One light-hour is the distance that light travels in an hour. how far is this, in kilometers? ( recall that the speed of light is 300,000 km/s )

Answers

Answer 1
We can solve this with a one-step unit conversion. 1 hour contains 60 minutes, and each minute contains 60 seconds, so 1 hour contains 3600 seconds.

300,000 km/s x (3600 sec/1 hour) = 1,080,000,000 km/hr 
1.08 x 10^9 km/hr

Related Questions

what is the volume of 1 mole of helium gas when the pressure is 1.47 atm and the temperature is 287k

Answers

The volume of 1 mole of helium gas when the pressure is 1.47 atm and the temperature is 287k is 16.02 litres.

What is combined gas law?

The combined gas law is the law of of gaseous state which is made by combination of Boyle's law, Charle's law, Avogadro's law and Gay Lussac's law.

It is a mathematical expression that relates Pressure, Volume and Temperature.

(P1 × V1)÷T1 = (P2 × V2)÷T2

Also, we can simply write it as

PV = nRT

P = 1.47 atm

V = ?

n = 1

R = 0.0821

T = 287K

V = nRT ÷ P

V = 16.02 litres

Therefore, The volume of 1 mole of helium gas when the pressure is 1.47 atm and the temperature is 287k is 16.02 litres.

Learn more about combined gas law here:

https://brainly.com/question/30458409

#SPJ3

The electron microscope has been widely used to obtain highly magnified images of biological and other types of materials. when an electron is accelerated through a particular potential field, it attains a speed of 4.15 106 m/s. what is the characteristic wavelength of this electron?

Answers

Answer: For this problem, we use the equation λ = h/mv. where λ is wavelength, h is Planck's constant, v is the velocity and m is the mass. just plug the numbers in: λ = (6.63x10^-34)/((9.11x10^-31)*(4.15x10^6)

What is the mass of a 300 ml sample of gaseous hydrogen chloride at 2.0 atm and 30c?

Answers

Ideal gas law is valid only for ideal gas not for vanderwaal gas. Ideal gas is a hypothetical gas. Vanderwaal gas can behave as ideal gas at low pressure and high temperature. Therefore, the mass of a 300 ml sample of gaseous hydrogen chloride at 2.0 atm and 30°C is 0.00868g.

What is ideal gas equation?

Ideal gas equation is the mathematical expression that relates pressure volume and temperature.

Mathematically the relation between Pressure, volume and temperature can be given as

PV=nRT

where,

P = pressure of gas

V= volume of gas

n =number of moles of gas

T =temperature of gas

R = Gas constant = 0.0821 L.atm/K.mol

substituting all the given values in the above equation

(2 )(0.3 ) = n(8.314 )(303)

0.6 = n(2519.142)

n = 0.00023818 mols of HCl

mass of HCl= 0.00023818 mols of HCl ×36.46g of HCl/ 1 mol of HCl

mass of HCl = 0.00868g

Therefore, the mass of a 300 ml sample of gaseous hydrogen chloride at 2.0 atm and 30°C is 0.00868g.

To learn more about ideal gas equation, here:

https://brainly.com/question/14826347

#SPJ5

Final answer:

To find the mass of a 300 ml sample of gaseous hydrogen chloride at 2.0 atm and 30°C, use the Ideal Gas Law to determine the number of moles, then multiply by the molar mass of HCl. The approximate mass is 0.89 grams.

Explanation:

To calculate the mass of a 300 ml sample of gaseous hydrogen chloride at 2.0 atm and 30°C, we can use the Ideal Gas Law, which is PV = nRT. In this case, we need to rearrange the equation to solve for n (the number of moles), then convert moles to mass using the molar mass of HCl.

First, convert the volume from milliliters to liters: 300 ml = 0.300 L.

Next, since the temperature is given in degrees Celsius, convert it to Kelvin: T(K) = 30°C + 273.15 = 303.15 K.

The Ideal Gas Law in terms of n is n = PV / RT. Here, P is the pressure in atm (2.0 atm), V is the volume in liters (0.300 L), R is the ideal gas constant (0.0821 L·atm/K·mol), and T is the temperature in Kelvin (303.15 K).

Substituting the values:

n = (2.0 atm * 0.300 L) / (0.0821 L·atm/K·mol * 303.15 K)n ≈ 0.0244 moles (rounded to the correct number of significant figures)

Finally, we find the mass by multiplying the number of moles by the molar mass of HCl, which is approximately 36.46 g/mol.

Mass = n * molar mass of HCl = 0.0244 moles * 36.46 g/mol ≈ 0.89 g (rounded to two significant figures)

The mass of the 300 ml sample of gaseous hydrogen chloride at 2.0 atm and 30°C is approximately 0.89 grams.

Balance the equation for the formation of ammonia from hydrogen gas and nitrogen gas using a set of the lowest possible integer coefficients. what is the coefficient in front of ammonia, nh3, in the balanced equation? n2 (g) + h2 (g) → nh3 (g)

Answers

the balanced equation is 2N2+3H2 gives 2NH3

Answer:

The balanced equation is

[tex]N_{2}[/tex] (g) + 3 [tex]H_{2}[/tex](g) ⇒ 2 [tex]NH_{3}[/tex] (g)

The coefficient in front of ammonia, [tex]NH_{3}[/tex], in the balanced equation is 2.

Explanation:

The law of conservation of matter states that since no atom can be created or destroyed in a chemical reaction, the number of atoms that are present in the reagents has to be equal to the number of atoms present in the products.

Then, you must balance the chemical equation. For that, you must first look at the subscripts next to each atom to find the number of atoms in the equation. If the same atom appears in more than one molecule, you must add its amounts

Left side: 2 nitrogen and 2 hydrogen. Right side: 1 nitrogen and 3 hydrogen.

The coefficients located in front of each molecule indicate the amount of each molecule for the reaction. This coefficient can be modified to balance the equation, just as you should never alter the subscripts.

In this case you can start balancing the hydrogen. On the left side there is an amount of two hydrogens, while on the right side there are three. In order to match the amount of hydrogen on both sides, the easiest way to do this is by exchanging these numbers and adding them as coefficients in front of each molecule. It is as follows:

[tex]N_{2}[/tex] (g) + 3 [tex]H_{2}[/tex](g) ⇒ 2 [tex]NH_{3}[/tex] (g)

By multiplying the coefficient mentioned by the subscript, you get the amount of each element present in the reaction.  So now you can calculate again the amount of elements on each side of the chemical reaction:

Left side: 2 nitrogen and 6 hydrogen. Right side: 2 nitrogen and 6 hydrogen.

You can see that you have the same amount of each element on each side of the chemical equation. This indicates that the equation is balanced.

And the coefficient in front of ammonia, [tex]NH_{3}[/tex], in the balanced equation is 2.

What is the reason for the change in ionization energy as you go down a group

Answers

Ionization energy decreases as you move down a group because the valence electrons are farther out from the nucleus, therefore its easier for another ion to come steal an electron. 

Ionization energy of an atom decreases down a group. It is due to the increase in the number of electrons and orbitals and thus screening of electrons reduces the nuclear pull.

What is ionization energy?

Ionization energy is the minimum energy required to remove the loosely bound valence electron from an atom. From left to right in periodic table, the electronegativity of atoms increases thereby the ionization energy.

The positive charge of protons in the nucleus attracts the revolving electrons and each electron experiences a nuclear attractive pull which keep the electrons surrounds the nucleus.

However, one electron is shielded from the attractive pulling by its neighboring electrons and this shielding or screening increases with increases with increase in number of electrons Hence as the shielding increases, the net nuclear force decreases make it easy to remove the valence electron.

Down a group, the number of shells or orbitals increases and the electrons becomes more far from the nucleus and thus more shielded results in the decrease in ionization energy.

To find more on ionization energy, refer here:

https://brainly.com/question/28385102

#SPJ2

The vapor pressure of ethanol at its normal boiling point would be

Answers

The normal boiling point of ethanol is 78.4 degrees C and, at thistemperature, the vapor pressure is 101325 Pascals (Pa) or 760manometric units

thx hope this helped bye.

If a neutral atom gains electrons, what type of particle is formed?

Answers

A charged particle also called an ion is formed

How do ionic compounds and molecular compounds differ in their relative melting and boiling points? which would you expect to have the higher melting point? cao or cs2?

Answers

Ionic compounds tend to have lower melting and boiling points than molecular ...

Answer:

Ionic compounds typically have much higher melting points than molecular compounds. ... To melt a molecular substance, you need to break these weak intermolecular forces between neutral molecules, which is why ionic compounds generally have much higher melting points than molecular compounds.

Explanation:

Which is the correct electron configuration for sodium (Na)?

A. 1s22s22p62d1
B. 1s22s22p63s1
C. 1s22p63d3

Answers

The answer for this question is B.

Answer: [tex]1s^22s^22p^63s^1[/tex]

Explanation:

Electronic configuration represents the total number of electrons that a neutral element contains. We add all the superscripts to know the number of electrons in an atom.

The electrons are filled according to Afbau's rule in order of increasing energies.

Total number of electrons of sodium are 11 as the atomic number of sodium is 11. The electronic configuration of sodium will be represented as:

[tex][Na]:11:1s^22s^22p^63s^1[/tex]

The emission of electromagnetic radiation by an excited atom is best explained by

Answers

of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state

Among electromagnetic waves, UV rays are most dangerous because exposure to these radiation cause serious problems in living organism. Therefore, the emission of electromagnetic radiation by an excited atom is best explained by photoelectronic effect.

What is electromagnetic wave?

Electromagnetic wave is a wave which contain two component one is electric component and other is magnetic component. The electric and magnetic component are perpendicular to each other. There are so many wave that comes under electromagnetic wave like infrared wave , radio wave.

There is a relation between energy of wave. frequency of wave, and wavelength of wave

Mathematically,

E=hc/λ

where,

E = energy of electromagnetic wave

h is planks constant having value 6.67×10⁻³⁴js

c is speed of light that is 3×10⁸m/s

λ is the wavelength of electromagnetic wave

The emission of electromagnetic radiation by an excited atom is best explained by photoelectronic effect.

Therefore, the emission of electromagnetic radiation by an excited atom is best explained by photoelectronic effect.

To know more about electromagnetic wave, here:

https://brainly.com/question/12289372

#SPJ5

What are the isotopes? how all of the isotopes of an atom are similar and how are they different?

Answers

Isotopes are the same element with a different mass number. They are similar because once again the protons are equal to the atomic number which keeps the identity of the atom the same. But they are different because the masses of each is different.

The process by which a radioactive isotope loses protons or other materials from its nucleus is called

Answers

The process is called decay.

What is the heat capacity of 170 g of liquid water?

Answers

The specific heat capacity of water (which is defined as the amount of heat required to raise the temperature of one gram of water by 1 degree kelvin) is given as 4.1813J/gK (at 25°C).

Therefore, to get the heat capacity of a certain mass (in grams), we just have to multiply this mass by the specific heat capacity of water as follows:
heat capacity of 170 g = 170 * 4.1813 = 710.821 J/K
Final answer:

The heat capacity of a substance is the amount of heat needed to raise its temperature by one degree Celsius. In the case of 170g of water, with a specific heat capacity of 4.18 J/g°C, the heat capacity would be approximately 710.6 J/°C.

Explanation:

The heat capacity of a substance is defined as the amount of heat required to raise the temperature of that substance by one degree Celsius. For water, the specific heat capacity is around 4.18 joules per gram per degree Celsius. Therefore, to find the heat capacity of 170 g of water, we multiply the mass of the water by its specific heat capacity.

So, the calculation would go as follows:

 

Heat capacity = mass of water * specific heat capacity Heat capacity = 170 g * 4.18 J/g°C Therefore, the heat capacity of 170 g of water is approximately 710.6 J/°C.

Learn more about Heat Capacity here:

https://brainly.com/question/32934621

#SPJ6

Describe the three ways heat can be transferred-radiation, conduction, and convection

Answers

An example of radiation can be from a fire since the firs is letting off heat without contact. An example of convection can be boiling water since there are molecules moving in the water (a fluid). An example of conduction can be a tea spoon in a cup of hot tea, the heat is getting transferred froma hot object to a cool object.

Final answer:

Heat is transferred in three ways: conduction through direct contact, convection by fluid movement, and radiation through electromagnetic waves. Each method requires a temperature difference and can occur together.

Explanation:

Heat Transfer Methods

Heat transfer occurs through three primary methods: conduction, convection, and radiation. These processes are all driven by a temperature difference between regions or objects.

Conduction

Conduction is the transfer of heat through direct contact between materials. The rate of heat transfer (Q/t) in conduction is proportional to the temperature difference between the two objects and the area in contact, and inversely proportional to the distance between them.

Convection

Convection involves the transfer of heat by the physical movement of fluid (such as gases or liquids). This method occurs in natural phenomena like wind patterns, ocean currents, and even in heating up a pot of water on the stove.

Radiation

Radiation refers to the transfer of heat through electromagnetic waves, such as the heat from the sun reaching Earth or heat emitted from a light bulb.

These methods can occur simultaneously in various processes and are essential for understanding how heat is transferred in different contexts.

What are group 6a elements likely to do when they form ions-gain electrons or lose them?what are group 6a elements likely to do when they form ions-gain electrons or lose them?lose electronsgain electrons?

Answers

They gain electrons.

Water has a density of 1.0 g/ml. which of these objects will float in water? object i: mass = 50.0 g; volume = 40.2 ml object ii: mass = 59.3 g; volume = 62.5 ml object iii: mass = 100.0 g; volume = 50.0 ml

Answers

Object I would be it

Density is the ratio of mass and volume. Object II will float in water as it has a density of 0.95 g/ml.

What is density?

Density is the measuring capacity that concerns the mass and the volume occupied by the object. It is calculated as:

Density (D) = Mass (M) / Volume (V)

For object I density is calculated as:

50. 0 / 40.2 = 1.24 g/ml

For object II D is calculated as:

59.3/62.5 = 0.9488 g/ml

For object III D is calculated as:

100 / 50 = 2 g/ml

Therefore, object II will float on water as it has less density than water.

Learn more about density here:

https://brainly.com/question/12684829

#SPJ2

Which two trends increase when one moves across a period from left to right?


atomic size and size of cations

ionization energy and atomic size

ionization energy and electronegativity

electronegativity and atomic size

Answers

Ionization energy and electronegativity increases when we move across a period from left to right.
Atomic size decreases from left to right so all other options are incorrect.
The reason behind the increase of ionization energy and electronegativity from left to right is this:
Ionization energy increases because as the atomic size decreases, the outer electrons get closer to the nucleus and the strong attration will developed and thus increases ionization energy.
when the number of protons in the nucleus increases, as they are posotively charged they attract the electrons that are negatively charged and thus it increases electronegativity of an atom.

Brad and Juan conducted several tests to determine the properties of silver metal. They noted that is was white, and conducted both electricity and heat. They computed the density to be 10.49 g/cm3. Silver did not react with water but in nitric acid, gas was released. What evidence supports a chemical change in the silver? A) Silver conducts electricity. B) Silver reacts with nitric acid to produce a gas. C) The color of silver at room temperature is white. D) Silver conducted heat and as the temperature increased, became more malleable.

Answers

The answer is B) Silver reacts with nitric acid to produce a gas. 
If a substance reacts with another substance to create a different substance, it is a chemical change. Color doesn't really matter with chemical changes, neither does electrical conductivity. 

Hope this helps! 

Answer:

B because it should be

Explanation:

and that is right answer??

A group of two or more atoms held together by mutually shared electrons are called ________.

Answers

The answer is _molecule_.

Hope this helps

Describe several products of photosynthesis important to humans

Answers

The products of photosynthesis which are important to humans are OXYGEN AND GLUCOSE. The main product of photosynthesis is GLUCOSE ,which is the molecule that produces energy to run the process of the cell.six molecules of carbondioxide and six molecules of water are needed to produce one molecule of glucose. During the process of photosynthesis,carbondioxide and water combines in the presence of sunlight and chlorophyll to produce carbohydrates and oxygen. Oxygen is essential for breathing in humans.

One of the alkali metals reacts with oxygen to form a solid white substance. when this substance is dissolved in water, the solution gives a positive test for hydrogen peroxide, h2o2. when the solution is tested in a burner flame, a lilac-purple flame is produced. what is the likely identity of the metal?

Answers

The identity of the metal is likely Potassium. The formula: K2O2 + 2H2O --> 2KOH + H2O2 is the balance chemical equation for the reaction of the white substance with water, using the lowest coefficients.

Answer:

Potassium (K)

Explanation:

First, you need to know the possible alkali metals, which are:

Sodium (Na), Litium (Li), Potassium (K) and Cesium (Cs), rubidium (Rb).

Now, the reaction that is taking place is the following:

M + O2 ------> M2On

Where n should be the oxidation state of the metal. In this case, most of the alkalin metals have an oxidation state of +1, so, this number should be 1. However some elements can produce the peroxyde, like litium, sodium and potassium.

The following reaction would be:

M2O + H2O --------> MOH

Now, the hint here is that the solution is tested with a flame. This, would be, the final hint to know which element this is.

In the case of sodium, litium and potassium, the reactions being held are as following:

Li + O2 ------> Li2O2         Li2O2 + 2H2O ------> 2LiOH + H2O2

Na + O2 ------> Na2O2         Na2O2 + 2H2O ------> 2NaOH + H2O2

K + O2 ------> K2O2         K2O2 + 2H2O ------> 2KOH + H2O2

Now, all of these elements throw a different color in the flame. Litium is a red or crimson. Sodium is usually yellow, and finally the potassium is always purple.

Therefore the identity of this metal would have to be potassium.

How do the properties of the p block metals compare with those of the metals in the s and d blocks?

Answers

The p block represents the non-metals while the s and d blocks represent the metals. Non-metals (p block) usually have 4 or more valance electrons that they want to give away, and for this reason they tend to form negative ions. Non-metals are dull, are poor conductors of heat and electricity, have low density, and have low melting and boiling points. On the other hand, the metals (s and d block) usually have 3 or fewer valance electrons and tend to form positive ions. They are shiny, are good conductors of heat and electricity, have a high density, and have high melting and boiling points.

Final answer:

p-block metals have higher electronegativities and ionization energies compared to the reactive s-block metals. d-block metals, known as transition metals, posses variable oxidation states and form colorful compounds, setting them apart from p-block and s-block elements.

Explanation:

The properties of p-block metals differ considerably compared to those in the s-block and d-block. One of the most distinguishing features of p-block metals is their position on the periodic table - they are found in the right-most six columns. Elements in the p-block, which include both metals and nonmetals, typically have higher electronegativities and ionization energies than s-block elements, which consists mostly of metals with low electronegativities like the alkali and alkaline earth metals.

d-block elements, also known as transition metals, have a much larger range of oxidation states and, due to incomplete inner d subshells, typically exhibit properties like colorful compounds, variable oxidation states, and often function as good catalysts. Electronegativity and electron affinity generally increase from left to right across the periodic table, affecting the chemical properties of these elements.

s-block elements tend to be softer and more reactive due to their single valence electron (alkali metals) or two valence electrons (alkaline earth metals). They usually have lower melting and boiling points compared to most d-block metals. The d-block elements are characterized by their partially filled d-orbitals which allow them to form a variety of complex ions and colored compounds.

Find the concentration of chloride ions in a solution that is 0.110 m in sodium chloride (nacl) and 0.11 m in magnesium chloride (mgcl2).

Answers

(.11M NaCl)*(1 mol Cl/ 1 mol NaCl) = .11M from NaCl
(.11M MgCl2)*(2 mol Cl/ 1 mol MgCl2) = .055M from MgCl2

.11M + .055M = 0.165M of Cl

The concentration of Chloride ions in the solution of NaCl and Magnesium chloride has been 0.165 M.

The dissociation of the compound in the solution has been resulted in the formation of the constituent ions.

The concentration of the ions in the sample has been determined by the stoichiometric coefficient of the balanced equation.

Computation for concentration of Chloride ions

The concentration of Cl ions from sodium chloride solution has been given by:

[tex]\rm NaCl\;\rightarrow\;Na^+\;+\;Cl^-[/tex]

The concentration of Cl ions has been:

[tex]\rm 1\;M\;NaCl=1\;M\;Cl^-\\ 0.11\;M\;NaCl= 0.11\;M\;Cl^-[/tex]

The Cl ions from NaCl has been  0.11 M.

The Cl ions from magnesium chloride have been given as:

[tex]\rm MgCl_2\;\rightarrow\;Mg^2^+\;+\;2\;Cl^-[/tex]

The concentration of Cl ions has been:

[tex]\rm 1\;M\;NaCl=0.5\;M\;Cl^-\\ 0.11\;M\;NaCl= 0.11\;\times\;0.5\;M\;Cl^-\\0.11\;M\;NaCl=0.055\;M\;Cl^-[/tex]

The Cl ions from Magnesium chloride have been  0.055 M.

The total concentration of Cl ion has been:

[tex]\rm Cl^-=NaCl\;+\;MgCl_2\\Cl^-=0.11\;+\;0.055\;M\\Cl^-=0.165\;M[/tex]

The concentration of Chloride ions in the solution of NaCl and Magnesium chloride has been 0.165 M.

Learn more about concentration, here:

https://brainly.com/question/3045247

How many molecules of ammonia are present in 3.0 g of ammonia (Formula = NH3)?

A) 1.2 × 1024

B) 1.8 × 101

C) 1.1 × 1023

D) 2.9 × 10-25

E) 3.6 × 1023

Answers

The number of molecules of ammonia present in 3.0 g of ammonia is equal to 1.1×10²³.

What is Avogadro's number?

Avogadro’s number expressed the number of units in one mole of any substance. Generally, these units can be atoms, ions, electrons, protons, or molecules depending upon the type of the reaction or reactant and product.

The value of Avogadro’s number is 6.022×10²³. Avogadro’s number is usually denoted by the symbol ‘N[tex]_A[/tex]’.

Given, the mass of the ammonia = 3g

The molecular mass of the ammonia (NH₃) = 14 + 3(1) = 17g

As one mole of the ammonia contains molecules = Avogadro number

It means 17 grams of ammonia has molecules = 6.022×10²³

Then, 3 grams  of ammonia will have molecules of ammonia

=  6.022 × 10²³ × (3/17)

= 1.1 × 10²³ molecules

Therefore, the number of molecules of ammonia in 3 g of ammonia is   1.1 × 10²³ molecules.

Learn more about Avogadro's number, here:

https://brainly.com/question/11907018

#SPJ2

Final answer:

To find the number of ammonia molecules in 3.0g of ammonia, you calculate moles from the given mass and molar mass, then use Avogadro's number to find the molecule quantity. The result is approximately 1.06 × 10²³ molecules, matching closely to option C in the question.

Explanation:

To determine how many molecules of ammonia (NH₃) are present in 3.0g of ammonia, we first need to calculate the molar mass of NH₃. The atomic masses of nitrogen (N) and hydrogen (H) are approximately 14.01 g/mol and 1.01 g/mol, respectively. A single molecule of NH₃ consists of one nitrogen atom and three hydrogen atoms, which gives us:

Molar mass of NH₃ = (1 × 14.01 g/mol) + (3 × 1.01 g/mol) = 14.01 g/mol + 3.03 g/mol = 17.04 g/mol

Next, we use the molar mass to convert grams of NH₃ to moles:

Moles of NH₃ = mass (g) ÷ molar mass (g/mol) = 3.0 g ÷ 17.04 g/mol = 0.176 moles of NH₃

Now we can use Avogadro's number (≈ 6.022 × 10²³ molecules/mol) to find the number of molecules:

Number of molecules = moles × Avogadro's number = 0.176 moles × 6.022 × 10²³ molecules/mol

This calculation gives us approximately:

Number of molecules ≈ 1.06 × 10²³ molecules of NH₃

Looking at the options provided, the closest answer to our calculated value is C) 1.1 × 10²³, which must be a rounded version of the value we obtained.

How many grams of glucose are needed to prepare 400. ml of a 2.0%(m/v) glucose solution?

Answers

Answer:8 grams of glucose are needed to prepare 400. ml of a 2.0%(m/v) glucose solution.

Explanation:

Volume of the solution = 400 mL

Mass by volume percentage of the solution = 2%

Mass of the glucose = m

The mass by volume percent is given by formula ;

[tex](m/v\%)=\frac{\text{mass of the solute}}{\text{Volume of the solution}}\times 100[/tex]

[tex]2\%=\frac{m}{400}\times 100[/tex]

m = 8 g

8 grams of glucose are needed to prepare 400. ml of a 2.0%(m/v) glucose solution.

Mass Concentration is generally denoted as mass of solute (in grams) per ml volume of solution.

Mass Concentration:

It is generally denoted as mass of solute (in grams) per ml volume of solution. It can be calculated by formula,

[tex]\bold {p = \frac{m}{v} \times 100 }[/tex]

Where,

p = mass concentration (m/v%) =  2%

m = mass in grams =  ?

v = volume in mL = 400mL

Put the values in the formula

[tex]\bold {2 = \frac{m}{400} \times 100 }[/tex]

[tex]\bold { m = 8 }[/tex]

Hence, we can conclude that the 8 g of glucose is needed to prepare 400mL of a 2%(m/v) solution.

To know more about Mass concentration, refer to the link:

https://brainly.com/question/24219144

Calculate the molarity of a solution that contains 15.7g of caco3 dissolved in enough water to make 275 ml of solution

Answers

0.570 M (note the capital M, this is molarity. Using m denotes molality. Molarity is represented by moles of solute over the liters of solution. In this problem we are given the mass of the solute and volume of solution. The calculations is follows: (15.7 g CaCO3/275 mL of solution) x (1 mole CaCO3/ 100.0869 g of CaCO3) x (1000 mL of solution/ 1 L of solution) = 0.570 M CaCo3.

Taking into account the definition of molarity, the molarity of a solution that contains 15.7g of CaCO₃ dissolved in enough water to make 275 mL of solution is 0.57 [tex]\frac{moles}{liter}[/tex].

Definition of molarity

Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.

The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

[tex]Molarity= \frac{number of moles}{volume}[/tex]

Molarity is expressed in units [tex]\frac{moles}{liter}[/tex].

This case

In this case, you have:

number of moles: [tex]15.7 gramsx\frac{1 mole}{100 grams} = 0.157 moles[/tex] , being 100 [tex]\frac{grams}{mole}[/tex] the molar mass of CaCO₃volume: 275 mL= 0.275 L, being 1000 mL= 1 L

Replacing in the definition of molarity:

[tex]Molarity= \frac{0.157 moles}{0.275 L}[/tex]

Solving:

Molarity= 0.57 [tex]\frac{moles}{liter}[/tex]

Finally, the molarity of a solution that contains 15.7g of CaCO₃ dissolved in enough water to make 275 mL of solution is 0.57 [tex]\frac{moles}{liter}[/tex].

Learn more about molarity:

brainly.com/question/9324116

brainly.com/question/10608366

brainly.com/question/7429224

#SPJ5

Sodium is a metal m, like copper. Suggest reasons why sodium cannot be used in electrical wires.

Answers

Sodium is a metal but we use copper for electrical wires not sodium because sodium is highly reactive among these metals and would react with other substances, so if we use sodium wiring it can cause many problems and obviously no one wants sodium wiring in their houses. sodium has only one valence electron and that causes sodium be to be unstable. 

Sodium cannot be used in electrical wires due to its high reactivity and lower electrical conductivity compared to metals like copper.

Additionally, sodium is too soft and unsafe for wiring purposes.

Copper is preferred for its high conductivity and ability to be made into wires.Sodium is a metal, just like copper, but it cannot be used in electrical wires for several reasons. First, sodium is highly reactive and must be stored out of contact with air because it reacts violently with oxygen and water, which makes it unsafe for use in electrical wiring. Second, while metals like copper are excellent electrical conductors due to their high conductivity, sodium does not possess the same level of conductivity. Additionally, sodium's physical properties, such as its softness, make it unsuitable for being stretched into thin wires required for electrical applications.

Copper is preferred because it has high electrical conductivity, resistance to corrosion, and can be easily drawn into wires.

What would be the formula of the compound iron (III) phosphide? Fe2P3 Fe3P FeP3 FeP

Answers

FeP oc. Fe(III)  + P(III) - FeP

Fe(II),(III),(VI)
P(III),(V)

Answer : The correct formula of the given compound will be, [tex]FeP[/tex]

Explanation :

Iron (III) phosphide is an ionic compound because iron element is a metal and phosphorous element is a non-metal. The bond formed between a metal and a non-metal is always ionic in nature.

The nomenclature of ionic compounds is given by:

1. Positive ion is written first.

2. The negative ion is written next and a suffix is added at the end of the negative ion. The suffix written is '-ide'.

3. In case of transition metals, the oxidation state are written in roman numerals in bracket in-front of positive ions.

The charge on iron is (+3) and the the charge on phosphide is (-3). The charges are balanced.

Hence, the formula of the compound iron (III) phosphide will be [tex]FeP[/tex]

Openstudy the deflection of alpha particles in rutherford's gold foil experiments resulted in what change to the atomic model?

Answers

Rutherford found out that the atom was actually mostly empty space.

Which two trends increase when one moves across a period from left to right?

a) ionization energy and electronegativity
b) ionization energy and atomic size
c) electronegativity and atomic size
d) atomic size and size of cations

Answers

Answer is: a) ionization energy and electronegativity.

1) The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).  

Barium, potassium and arsenic are metals (easily lost valence electrons), chlorine is nonmetal (easily gain electrons).

Alkaline metals (far left in Periodic table) have lowest ionizations energy and easy remove valence electrons (one electron), earth alkaline metals (next right to alkaline metals) have higher ionization energy than alkaline metals, because they have two valence electrons.  

Nonmetals are far right in the main group and they have highest ionization energy, because they have many valence electrons.  

2) Electronegativity (χ) is a chemical property that describes the tendency of an atom to attract a shared pair of electrons towards itself.  

Atoms with higher electronegativity attracts more electrons towards it, electrons are closer to that atom.  

Nonmetals hava higher electronegativity than metals and metalloids.

3) The atomic radius decreases across the periods because an increasing number of protons, because greater attraction between the protons and electrons.


Ionization energy and electronegativity are the two trends than increase when one moves across a period from left to right.

Further ExplanationIonization energyIonization energy is the energy required to remove outermost electrons from the outermost energy level. Energy is required to remove an electron from an atom.The closer an electron is to the nucleus the more energy is required, since the electron is more tightly bound to the atom thus making it more difficult to remove, hence higher ionization energy.Ionization energy increases across the periods and decreases down the group from top to bottom.  Additionally, the ionization energy increases with subsequent removal of a second or a third electron.First ionization energy  This is the energy required to remove the first electron from the outermost energy level of an atom.Energy needed to remove the second electron to form a divalent cation is called the second ionization energy.Trends in ionization energy  Down the group(top to bottom)Ionization energy decreases down the groups in the periodic table from top to bottom.It is because as you move down the group the number of energy levels increases making the outermost electrons get further from the nucleus reducing the strength of attraction to the nucleus.This means less energy will be required compared to an atoms of elements at the top of the groups.Across the period  (left to right)Ionization energy increases across the period from left to right.This can be explained by an increase in nuclear energy as extra protons are added to the nucleus across the period increasing the strength of attraction of electrons to the nucleus.Consequently, more energy is needed to remove electrons from the nucleus. ElectronegativityElectronegativity is a chemical property that describes the tendency of an atom to attract a shared pair of electrons towards itself.  Atoms with higher electronegativity attracts more electrons towards it, electrons are closer to that atom.  Non-metals have higher electronegativity than metals and metalloids.Atomic radiusThe atomic radius decreases across the periods because an increasing number of protons, because greater attraction between the protons and electrons.

Keywords: Ionization energy, electronegativity

Learn more aboutIonization energy: https://brainly.com/question/5880605Trend in ionization energy: https://brainly.com/question/5880605First ionization energy: https://brainly.com/question/5880605Electronegativity: https://brainly.com/question/4283174Trends in electronegativity: https://brainly.com/question/4283174

Level: High school  

Subject: Chemistry  

Topic: Periodic table and chemical families  

Sub-topic: Ionization energy and electronegativity

Other Questions
How to differentiate between cervical and thoracic vertebrae? How many grams of oxygen are formed when 8.20 moles of KOH are formed? 4 KO(s) + 2 H2O(l) 4 KOH(s) + O2(g) HELPThe element zinc is represented by the abbreviation ___. what weaknesse in the national government did shays's rebellion reveal Calculate the speed of a dog running through a yard covering 24m in 52s The use of trench warfare had which of these effects on World War I?A) It made conquering new territory difficult for opposing armies.B) It made navel power more important than in previous wars.C) It reduced the effectiveness of poison gas and machine guns.D) It led to a significant decline in the death rate among soldiers. You roll a six-sided number cube. Which events are mutually exclusive? A) rolling a multiple of 2 and a multiple of 4B) rolling a multiple of 3 and a multiple of 6 C) rolling an even number and an odd number D) rolling a prime number and an even number on a very muddy football field, a 120 kg linebacker tackles an 75 kg halfback. immediately before the collision, the linebacker is slipping with a velocity of 8.6 m/s north and the halfback is sliding with a velocity of 7.4 m/s east. Darcy is buying apples and oranges for a large fruit basket to give away as a door prize at a charity event. apples cost $.24 each and oranges cost $.80 each. she has $12 to spend and would like to purchase at least 20 pieces of fruit total Saul admits that he conforms so as to be liked by others. this is known as Which three contries were apart of the holy alliance Si vendo los 7/4 de lo que no vend, que parte del total no vend? Identify each event or circumstance as either a cause or an effect of Russias lack of industrialization during the 1800s. cause I Effect>Feudal social structure >defeat in Crimean war>czar's lack of interest in industrialization >poor military and railroad system Max's bill at a restaurant is $8.67. He uses the following method to figure out a tip of about 15%. Round the amount of the bill to the nearest ten cents. Move the decimal point one place to the left. Then find half of the result. Add the last two answers and round to the nearest five cents. How much will the tip be for the bill? Why does Max's method work? Use properties of equality to solve these equations. Identify the properties used and describe how you used them.(5 7)25 = x(7 25) In general, which of the following is NOT a critical skill for participating in a sport? A. agility and balance B. endurance and muscle control C. hand-eye coordination and acuity D. none of the above If you came home from a trip with 150 south african rand, 350 kuwaiti dinars and 200 japanese yen, how much would you have in u.s. dollars? Potassium and sodium chloride are similar in charge and they both have the same anion. When comparing sodium chloride (36 g / 100 mL at 0 oC) and potassium chloride, which has a higher solubility at 0 oC? Helpppp plzzzzzzWhich transitional words/phrases are most common in the chronological organizational pattern? A.Similarly B.Next C.For this reason, D.For instance Which equivalence factor set should you use to convert 126 g c to atoms c? (1 mol c/126 g c)(6.02 x 1023 atoms c/1 molc.(1 mol c/12.01 g c)(6.02 x 1023 atoms c/1 molc.(12.01 g c/1 mol c)(1 mol c/6.02 x 1023 atomsc.(12.01 g c/1 mol c)(6.02 x 1023 atoms c/1 mol c)? Steam Workshop Downloader