3x+4=5x-50
54=2x
27=x
Answer:
x = 27
Step-by-step explanation:
The diagonals of a rectangle are congruent, hence
BD = AC ← substitute values
5x - 50 = 3x + 4 (subtract 3x from both sides )
2x - 50 = 4 ( add 50 to both sides )
2x = 54 ( divide both sides by 2 )
x = 27
Blocks numbered 0-9 are placed in a box and a black is randomly picked the probability of picking an odd prime number is
Answer:
Step-by-step explanation:
[tex]B_n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\\B_p = 2, 3, 5, 7\\B_{o_p} = 3, 5, 7\\[/tex]
There are 3 odd primes, namely : 3, 5, 7
The total amount of blocks is 9
The odds of picking and odd prime is [tex]\frac{3}{9} \cdot 100\% = 33,(3)\%[/tex]
help asappp
Write the following equations in slope-intercept form. Remember to show all the work!!
x − 3y = 6
Write the following equations in Standard form. Remember to show all work!
y = −x − 3
Y = 1/2x - 5
Answer:
y = -x-3
x-y = -3
x - 2y = 10
Step-by-step explanation:
x − 3y = 6
Slope intercept form is y = mx +b
We need to solve for y
Subtract x from each side
x-x-3y = -x+6
-3y = -x +6
Divide each side by -3
-3y/-3 = -x/-3 +6/-3
y = 1/3 x -2
Standard form is Ax +By = C
y = -x-3
Add x to each side
x-y = -x+x-3
x-y = -3
y = 1/2x -5
We do not like fractions in standard form, so multiply by 2
2y = 2*1/2x -2*5
2y =x-10
Subtract x from each side
-x +2y = x-x-10
-x+2y = -10
We like to have the coefficient on x be positive
Multiply by -1
x - 2y = 10
Find the best estimate for the volume of the prism by rounding before you calculate
Answer:
I need numbers to actually calculate the problem.
Step-by-step explanation:
Answer:36ft^3
Step-by-step explanation:
Which sets of measurements could be the interior angle measures of a triangle?
Select each correct answer.
Question 2 options:
10°, 10°, 160°
15°, 75°, 90°
20°, 80°, 100°
35°, 35°, 105°
60°, 60°, 60°
The sum of all the three interior angles of a triangle are 180 degrees. This does not depend on the positioning of the three sides. The sides can be positioned in any way, but the sum must be 180 degrees.
So, the best possible sets of measurements that could be the interior angle measures of a triangle are : 15°, 75°, 90° And 60°, 60°, 60°
The sets of measurements that could represent the interior angles of a triangle are those whose angles add up to exactly 180°. The valid options provided are 10°, 10°, 160°; 15°, 75°, 90°; 35°, 35°, 105°; and the equilateral set of 60°, 60°, 60°.
Explanation:The question pertains to the interior angles of a triangle. According to the Triangle Sum Theorem, the interior angles of a triangle always add up to 180°. Therefore, to determine which sets of measurements could represent the interior angles of a triangle, we must check if the sum of the given angles is equal to 180°.
10°, 10°, 160°: The sum is 180°, so this could represent the interior angles of a triangle.15°, 75°, 90°: The sum is also 180°, making this a valid set of interior angles for a triangle.20°, 80°, 100°: The sum exceeds 180°, therefore, these cannot be the interior angles of a real triangle in Euclidean geometry.35°, 35°, 105°: Once again, the sum is 180°, indicating these could be the angles of a triangle.60°, 60°, 60°: The angles add up to 180°, and this set describes an equilateral triangle where all angles are equal.From the options given, the sets of measurements that represent the interior angles of a triangle are:
10°, 10°, 160°15°, 75°, 90°35°, 35°, 105°60°, 60°, 60°
Solve for x. 5x = -25
The correct Answer is: x= -5
It's me again ok so
Simplifying
5x = -25
Solving
5x = -25
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Divide each side by '5'.
x = -5
Simplifying
x = -5
BOOM
How many times greater. Is the value of 8 in 18,272 than the value of 8 in 17,282
1,8272 --- 8,000
17,282 --- 80
8,000÷80=100 times greater
Final answer:
The value of 8 in the number 18,272 (8,000) is 100 times greater than its value in the number 17,282 (80).
Explanation:
The question is asking how many times the value of 8 in 18,272 is greater than the value of 8 in 17,282.
In the number 18,272, the 8 is in the thousands place, making it have a value of 8,000. In the number 17,282, the 8 is in the tens place, giving it a value of 80.
To determine how many times greater the value of 8 is in the first number compared to the second, divide the larger value by the smaller value: 8,000 ÷ 80 = 100.
Therefore, the value of 8 in 18,272 is 100 times greater than in 17,282.
Factor x^3 -4x^2 -3x +18 =0
Given that 4 is a zero
A (x-2) (x-3) (x+3)=0
B (x-2) (x-3)^2 =0
C (x-2) (x- sqrt 3)(x+ sqrt 3) =0
D (x-2) (x-3)^2 =0
Answer:
none of the above
Step-by-step explanation:
A graphing calculator shows the zeros to be x=-2, and a double zero at x=3. Hence the factorization is ...
(x +2)(x -3)^2 = 0
The premise that 4 is a zero is incorrect, and none of the answer choices include (x+2) as a factor. The problem is unworkable as written here.
Milk is being poured into a cylindrical pail at a constant rate of 8 cubic inches per second. The pail has a base radius of 5 inches and a height of 16 inches. At this rate, how many seconds will it take to fill the pail with milk? Use 3.14 for ? . Round your answer to the nearest second.
9514 1404 393
Answer:
157 seconds
Step-by-step explanation:
The volume of the pail is ...
V = πr^2·h
V = 3.14(5 in)^2(16 in) = 1256 in^3
At 8 in^3/s it will take ...
(1256 in^3)/(8 in^/s) = 157 s
to fill the pail.
It will take 157 seconds to fill the pail with milk.
On a track and field team, 8% of the members run only long-distance, 32% compete only in field events, and 12% are sprinters only. Find the probability that a randomly chosen team member runs only long-distance or competes only in field events.
Answer:
0.40
Step-by-step explanation:
Members who run only long distance = 8%
So, probability that a member will run only long distance = P(A) = 0.08
Members who compete only in field events = 32%
So, probability that a member will compete only in field events = P(B) 0.32
Members who are sprinters = 12%
So, probability that a member is sprinter = P(C) 0.12
We have to calculate the probability that a randomly chosen team member runs only long-distance or competes only in field events. i.e we have to find P(A or B). Since these events cannot occur at the same time, we can write:
P(A or B) = P(A) + P(B)
Using the values, we get:
P(A or B) = 0.08 + 0.32 = 0.40
Thus, the probability that a randomly chosen team member runs only long-distance or competes only in field events is 0.40
The probability that a randomly chosen team member runs only long-distance or competes only in field events is 0.40.
1. To find the probability that a randomly chosen team member runs only long-distance or competes only in field events, we need to add the probabilities of these two mutually exclusive events.
2. Given:
Probability of running only long-distance: 8% or 0.08Probability of competing only in field events: 32% or 0.323. Since these events are mutually exclusive (they cannot happen at the same time), we simply add the probabilities:
P(long-distance or field events) = P(long-distance) + P(field events)
P(long-distance or field events) = 0.08 + 0.32 = 0.40
Therefore, the probability that a randomly chosen team member runs only long-distance or competes only in field events is 40% or 0.40.
Team infinate demensions canoed 15 3/4 miles in 3 hours. What was their average rate of speed in miles per hour
Answer:
5.25 or 5 1/4 MPH
Step-by-step explanation:
1. convert 15 3/4 into a decimal = 15.75
2. divide the miles canoed (15.75) by the time (3)
15.75/3 = 5.25 MPH
3 geometric solids that have circular cross sections
Answer:
The 3 geometric solids with circular cross sections are a sphere, a cone and a cylinder
Step-by-step explanation:
While a cone and a cylinder will not in every direction, if you slice them on a horizontal plane, they will have a circular cross section.
The sphere, cylinder, and cone are three-dimensional geometric solids with circular cross sections, existing in both solid and hollow forms, important in physics for understanding properties like moment of inertia and involvement in superelastic collisions.
Three geometric solids that possess circular cross sections are the sphere, cylinder, and cone. These shapes are known as three-dimensional solid figures. The sphere is a solid figure where all points on the surface are equidistant from the center, resulting in any cross-section through its center being a circle.
A cylinder is a solid with straight parallel sides and a circular or oval cross section. A cone has a flat circular base and tapers to a point called the apex or vertex, creating circular cross-sections when sliced parallel to the base.
In addition to fully solid forms, there are also hollow versions of these shapes, such as the hollow spherical shell, which still have circular cross sections. These solids can be involved in various physics concepts such as rotational dynamics and superelastic collisions. When analyzing the rotational motion or collision attributes of these solids, the shapes' geometrical and mass properties play a crucial role.
For instance, the moment of inertia of a solid sphere differs from that of a hollow spherical shell due to the distribution of mass within the object.
Collin is buying dirt to fill a garden bed that is a 9ft by 16ft rectangle. If he wants to fill it to a depth of 4 inches, how many cubic yards of dirt does he need? If dirt costs $25 per yard cubed, how much will the project cost?
Answer:
Cubic yards of dirt needed for project = [tex]1\frac{7}{9}[/tex] cubic yards
Cost of Project = About $44.44
Step-by-step explanation:
To find number of cubic yards of dirt needed, we need to find the volume.
Rectangular Prism Volume = length * width * depth
Note: Length is 9ft, width is 16ft, depth is 4 inches. We need to change depth to ft. So 4 inches = [tex]\frac{1}{3}[/tex] feet.
Now finding the volume (in cubic ft) = [tex]9*16*\frac{1}{3}=48[/tex]
We know 3 feet is 1 yard. To convert cubic feet to cubic yards, we have to divide it by (3)^3 = 27. Hence:
[tex]\frac{48}{27}=\frac{16}{9}[/tex] cubic yards
* Since dirt is $25 per cubic yard, to find cost, we multiply 25 by 16/9. Hence
Cost of Project = 25 * 16/9 = 400/9 = $44.44
Collin needs to buy 1.76 cubic yards of dirt to fill his 9ft by 16ft garden bed to a depth of 4 inches, and the total cost for the dirt will be $44.
Explanation:To calculate the cubic yards of dirt Collin needs for his 9ft by 16ft garden bed at a depth of 4 inches, we must first convert the dimensions to consistent units and then find the volume. One yard is equivalent to 3 feet, so the bed has dimensions of 3 yards by 5.33 yards (since 9ft / 3 = 3 yards and 16ft / 3 ≈ 5.33 yards). The depth must also be converted from inches to yards: 4 inches is equal to 4/36 or approximately 0.11 yards (because there are 36 inches in a yard).
Now we'll calculate the volume in cubic yards: 3 yards * 5.33 yards * 0.11 yards = 1.76 cubic yards. Next, to find the total cost, we multiply the volume by the cost per cubic yard: 1.76 * $25 = $44. So, Collin will need to pay $44 to fill his garden bed with dirt.
Here are some of the conversions and calculations used:
9ft / 3ft per yard = 3 yards (Length)16ft / 3ft per yard = 5.33 yards (Width)4 inches * (1 yard / 36 inches) = 0.11 yards (Depth)Volume of dirt needed = Length * Width * DepthTotal cost = Volume * $25 per yard cubedLearn more about Volume of Dirt Needed here:https://brainly.com/question/30037972
#SPJ3
Laura is a songwriter. The table shows the number of songs she wrote in each of the past 5 months. Use the information in the table to create a probability distribution table.
Answer:
[tex]\begin{array}{ccccc}\text{January}&\text{February}&\text{March}&\text{April}&\text{May}\\\dfrac{3}{20}&\dfrac{5}{20}&\dfrac{2}{20}&\dfrac{8}{20}&\dfrac{2}{20}\end{array}[/tex]
Step-by-step explanation:
During 5 months Laura wrote
3+5+2+8+2=20 songs.
1. The probability that the song was written in January is [tex]\frac{3}{20}.[/tex]
2. The probability that the song was written in February is [tex]\frac{5}{20}.[/tex]
3. The probability that the song was written in March is [tex]\frac{2}{20}.[/tex]
4. The probability that the song was written in April is [tex]\frac{8}{20}.[/tex]
5. 1. The probability that the song was written in May is [tex]\frac{2}{20}.[/tex]
The probabolity distribution table:
[tex]\begin{array}{ccccc}\text{January}&\text{February}&\text{March}&\text{April}&\text{May}\\\dfrac{3}{20}&\dfrac{5}{20}&\dfrac{2}{20}&\dfrac{8}{20}&\dfrac{2}{20}\end{array}[/tex]
Two boats leave an island at the same time. One of the boats travels 12 miles east and then 16 miles north. The second boat travels 24 miles south and then 18 miles west. Use the pythagorean theorem to find the distance between the boats.
Answer:
The distance between the boats is [tex]50\ mi[/tex]
Step-by-step explanation:
we know that
The Pythagoras Theorem states that
In a right triangle
[tex]c^{2}=a^{2}+b^{2}[/tex]
where
c is the hypotenuse
a and b are the legs
In this problem
Let
c ----> the distance between the boats
a -----> the horizontal distance between the boats
b -----> the vertical distance between the boats
[tex]a=12+18=30\ mi[/tex]
[tex]b=16+24=40\ mi[/tex]
substitute the values
[tex]c^{2}=30^{2}+40^{2}[/tex]
[tex]c^{2}=2,500[/tex]
[tex]c=50\ mi[/tex]
Final Answer:
The distance between the two boats is 50 miles.
Explanation:
To find the distance between the two boats after they have traveled, we need to determine the final position of each boat relative to the island, and then use the Pythagorean theorem to find the distance between these two positions. Let's go through the calculations step-by-step:
Step 1: Determine the final position of each boat relative to the island.
- Boat 1 travels 12 miles east and then 16 miles north. Let’s define east as the positive x-direction and north as the positive y-direction. So, the final coordinates of Boat 1 relative to the island are (12, 16).
- Boat 2 travels 24 miles south and then 18 miles west. Let’s define south as the negative y-direction and west as the negative x-direction. So, the final coordinates of Boat 2 relative to the island are (-18, -24).
Step 2: Determine the differences in the x and y coordinates between Boat 1 and Boat 2.
- The difference in x-coordinates dx is the x-coordinate of Boat 1 minus the x-coordinate of Boat 2:
[tex]\( dx = 12 - (-18) = 12 + 18 = 30 \)[/tex] miles.
- The difference in y-coordinates dy is the y-coordinate of Boat 1 minus the y-coordinate of Boat 2:
[tex]\( dy = 16 - (-24) = 16 + 24 = 40 \)[/tex] miles.
Step 3: Use the Pythagorean theorem to calculate the distance between the two boats.
The Pythagorean theorem states that in a right triangle, the square of the hypotenuse c (the side opposite the right angle) is equal to the sum of the squares of the other two sides a and b:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
Here, dx and dy can be considered the lengths of the sides of a right triangle, and the distance between the boats d is the hypotenuse of this triangle. So:
[tex]\[ d = \sqrt{dx^2 + dy^2} \\\\\[ d = \sqrt{30^2 + 40^2} \\\\\[ d = \sqrt{900 + 1600} \\\\\[ d = \sqrt{2500} \\\\\[ d = 50 \][/tex]
Therefore, the distance between the two boats is 50 miles.
The radius of the circle is ✓2. The distance from the center to the chord is 1. If the measure of AB is 90°, the area of the shaded region is
Answer:
c. (π/2 -1) square units
Step-by-step explanation:
A segment that subtends an arc of θ in a circle of radius r has an area given by ...
A = (1/2)(θ -sin(θ))r² . . . . . where θ is in radians
In your figure, the radius is r = √2 and the angle is 90°, so θ = π/2. Then the area is ...
A = (1/2)(π/2 -sin(π/2))·(√2 units)²
A = (π/2 -1) units²
One letter is selected from the word "probability." What is the probability that a "b" or "i" is chosen?
4/11
4/9
5/11
3/11
Answer:
The correct answer option is 4/11
Step-by-step explanation:
We know that the word 'probability' has 11 alphabets.
We are to find to find the probability of getting a 'b' or an 'i' from this word.
Probability of getting a b = [tex]\frac{2}{11}[/tex] (since there are 2 b's in probability)
Probability of getting an i = [tex]\frac{2}{11}[/tex] (since there are 2 i's in probability)
Probability of getting 'b' or 'i' = [tex]\frac{2}{11} + \frac{2}{11} = \frac{4}{11}[/tex]
A florist has 40 tulips 32 roses 60 daisies and 50 petunias.Draw a line from each comparison to match it to the correct ratio
Answer:
Need to see the choices
Step-by-step explanation:
A bag contains 6 red jelly beans, 4 green jelly beans, and 4blue jelly beans. If we choose a jelly bean, then another jelly bean without putting the first one back in the bag, what is the probability that the first jelly bean will be green and the second will be red?
The probability of picking a green jelly bean with the first pick is 4/14 = 2/7, because there are 14 jelly bean in total (6 red + 4 green + 4 blue) and 4 of them are green.
If you pick a green jelly bean at the beginning, you have 13 jelly beans remaining, of which 6 are red. So, the probability of picking a red jelly bean is now 6/13.
You want these two events to happen one after the other, to be more precise you want to pick a green jelly bean with the first pick AND a red jelly bean with the second pick. We know the probabilities of the two events, so we have to multiply them to get the probability of them happening both:
[tex]\dfrac{2}{7}\cdot\dfrac{6}{13}=\dfrac{12}{91}[/tex]
Please answer this multiple choice question!
==========================
Explanation:
Triangle PQC is congruent to triangle RQC. We can prove this through use of the hypotenuse leg theorem (HL theorem). Note that PC = RC are congruent radii, and also note that CQ = CQ through the reflexive theorem. We have a pair of hypotenuses and a pair of legs for the right triangles.
Then through CPCTC (corresponding parts of congruent triangles are congruent), we know that the pieces PQ and QR are congruent. For now, let's just call them x. They must add to PR which is 12, so,
PQ + QR = PR ..... segment addition postulate
x + x = 12
2x = 12
x = 6 ..... divide both sides by 2
QR = 6
This shows that if you have a radius perpendicular to a chord of a circle, then the radius will bisect this chord. Bisect means to cut in half.
Step-by-step Answer:
There is a theorem in geometry that states that a perpendicular (CQ) to any chord (PR) bisects the chord. This means that PQ=RQ=6cm.
A train travels 16 miles in 20 minutes. At this rate, how ,any minutes will it take to travel 12 miles
Answer:
16 minutes
Step-by-step explanation:
WILL MARK BRAINLEST!! HELP ASAP
On your own paper, carefully plot the starting point and follow the directions to find a new point.
Start at (-4, -2) and find another point by moving both
i) up 3 and
ii) left 2
What are the coordinates of the new point?
Answer:
(-6, 1)
Step-by-step explanation:
We are given a point with the coordinates (-4, -2) and we are to plot this on a graph and then find another point by moving three units upwards and 2 units towards left.
If we move 3 units up from the point (-4, -2), we get (-4, 1).
Then from (-4, 1), we move 2 units towards left and we get the coordinates of this new point which are (-6, 1).
Find, picture provide below
Answer:
C. 2916
Step-by-step explanation:
The given limits is
[tex]\lim_{h \to 0} \frac{f(9+h)-f(9)}{h}[/tex]
if [tex]f(x)=x^4[/tex].
[tex]\Rightarrow f(9)=9^4=6561[/tex]
[tex]f(h+9)=(h+9)^4=h^4+36 h^3+486 h^2+2916 h+6561[/tex]
Our limit becomes;
[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= \lim_{h \to 0} \frac{h^4+36 h^3+486 h^2+2916 h+6561-6561}{h}[/tex]
This simplifies to;
[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= \lim_{h \to 0} \frac{h^4+36 h^3+486 h^2+2916 h}{h}[/tex]
[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= \lim_{h \to 0} h^3+36 h^2+486 h+2916 [/tex]
[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= (0)^3+36 (0)^2+486(0)+2916 [/tex]
[tex]\lim_{h \to 0} \frac{f(h+9)-f(9)}{h}= 2916 [/tex]
the correct choice is C.
please help me!!
i need this ASAP
[tex]f(3)= \sqrt[3]{ \frac{x}{ - 7x + 1} } \: \: \: \: \: \\[/tex]
Answer:
f(3) = (-∛150)/10
Step-by-step explanation:
Put 3 where x is and evaluate. If you don't want the decimal, you can rationalize the denominator to get an exact form.
f(3) = ∛(3/(-7·3+1)) = ∛(-3/20)
= -∛(3·50/(20·50)) = (-∛150)/10 ≈ -0.5313292845913...
_____
Multiplying numerator and denominator by 50 makes the denominator 1000, a perfect cube.
Choose the correct graph to fit the inequality.
x ^2 - y^ 2 <9
Answer:
It is the second one
⇒The given inequality is
x²-y²<9
[tex]\frac{x^2}{3^2}-\frac{y^2}{3^2}<1[/tex]
⇒The general equation of Hyperbola is
[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex]
→The curve will cut the x axis at (3,0) and (-3,0).
So, the given function matches with the curve of Hyperbola.
⇒When the points are from [-3,3] , the function will satisfy the given Inequality.That is if you take , points prescribed in the given interval the function will satisfy the inequality.
⇒Graph B
given the following sets.
A = {0, 1, 2, 3}
B = {a, b, c, d}
C = {0, a, 2, b}
find B u C
a. {0, 1, 2, 3}
b. {a, b, c, d}
c. {0, a, 2, b}
d. empty set
e. {a, b, c, d, 0, 2}
Answer:
[tex]\large\boxed{e.\ \{a,\ b,\ c,\ d,\ 0,\ 2\}}[/tex]
Step-by-step explanation:
[tex]\text{The union (denoted by}\ \cup\ \text{) of a collection of sets is the set of all elements of the sets. }\\\\A=\{0,\ 1,\ 2,\ 3\}\\\\B=\{a,\ b,\ c,\ d\}\\\\C=\{0,\ a,\ 2,\ b\}\\\\B\ \cup\ C=\{a,\ b,\ c,\ d,\ 0,\ 2\}[/tex]
A manufacturer of flashlight batteries took a sample of 13 batteries from a day’s production and used them continuously until they failed to work. The life lengths of the batteries, in hours, until they failed were: 342, 426, 317, 545, 264, 451, 1049, 631, 512, 266, 492, 562, and 298. At the .05 level of significance, is there evidence to suggest that the mean life length of the batteries produced by this manufacturer is more than 400 hours? A. Yes, because the test value 1.257 is less than the critical value 1.782 B. No, because the test value 1.257 is greater than the critical value 1.115 C. No, because the p-value for this test is equal to .1164 D. Yes, because the test value 1.257 is less than the critical value 2.179 Reset Selection
Answer:
A:
Step-by-step explanation:
***I'm pretty sure A should read "NO, because the test value 1.257 is less than the critical value 1.782. Please check the wording of the problem***
H0 : μ ≤ 400
Ha : μ > 400 (claim)
Sample mean: 6,155/13
Sample standard deviation: √44422.4359
Critical test value: t > 1.782
t = (6,155/13 - 400)/[(√44422.4359)/√13] = 1.257
1.257 < 1.782 ; we fail to reject the null hypothesis
There is not enough evidence at the 5% level of significance to support the claim that the mean battery life is at least 400 hours.
HELP! During the period 1998–2002, the number y (in millions) of juvenile books shipped to bookstores can be modeled by the equation y = -15x^2 + 64x + 360 where x is the number of years since 1998. During what year were there 400 million juvenile books shipped to bookstores?
Answer:
1999
Step-by-step explanation:
y=-15x^2+64x+360
y=-15(1)^2+64(1)+360
y=409
(y is in millions)
I hope this helps!
Condense the following logs into a single log:
[tex]8log_{g} x+5log_{g} y[/tex]
[tex]8log_{5} x+\frac{3}{4} log_{5} y-5log_{5} z[/tex]
QUESTION 1
The given logarithm is
[tex]8\log_g(x)+5\log_g(y)[/tex]
We apply the power rule of logarithms; [tex]n\log_a(m)=\log_(m^n)[/tex]
[tex]=\log_g(x^8)+\log_g(y^5)[/tex]
We now apply the product rule of logarithm;
[tex]\log_a(m)+\log_a(n)=\log_a(mn)[/tex]
[tex]=\log_g(x^8y^5)[/tex]
QUESTION 2
The given logarithm is
[tex]8\log_5(x)+\frac{3}{4}\log_5(y)-5\log_5(z)[/tex]
We apply the power rule of logarithm to get;
[tex]=\log_5(x^8)+\log_5(y^{\frac{3}{4}})-\log_5(z^5)[/tex]
We apply the product to obtain;
[tex]=\log_5(x^8\times y^{\frac{3}{4}})-\log_5(z^5)[/tex]
We apply the quotient rule; [tex]\log_a(m)-\log_a(n)=\log_a(\frac{m}{n} )[/tex]
[tex]=\log_5(\frac{x^8\times y^{\frac{3}{4}}}{z^5})[/tex]
[tex]=\log_5(\frac{x^8 \sqrt[4]{y^3} }{z^5})[/tex]
Plz help me
WILL GIVE BRAINLIEST
Answer:
D 2x(3x+4) + 1(3x+4)
Step-by-step explanation:
(2x+1) (3x+4)
We need to FOIL
First 2x*3x = 6x^2
Outer 2x*4 = 8x
Inner 1*3x =3x
Last 1*4 =4
Add them together
6x^2 +8x+3x+4
Combine like terms
6x^2 +11x+4
This process is simply taking 2x (3x+4) and adding 1 (3x+4)
2x(3x+4) + 1(3x+4)
5p/7 - 18 = - 43 help me please!
Answer:
-35
Step-by-step explanation:
[tex]5p/7-18=-43[/tex] ⇒ [tex]5p/7=-43+18[/tex] ⇒
[tex]7(5p/7=- 25)7[/tex] ⇒ [tex]5p=-175[/tex] ⇒
[tex]5p/5 = -175/5[/tex] ⇒ [tex]p = -35[/tex]