Answer:
B
Step-by-step explanation:
Using the rule of radicals/ exponents
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
[tex]a^{\frac{m}{n} }[/tex] ⇔ [tex]\sqrt[n]{a^{m} }[/tex]
Given
[tex]\sqrt[3]{x^5 y}[/tex]
= [tex]\sqrt[3]{x^5}[/tex] × [tex]\sqrt[3]{y}[/tex]
= [tex]x^{\frac{5}{3} }[/tex] [tex]y^{\frac{1}{3} }[/tex] → B
15. Read the following statement.
Shari rode the bus to work.
What is the negation of this statement?
Shari did not go to work.
Shari may not have ridden the bus to work.
Shari did not ride the bus to work.
Shari rode her bike to work.
Shari did not ride the bus to work.
Answer:
Shari did not ride the bus to work.
Step-by-step explanation:
Shari rode the bus to work. What is the negation of this statement?
Negation of a statement means putting a 'not' in the sentence, to make it overall negative.
So, here, the negation of the above given sentence is -
Shari did not ride the bus to work.
The probability of event A is 0.56. and the probability of event B is 0.34. If A and B are independent events, then P(A and B) =
0.1904
0.289
0.8096
0.90
Answer:
First option : 0.1904
Step-by-step explanation:
Given
[tex]P(A) = 0.56\\P(B)= 0.34[/tex]
First of all, we will define independent events.
Two events are said to be independent if the occurrence of one event doesn't affect the probability of occurrence of second event.
If the events are independent then their individual probabilities are multiplied for the probability of both events.
That is:
P(A∩B) = P(A) * P(B)
= 0.56 * 0.34
=0.1904
So, the probability of A and B is 0.1904.
Hence, first option is the correct answer ..
Answer:
The answer is 0.1904
Step-by-step explanation:
The probability of event A is 0.56, and the probability of event B is 0.34. If A and B are independent events, then P(A and B) = 0.1904
.
What is the value of p ? Please help
Answer:
The correct answer is option A 43°
Step-by-step explanation:
From the figure we can see a triangle and two exterior angles are given.
To find the value of p
Here we consider two angles be <1 and < 2, where <1 is the linear pair of angle measures 90° and <2 be the linear pair of angle measures 133°
m<1 = 180 - 90 = 90° and
<2 = 180 - 133 = 47
By using angle sum property
m<1 + m<2 + p = 180
p = 180 - (m<1 + m<2)
= 180 - (47 + 90)
= 180 - 137
= 43°
Therefore the correct answer is option A 43°
If f(x) = 5x + 40, what is f\x) when x = -5?
-9
-8
7
15
Answer:
15
Step-by-step explanation:
f(x)=5x+40
f(x)=5(-5)+40
f(x)=-25+40
f(x)=15
You must replace x with -5 and solve using the rules of PEMDAS (Parentheses, Exponent, Multiplication, Division, Addition, Subtraction) REMEMBER: IF NOT APPLICABLE TO THE EQUATION YOU MAY SKIP THAT STEP IN PEMDAS .
5(-5) + 40
Multiplication...
5 * -5 = -25
-25 + 40
Addition...
When adding a positive number with a negative number you will act as if you are subtracting the two numbers, then take the sign of the largest number. In this case the largest number is 40 and its sign is positive. Your answer will have a posititve sign.
-25 + 40 ----> 40 - 25 = 15
-25 + 40 = 15
15
Hope this helped!
~Just a girl in love with Shawn Mendes
Can someone help me plz
Answer:
The answer is 4.
Step-by-step explanation:
8/3 ÷ 2/3 = 8/3 x 3/2 = 4
4
Step-by-step explanation:Change this to multiplication by flipping the second fraction to [tex]\frac{3}{2}[/tex].
Multiply the numerators. [tex]8*3=24[/tex]
Multiply the denominators. [tex]3*2=6[/tex]
Simplify. Divide 24 by 6. [tex]\frac{24}{6} = 4[/tex]
Which graph represents the solution set for the inequality x ≤ 18?
Answer:
Find the attached
Step-by-step explanation:
The inequality;
x ≤ 18
represents values of x that are at most 18. That is values that are less than or equal to 18. We can first graph the vertical line x = 18 and then shade the region to the left of this line. This shaded region will be our solution set for the inequality x ≤ 18.
Find the attached;
How do u write a function for the reflection across the y axis
The function for the reflection across the y-axis can be written as: f(x,y)=(−x,y)
To reflect a point across the y-axis, we multiply its x-coordinate by -1. This means that if a point has coordinates (x,y), its reflection across the y-axis will have coordinates (−x,y).
We can use this to define a function for the reflection across the y-axis. Let f(x,y) be the function that reflects a point across the y-axis. Then, for any point (x,y), we have:
f(x,y)=(−x,y)
In other words, f(x,y) takes a point (x,y) and returns its reflection across the y-axis.
We can also write this function in terms of components. Let x and y be the coordinates of a point. Then, the reflection of this point across the y-axis has coordinates (−x,y). Therefore, the function for the reflection across the y-axis can be written as:
f(x,y)=(−x,y)
This function takes the coordinates of a point as input and returns the coordinates of its reflection across the y-axis as output.
which expression is equivalent -4×4×4×4×4×4×4×4?
Answer:
[tex]-\underbrace{4\times4\times4\times4\times4\times4\times4\times4}_{8}=-4^8[/tex]
The guy below is correct!
Solve the system by the elimination method.
3x - 2y - 7 = 0
5x + y - 3 = 0
To eliminate y, the LCM is 2. Which of the following is the resulting equations?
1.3x - 2y - 7 = 0
5x + y - 3 = 0
2.3x - 2y - 7 = 0
-10x - 2y + 6 = 0
3.3x - 2y - 7 = 0
10x + 2y - 6 = 0
Answer:
[tex]\large\boxed{\left\{\begin{array}{ccc}3x-2y-7=0\\10x+2y-6=0\end{array}\right}[/tex]
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}3x-2y-7=0\\5x+y-3=0&\text{multiply both sides by 2}\end{array}\right\\\\\boxed{\underline{+\left\{\begin{array}{ccc}3x-2y-7=0\\10x+2y-6=0\end{array}\right}}\qquad\text{add both sides of the equations}\\.\qquad\qquad13x-13=0\qquad\text{add 13 to both sides}\\.\qquad\qquad 13x=13\qquad\text{divide both sides by 13}\\.\qquad\qquad x=1\\\\\text{put the value of x to the second equation:}\\\\5(1)+y-3=0\\(5-3)+y=0\\2+y=0\qquad\text{subtract 2 from both sides}\\y=-2\\\\\boxed{x=1,\ y=-2}[/tex]
What are the domain and range of the function f(x)=-3(x-5)2 +4?
Answer:
D=(-infinity, +infinity)
R=(-infinity, 4]
Step-by-step explanation:
I think that 2 is an exponent so you function is f(x)=-3(x-5)^2+4
So if this is the case this is a parabola open down when a vertex of (5,4).
Visualize or draw a rough picture of that because that is all you need to answer this question.
The domain for a parabola function is always all real numbers (do notice I said parabola function).
The range for this parabola is (-infinity, 4] since open down and the highest point has y value 4.
Answer:
D.
Step-by-step explanation:
Domain: (-infinity, +infinity)
Range: (-infinity, 4)
Sumone please help I need helpp
1) 2√4 * 3√8
2)2√4+3√8
Solve and show the steps
1.
[tex]
2\sqrt{4}\cdot3\sqrt{8} \\
2\cdot3\sqrt{4\cdot8} \\
6\sqrt{32} \\
6\sqrt{4^2\cdot2} \\
6\cdot4\sqrt{2} \\
\boxed{24\sqrt{4}} \\
[/tex]
2.
[tex]
2\sqrt{4}+3\sqrt{8} \\
\boxed{4+3\sqrt{8}}
[/tex]
Hope this helps.
r3t40
URGENT!! The passing yards for the top 5 quarterbacks in the country are 3,832, 3,779, 3,655, 3,642, and 3,579. Find the variance and standard deviation. Round to the nearest hundredth.
(EXPLAIN WORK)
Answer:
The variance is 8732.24 and the standard deviation is 93.45
Step-by-step explanation:
* Lets explain how to find variance and the standard deviation
# Step 1: find the mean of the data set
∵ The mean = the sum of the data ÷ the number of the data
∵ The data set is 3832 , 3779 , 3655 , 3642 , 3579
∵ Their sum = 3832 + 3779 + 3655 + 3642 + 3579 = 18487
∵ They are five numbers
∴ The mean = 18487 ÷ 5 = 3697.4
# Step 2: subtract the mean from each data and square the answer
∴ (3832 - 3697.4)² = 18117.16
∴ (3779 - 3697.4)² = 6658.56
∴ (3655 - 3697.4)² = 1797.76
∴ (3642 - 3697.4)² = 3069.16
∴ (3579 - 3697.4)² = 14018.56
# Step 3: calculate the Variance (σ²) , by adding the square difference,
and divide it by the number of the data
∵ Variance = sum of the square difference ÷ number of the data
∵ The sum = 18117.16 + 6658.56 + 1797.76 + 3069.16 + 14018.56
∴ The sum = 43661.2
∴ σ² = 43661.2 ÷ 5 = 8732.24
# Step 4: the standard deviation (σ) is the square root of variance
∴ The standard deviation = √(8732.24) = 93.446455 ≅ 93.45
* The variance is 8732.24 and the standard deviation is 93.45
Please help scale factor I’m bad at this
Answer:
[tex]\frac{1}{5}[/tex]
Step-by-step explanation:
Calculate the scale factor as the ratio of the corresponding sides of the image to the original.
corresponding sides are image 0.5 and original 2.5
scale factor = [tex]\frac{0.5}{2.5}[/tex] = [tex]\frac{1}{5}[/tex] = 0.2
What is the best estimate of -14 1/9 (-2 9/10)
i would say around 42 or so
Answer:
42
Step-by-step explanation:
-14 1/9 is close to -14
-2 9/10 is close to -3
-14 * -3 = 42
The best estimate is 42
10. What is the simplified form of V27 - V48?
[tex]\sqrt{27}-\sqrt{48}=\sqrt{9\cdot3}-\sqrt{16\cdot3}=3\sqrt3-4\sqrt3=-\sqrt3[/tex]
Which equation has no solution?
A. 2.3y + 2 + 3.1y = 4.3y + 1.6 + 1.1y + 0.4
B. 32x + 25 - 21x = 10x
C. 1/3 + 1/7y = 3/7y
D.
Answer:
D.Step-by-step explanation:
A.
2.3y + 2 + 3.1y = 4.3y + 1.6 + 1.1y + 0.4 combine like terms
(2.3y + 3.1y) + 2 = (4.3y + 1.1y) + (1.6 + 0.4)
5.4y + 2 = 5.4y + 2 subtract 5.4y from both sides
2 = 2 TRUE → infinitely many solutions
B.
32x + 25 - 21x = 10x combine like terms
(32x - 21x) + 25 = 10x
11x + 25 = 10x subtract 11x from both sides
25 = -x change the signs
-25 = x → x = -25 One solution
C.
1/3 + 1/7y = 3/7y subtract 1/7y from both sides
1/3 = 2/7y multiply both sides by 7
7/3 = 2y divide both sides by 2
7/6 = y → y = 7/6 One solution
D. ?
A bookstore owner is having a sale the book Bart wants was originally priced at $14.99 the book is now $10.04 by what percentage was the price reduced
Answer: The required percentage is 33.02%.
Step-by-step explanation: Given that a bookstore owner is having a sale. The book Bart wants was originally priced at $14.99 the book is now $10.04.
We are to find the percentage by which the price was reduced.
The price by which the price of the book reduced is given by
R.P. = $(14.99 - 10.04) = $4.95.
Therefore, the percentage by which the price of the book reduced is given by
[tex]P=\dfrac{4.95}{14.99}\times 100\%\\\\=33.02\%[/tex]
Thus, the required percentage is 33.02%.
The price of the book was reduced by approximately 33.02% from its original price of $14.99 to the sale price of $10.04.
The student asked by what percentage the price of a book was reduced from its original price of $14.99 to its sale price of $10.04.
To calculate the percentage decrease, we subtract the sale price from the original price and then divide by the original price. We then multiply the result by 100 to get the percentage.
Here's the step-by-step calculation:
Original price = $14.99Sale price = $10.04Price decrease = Original price - Sale price = $14.99 - $10.04 = $4.95Percentage decrease = (Price decrease ÷ Original price) × 100 = ($4.95 ÷ $14.99) × 100Percentage decrease = 0.3302 × 100Percentage decrease ≈ 33.02%Therefore, the price of the book was reduced by approximately 33.02%.
Find the value of x
A. 3 1/3
B. 3 2/3
C. 4 2/3
D. 4 4/5
Answer:
[tex]\large\boxed{A.\ 3\dfrac{1}{3}}[/tex]
Step-by-step explanation:
The segments are in proportion:
[tex]\dfrac{x}{5}=\dfrac{4}{6}[/tex] cross multiply
[tex]6x=(5)(4)[/tex]
[tex]6x=20[/tex] divide both sides by 6
[tex]x=\dfrac{20}{6}\\\\x=\dfrac{10}{3}\\\\x=3\dfrac{1}{3}[/tex]
What does the point (1,90) represent on the graph?
Answer:
It takes 1 hour to travel 90 miles.
The point (1,90) represents a specific location on the graph based on its coordinates.
Explanation:The point (1,90) represents a specific location on the graph. In this case, the x-coordinate is 1, which means it is 1 unit to the right from the origin on the horizontal axis. The y-coordinate is 90, which means it is 90 units above the origin on the vertical axis. So, the point (1,90) is plotted on the graph at the intersection of the x-coordinate 1 and the y-coordinate 90.
Learn more about Graphing here:https://brainly.com/question/26215563
#SPJ2
What is the least common denominator for these two rational expressions n^4/n^2+2n+1,7/n^2-8n-9
Answer:
Step-by-step explanation:
n²+2n+1 = (n+1)(n+1)
n²-8n-9 = (n+1)(n-9)
the least common denominator for these two rational expressions is :
(n+1)(n-9)
Derive the equation of the parabola with a focus at (-5,5) and a directix of y = -1
Answer:
D
Step-by-step explanation:
From any point (x, y) on the parabola the focus and directrix are equidistant
Using the distance formula
[tex]\sqrt{(x+5)^2+(y-5)^2}[/tex] = | y + 1 |
Squaring both sides
(x + 5)² + (y - 5)² = (y + 1)^2 , that is
(y + 1)² = (x + 5)² + (y - 5)² ← subtract (y - 5)² from both sides
(y + 1)² - (y - 5)² = (x + 5)² ← expand left side and simplify
y² + 2y + 1 - y² + 10y - 25 = (x + 5)²
12y - 24 = (x + 5)² ← factor left side
12(y - 2) = (x + 5)² ← divide both sides by 12
y - 2 = [tex]\frac{1}{12}[/tex] (x + 5)² ← add 2 to both sides
y = [tex]\frac{1}{12}[/tex] (x + 5)² + 2
or
f(x) = [tex]\frac{1}{12}[/tex] (x + 5)² + 2 → D
what is the slant asymptote y=x^2-x+1/x+1
Answer:
Step-by-step explanation:
let : f(x) = (x²-x+1)/x+1
limf(x) = lim(x²/x) = limx = - -∞ and limf(x) =+ ∞
x → - -∞ x → +∞
lim/f(x)/ = ∞ ....... x = 1 is the line asymptote
limf(x)/x = 1
x → + -∞
lim (f(x) -x ) = -1 .....so y =x -1 is the second line asymptote
x → + -∞
x → 1
Solve the following inequaltity. (x-8)^2(x+7)>0 What is the solution?
[tex](x-8)^2(x+7)>0 \\x\in(-7,8)[/tex]
How does the graph of g(x) = −(x + 3)^4 compare to the parent function of f(x) = x^4?
A. g(x) is shifted 3 units to the right and 1 unit up.
B. g(x) is shifted 3 units to the right and 1 unit down.
C. g(x) is shifted 3 units to the right and reflected over the x-axis.
D. g(x) is shifted 3 units to the left and reflected over the x-axis.
Answer:
c: g(x) is shifted 3 units to the right and reflected over the x-axis
Answer: Option D
g(x) is shifted 3 units to the left and reflected over the x-axis.
Step-by-step explanation:
If we have a function f(x) and make a transformation of the form:
[tex]g (x) = f (x + h)[/tex]
Then it is true that:
If [tex]h> 0[/tex] the graph of g(x) is equal to the graph of f(x) displaced h units to the left
If [tex]h<0[/tex] the graph of g(x) is equal to the graph of f(x) displaced h units to the right
Also if we have a function f(x) and perform a transformation of the form:
[tex]g (x) = -f (x)[/tex]
Then it is true that:
The graph of g(x) is equal to the graph of f(x) reflected on the x axis.
In this case [tex]f (x) = x ^ 4[/tex] and [tex]g (x) = -(x + 3) ^ 4[/tex]
So
[tex]g(x) = -f(x+3)[/tex]
Then [tex]h = 3> 0[/tex]. Therefore the graph of g(x) is equal to the graph of f(x) displaced 3 units to the left and reflected on the x axis
The answer is the option D
In the figure, two parallel lines are cut by two other parallel lines. The measure of one of the angles is labeled. Find the measures of the other angles and label them. Answers (137,52,128,38)
Answer:
The measure of the angles are
m∠1=128°
m∠2=52°
m∠3=52°
m∠4=128°
m∠5=128°
m∠6=128°
m∠7=52°
m∠8=52°
Step-by-step explanation:
see the attached figure with numbers to better understand the problem
step 1
Find the measure of angle 5
we know that
m∠5+52°=180° ----> by consecutive interior angles
m∠5=180°-52°=128°
step 2
Find the measure of angle 8
we know that
m∠8=52° ----> by vertical angles
step 3
Find the measure of angle 7
we know that
m∠7=m∠8 ----> by corresponding angles
we have
m∠8=52°
therefore
m∠7=52°
step 4
Find the measure of angle 6
we know that
m∠6+m∠7=180° ----> by supplementary angles
we have
m∠7=52°
therefore
m∠6+52°=180°
m∠6=180°-52°=128°
step 5
Find the measure of angle 3
we know that
m∠3+m∠6=180° ----> by consecutive interior angles
we have
m∠6=128°
m∠3=180°-128°=52°
step 6
Find the measure of angle 2
we know that
m∠2=m∠3 ----> by vertical angles
we have
m∠3=52°
therefore
m∠2=52°
step 7
Find the measure of angle 1
we know that
m∠1+m∠3=180° ----> by supplementary angles
we have
m∠3=52°
therefore
m∠1+52°=180°
m∠1=180°-52°=128°
step 8
Find the measure of angle 4
we know that
m∠4=m∠1 ----> by vertical angles
we have
m∠1=128°
therefore
m∠4=128°
Which is a perfect square?
A.5
B.8
C.36
D.44
Answer:
I believe the answer is C. 36
Step-by-step explanation:
Because a perfect square is everything that equals the same number
Ex: all of the sides of a square is 6, you can't do that with any of the other numbers.
Hope my answer has helped you!
A randomly generated list of number from 0 to 8 is being used to simulate an event, with numbers 0, 1, and 2 representing a success. What is the estimated probability of a success
A. 25%
B. 20%
C. 33%
D. 30%
Answer:
C) 33%
Step-by-step explanation:
To solve for the percentage of success, we first need to find out how many numbers we are working with. In this case, there are 9 numbers (0,1,2,3,4,5,6,7,8).
Since there are 3 "successful" numbers, (0,1,2), we can write the probability as a fraction
3/9 (represents number of successes over number of possible outcomes)
This simplifies to be 33%
Answer:
C
Step-by-step explanation:
Since you include zero as a number, then it would be 9 numbers in all. 3 if the nine numbers are success, so it would be 3/9. 3/9 as a percent would be around 33 percent.
What is the best estimate for the answer to 217.33 - 19.19?
Round each number to the nearest ten.
100 points to anyone who answers :) sorry I don’t have options!
Answer:
the answer is 200
Step-by-step explanation:
217.33 - 19.19 = 198.14 rounded to the nearest ten is 200
because the nearest ten is 198.14
Answer:
200
Step-by-step explanation:
[tex] -19.19 + 217.33 = 198.14[/tex]
198,14 ≈ 200
I am joyous to assist you anytime.
Determining the Solution
Find the solution to the system of equations: x + 3y = 7
and 2x + 4y = 8
1. Isolate x in the first equation:
2. Substitute the value for x into the second equation:
3. Solve for y:
x = 7 - 3y
207 – 3y) + 4y = 8
14-6y + 4y = 8
14 – 2y = 8
-2y = -6
y = 3
x + 3(3) = 7
4. Substitute y into either original equation:
5. Write the solution as an ordered pair:
Intro
Done
0000000000
Answer:
(-2, 3).
Step-by-step explanation:
x + 3y = 7
2x + 4y = 8
1 . x = 7 - 3y.
2. 2(7 - 3y) + 4y = 8
3. 14 - 6y + 4y = 8
-2y = -6
y = 3
4. Substitute y in the second equation:
2x + 4(3) = 8
2x = -14
x = -2..
The solution to the system of equations is: (-2, 3).
Solution to a System of EquationsGiven the system of equations:
x + 3y = 7 --> eqn. 1
2x + 4y = 8 --> eqn. 2
First, isolate x in equation 1:
x = 7 - 3y
Plug in the value of x into eqn. 2 to solve for y.
2(7 - 3y) + 4y = 8
14 - 6y + 4y = 8
14 - 2y = 8
14 - 8 = 2y
6 = 2y
3 = y
y = 3
Find the value of x by substituting y = 3 into eqn. 1.
x + 3(3) = 7
x + 9 = 7
x = 7 - 9
x = -2
Therefore, the solution to the system of equations is: (-2, 3).
Learn more abut system of equations on:
https://brainly.com/question/13729904