
Step-by-step explanation:
Given
[tex]y = x^2-18[/tex]
In order to solve the equation for x, we have to isolate x on one side of the equation
So,
[tex]y+18 = x^2 -18 + 18\\y + 18 = x^2[/tex]
We have to find the value for x, so taking square root on both sides
[tex]\sqrt{x^2} = \sqrt{y+18}[/tex]
Solving the squre root
x = [tex]x = \sqrt{y + 18}[/tex]
Hence,
x = √y+18 is the correct answer ..
How many distinct factors does 75 have?
Answer:
The distinct factors of 75 are 1, 3, 5, 15, 25, 75.
Step-by-step explanation:
Please mark brainliest and have a great day!
Answer:
6
Step-by-step explanation:
1,3,5,15,25,75
Expand and Simplify
(2x + 1)(x - 2)(x + 3)
Answer:
Answer is =2x^3+3x^2-11x-6
Step-by-step explanation:
First of all multiply first and second bracket.
=x(2x+1) -2(2x+1)
=2x^2+x-4x-2
=2x^2-3x-2
Now multiply 2x^2-3x-2 with (x+3)
=x(2x^2-3x-2) +3(2x^2-3x-2)
=2x^3-3x^2-2x+6x^2-9x-6
=2x^3+3x^2-11x-6
The expansion and simplification of the expression (2x + 1)(x - 2)(x + 3) is 2x^3 + 3x^2 - 11x - 6.
Explanation:To expand and simplify the expression (2x + 1)(x - 2)(x + 3), we use the distributive property (a(b + c) = ab + ac) to distribute each term of one binomial with each term of the others.
We start by expanding the first two brackets : (2x + 1)(x - 2). This gives 2x^2 - 4x + x - 2 or, 2x^2 - 3x - 2.
Now, we expand the above result with (x + 3): (2x^2 - 3x - 2)(x + 3) yielding 2x^3 - 3x^2 - 2x + 6x^2 - 9x - 6.
When we simplify that, we get : 2x^3 + 3x^2 - 11x - 6. So, the expansion and simplification is : (2x + 1)(x - 2)(x + 3) = 2x^3 + 3x^2 - 11x - 6.
Learn more about Simplify Expression here:https://brainly.com/question/29003427
#SPJ3
solve 7x-9=28+4(x-1)
Answer:
I know this is way late but its(11)
Step-by-step explanation:
Answer:
11
Step-by-step explanation:
Which expression is equivalent to ?
x5
algebra II engenuity
Answer:
Last Option
Step-by-step explanation:
Given expression is:
[tex]\sqrt[4]{\frac{24x^6y}{128x^4y^5}}[/tex]
Simplifying the radicand
[tex]=\sqrt[4]{\frac{8*3*x^6*y}{8*16*x^4*y^5}}\\=\sqrt[4]{\frac{3*x^6*y}{16*x^4*y^5}}\\=\sqrt[4]{\frac{3*x^6*y}{2^4*x^4*y^5}}\\=\sqrt[4]{\frac{3*x^{(6-4)}}{2^4*y^{(5-1)}}}\\=\sqrt[4]{\frac{3*x^{2}}{2^4*y^{4}}}\\Applying\ Radical\\= \frac{\sqrt[4]{3x^2}}{2y}[/tex]
Hence,
Last option is correct ..
What is the value of the product (3-2i)(3+2i)?
Answer:
13
Step-by-step explanation:
(3-2i)(3+2i) = 9 + 6i - 6i - 4i^2
9 - 4i^2
9 + 4 = 13
hugh bought some magazines that cost $3.95 each and some books that cost $8.95 each
3.95(3) + 8.95b = 47.65
11.85 + 8.95b = 47.65
Subtract 11.85 from both sides.
8.95b = 35.8
Divide 8.95 from both sides.
b = 4
Hugh bough 4 books.
Help please!
Find x
x=
7
7/2
/(14)
Answer:
x = 7
Step-by-step explanation:
recognize that this is a right triangle with one of the internal angles = 45°. This means that the other angle not shown is 180 - 90 - 45 = 45°
This makes the triangle an isosceles triangle.
If so, x must be the same length as the other side adjacent to 90°
i.e x = 7
Miguel is making smoothies out of yogurt and juice to serve to his friends, and he needs to make 12 cups. The ratio of yogurt to juice is 2 cups to 1 cup.
How much yogurt will he use?
A.
3 cups
B.
4 cups
C.
8 cups
D.
9 cups
Inez has a phone card. The graph shows the number of minutes that remain on her phone card after a certain number of days.
The slope of the line that represents the data is –50, and the y-intercept is 850. What do the slope and y-intercept represent in Inez’s situation?
The y-intercept indicates that the phone card started with 850 minutes. The slope indicates that 50 minutes were used per day.
The y-intercept indicates that the phone card started with 50 minutes. The slope indicates that 850 minutes were used per day.
The slope indicates that the phone card started with 850 minutes. The y-intercept indicates that 50 minutes were added per day.
The slope indicates that the phone card started with 50 minutes. The y-intercept indicates that 850 minutes were added per day.
Answer:
The y-intercept indicates that the phone card started with 850 minutes. The slope indicates that 50 minutes were used per day.
Step-by-step explanation:
The graph cuts the y-axis at 850.This indicates that the phone card started with 850 minutes before it was used.
The slope of the graph is -50.This means that in every increase of one in the input variable (number of days), you get a decrease of 50 in the output variable (number of minutes remaining). This indicates every day, 50 minutes were used, hence 50 minutes reduced from the card per day.
The answer is A. The y-intercept indicates that the phone card started with 850 minutes. The slope indicates that 50 minutes were used per day.
This is because she started with 850 and the graph shows a decrease, so this means that she loses 50 per day or that she uses 50 per day.
3. Which number is closest to zero on
the number line?
A -3/8
B 3/4
C 0.3
D 0.50
Final answer:
The number closest to zero on the number line from the given options is 0.3, making the correct answer C) 0.3.
Explanation:
The question asks which number is closest to zero on the number line from the given options: A) -3/8, B) 3/4, C) 0.3, D) 0.50. To find out which is closest to zero, compare the absolute values of these numbers (since we are interested in the distance from zero, not the direction).
Absolute value of A) -3/8 is 0.375
Absolute value of B) 3/4 is 0.75
Absolute value of C) 0.3 is 0.3
Absolute value of D) 0.50 is 0.5
Comparing these values, 0.3 is the smallest absolute value, which means it is the closest to zero. Therefore, the correct answer is C) 0.3.