On May 17th Jane took out a loan for $33,000 at 6% to open her law practice office the loan will mature the following year on January 16th using the ordinary interest method what is the maturity value do on January 16th

Answers

Answer 1

Answer:

$ 31050

Step-by-step explanation:

Step 1 : Write the formula for calculating simple interest.

Simple Interest = P x R x T

                                100

P: Principal Amount-The loan taken (30,000)

R: Interest rate at which the loan is give (6)

T: Time period of the loan in years-there are 12 months in 1 year. There are 7 months from May till June (7/12)

Step 2: Substitute values in the formula

Simple Interest = 30,000 x 6 x 7/12

                                       100

Simple Interest = $1050

Step 3: Calculate the amount due at maturity

At the maturity or the end of the time period given, the original or principal amount of the loan has to be repaid along with the simple interest.

Amount at maturity = Principal Amount + Simple Interet

Amount at maturity = 30,000 + 1050

Amount at maturity = $31050

!!


Related Questions

Use numerals instead of words. If necessary use/ for the fraction bar

Answers

Answer:

10

Step-by-step explanation:

Range=big-small=34-16=18

Interquartile range=big number in box-small number in box= 29-21=8

The different between the two is 18-8=10

Answer:

The difference of range and interquartile range is 10.

Step-by-step explanation:

Consider the provided information.

From the box plot we can identify:

The lowest value is 16

The first quartile is 21

The 2nd quartile or median is 26

The 3rd quartile is 29

The highest value is 34

Range is the difference of the highest value and lowest value of the data set.

Range = 34 - 16 = 18

Interquartile range is the difference of the 3rd quartile from the 1st quartile.

IQR: 29 - 21 = 8

Thus, the difference of range and interquartile range is:

18 - 8 = 10

Hence, the difference of range and interquartile range is 10.

How are trapezoids and parallelograms related?

Both are rhombuses.
Both have two pairs of congruent sides.
Both have supplementary angles.
Both have parallel sides.

Answers

Trapezoids and parallelograms both feature parallel sides, with a trapezoid having one pair and a parallelogram having two pairs. Parallelograms always have supplementary consecutive angles and congruent opposite sides, which is not necessarily the case for all trapezoids.

Trapezoids and parallelograms are related by the characteristic that they both have parallel sides. Specifically, a trapezoid has one pair of parallel sides known as the bases, whereas a parallelogram has two pairs of parallel sides.

Moreover, the consecutive angles in a parallelogram are supplementary, meaning that any two angles next to each other add up to 180 degrees. While trapezoids do not have this property for all four of their angles, the angles adjacent to the bases (the non-parallel sides) may also be supplementary, depending on the specific shape of the trapezoid.

It is important to note that while all parallelograms are quadrilaterals with opposite sides that are congruent and parallel, not all trapezoids share these properties. The key distinction between the two shapes lies in the number of parallel sides.

Additionally, comparing them with rhombuses, parallelograms can be rhombuses if all sides are congruent, but trapezoids cannot be rhombuses as they lack the two pairs of parallel sides.

Let f (x) = x^2 - 6x - 27


Enter the x - intercepts of the quadratic function in the boxes.

X = ___ and X = ___

Answers

Answer:

x = 9

x = 3

Step-by-step explanation:

find the roots of x² - 6x - 27 = 0

by factorization (or use any of your favorite methods for solving quadratic equations):

x² - 6x - 27 = 0

(x-9)(x+3) = 0

Hence,

(x-9) = 0  --------> x = 9

or

(x+3) = 0  --------> x = -3

The intercepts of the quadratic function is 9 and 3.

What is a function ?

A function can be defined as a mathematical expression which explains the relationship between dependent variable and independent variable.

It always comes with a defined  range and domain.

The function given in the question is

f (x) = x² - 6x - 27

To find the intercept means to find the roots of the equation

roots can be determined by

x² - 9x + 3x -27 = 0

x(x-9) -3(x-9) = 0

x= 9 , 3

Therefore the intercepts of the quadratic function is 9 and 3 .

To know more about function

https://brainly.com/question/12431044

#SPJ2

Roger and his brother work similar jobs, earning the same amount per hour. Roger earns $3,240 per month working hours, and his brother works 20
hours more than Roger and earns $5,400 per month.
Complete the equation or inequality you would use to find how many hours each brother works in a month
how many
* + 20
x 20
x-20 2
3
3,240
50
5,400

Answers

Answer:

Roger works 30 hours and his brother works 50 hours

Step-by-step explanation:

Let

x ---->the number of hours Roger works in a month

y ---->the number of hours his brother works in a month

step 1

Find out how much they earn per hour

5,400-3,240=$2,160 -----> amount earned by 20 hours of work

$2,160/20=$108 per hour

step 2

Find out how many hours each brother works in a month

Roger

108*x=3,240

x=3,240/108=30 hours

His brother

y=x+20

y=30+20=50 hours

Answer:

i dont know

Step-by-step explanation:

Pam is playing with red and black marbles. The number of red marbles she has is three more that twice the number of black marbles she has. She has 42 marbles in how. How many red marbles does Pam have?

Answers

Answer:

29 red marbles

Step-by-step explanation:

Call R the number of red marbles and B the number of black marbles.

According to the second sentence, R = 2B + 3.

According to the third sentence, R + B = 42.

Now we have 2 equations, 2 unknowns. Sub the first into the second since it already has R isolated:

2B + 3 + B = 42

3B = 39

B = 13

Now sub this into either of the original equations (I'll use the first):

R = 2(13) + 3

R = 29

Please Help right now. 4x = 8x − 1

Answers

Final answer:

To solve the equation 4x = 8x - 1, isolate the variable x by subtracting 4x from both sides, then add 1 to both sides, and finally divide both sides by 4. The solution is x = 1/4.

Explanation:

To solve the equation 4x = 8x - 1, we need to isolate the variable x. We can do this by subtracting 4x from both sides of the equation:

4x - 4x = 8x - 4x - 1

0 = 4x - 1

Next, we can add 1 to both sides of the equation:

1 = 4x - 1 + 1

1 = 4x

Finally, we can divide both sides of the equation by 4 to solve for x:

1/4 = 4x/4

x = 1/4

The solution to the equation 4x = 8x - 1 is x = 1/4. We solve the equation by isolating x through standard algebraic steps. Checking our solution, we substitute it back into the original equation and confirm it is correct by verifying the equality.

The equation given by the student is 4x = 8x − 1. To find the value of x, we need to solve the equation. We start by subtracting 4x from both sides of the equation to get 0 = 4x − 1. We then add 1 to both sides which gives us 1 = 4x. Finally, we divide both sides by 4 to isolate x, which results in x = 1/4. This is the solution to the equation.

As a check, substituting x = 1/4 back into the original equation yields 4(1/4) = 8(1/4) − 1, simplifying to 1 = 2 − 1, which is a true statement and confirms our solution is correct.

Using the same technique, we can also solve different algebraic equations or systems of equations by manipulating the equations algebraically before substituting numerical values. This is illustrated in the given set of equations where variables are systematically eliminated until we end up with a single variable.

Therefore the by solving the equation 4x = 8x - 1 we get x = 1/4

Rationalize the denominator and simplify. 6 /5-3

Answers

Final answer:

To rationalize the denominator and simplify the expression 6 / (5-3), multiply the numerator and denominator by 1/2. Then, simplify the expression to get 3/1 = 3.

Explanation:

To rationalize the denominator and simplify the expression 6 / (5-3), we can start by multiplying the numerator and denominator by a skillfully chosen factor. In this case, we can choose 1/2 as the factor.

The numerator becomes 6 * 1/2 = 3, and the denominator becomes (5-3) * 1/2 = 2/2 = 1.

Therefore, the simplified expression is 3/1 = 3.

what is the area of the triangle? (sorry if its sideways)​

Answers

Answer:

6

Step-by-step explanation:

2 x 6 = 12/2 = 6

Answer:

A = 6 units ^2

Step-by-step explanation:

The area of a triangle is found by

A = 1/2 bh  where b is the length of the base and h is the height

A = 1/2 (6) *2

A = 6 units ^2

5c-3d+11 when c=7 and d=8

Answers

Answer:

22

Step-by-step explanation:

substitute:

5(7) - 3(8) + 11=0

35 - 24 + 11 = 0

=22

[tex]

5\times7-3\times8+11= \\

35-24+11= \\

11+11=22

[/tex]

Hope this helps.

r3t40

Find the additive inverse of 6+4i

Answers

[tex]0-(6+4i)=0-6-4i=-6-4i[/tex]

The additive inverse of the complex number 6+4i is -6-4i because it negates both the real and imaginary parts, resulting in a sum of zero when added to the original number.

The additive inverse of a complex number is a number that, when added to the original number, yields a sum of zero. For the complex number 6+4i, its additive inverse is found by changing the sign of both the real and the imaginary parts. Therefore, the additive inverse of 6+4i is -6-4i.

x+4/6=2/3+x-1/4 slove for X

Answers

Answer:

No solution

Step-by-step explanation:

x + 2/3 = 2/3 + x - 1/4

x = x - 1/4

0 ≠ -1/4

This circle is centered at the origin, and the length of its radius is 6. What is
the circle's equation?
A. x2 + y2 = 36
B. x2 + y2 = 6
C. x+y= 36
D. x + y = 1

Answers

Answer:

A. x^2 + y^2 = 36

Step-by-step explanation:

The equation of a circle is usually written in the form

(x-h)^2 + (y-k)^2 = r^2

Where (h,k) is the center and r is the radius

The center is at the origin so (h,k) = (0,0) and  the radius is 6 so r=6

x^2 + y^2 = 6^2

or x^2 +y^2 = 36

Answer:

A. [tex]x^2+y^2=36[/tex]

Step-by-step explanation:

An equation of a circle form is: [tex](x-h)^2+(y-k)^2=r^2[/tex]

Details:

[tex](h, k)[/tex] is the center of a circle, [tex]r[/tex] which means radius.

The origin is the center of the circle. [tex](h,k)=(0,0)[/tex] and the radius is [tex]6[/tex] so that means [tex]r=6[/tex]. [tex]x^2+y^2=6^2[/tex], and or [tex]x^2+y^2=36[/tex].

Note: I hope this helps anyone. Sorry about the wait for another answer but should help you and others in the meantime. And if you could please give either me, or the other person brainliest.

And enjoy the rest of your day. :)

The scores on a test are normally distributed with a mean of 80 and a standard deviation of 16. What is the score that is 2 standard deviationsdeviations aboveabove the​ mean?

Answers

The deviation from 80 of about 16 is normal.

So the lowest is usually 80 - 16 = 64 and the highest is 80 + 16 = 96

But now we have a "deviation" that is 2 standard deviations above the mean score.

So 80 + 16 + 16 = 112 is this score.

Hope this helps.

r3t40

Final answer:

To calculate the score that is 2 standard deviations above the mean of 80 with a standard deviation of 16, you add 2 times the standard deviation to the mean, resulting in a score of 112.

Explanation:

To find the score that is 2 standard deviations above the mean on a test with a mean of 80 and a standard deviation of 16, we use the formula:

Score = Mean + (Number of Standard Deviations × Standard Deviation)

So, plugging in the numbers we get:

Score = 80 + (2 × 16)

Score = 80 + 32

Score = 112

The desired score is therefore 112, which is 2 standard deviations above the mean of 80.

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
Consider the equation below.

Answers

If we divide both sides by -2, we have

[tex]bx-5 = -8 \iff bx = -3 \iff x = -\dfrac{3}{b}[/tex]

So, if you choose b=3, you have x = -3/3=-1

Answer:

a)

       The value of x in terms of b is:

                [tex]x=\dfrac{-3}{b}[/tex]

b)

         The value of x when b is 3 is:

                      [tex]x=-1[/tex]

Step-by-step explanation:

We are given a equation in terms of x and b as follows:

           [tex]-2(bx-5)=16-----------(1)[/tex]

a)

Now on simplifying the equation i.e. we solve for x i.e. we find the value of x in terms of b as follows:

On dividing both side of the equation by -2 we get:

[tex]bx-5=-8[/tex]

Now on adding both side by 5 we get:

[tex]bx=-8+5\\\\\\bx=-3[/tex]

Now, on dividing both side of the equation by b we get:

          [tex]x=\dfrac{-3}{b}------------(2)[/tex]

b)

when b=3 in equation (2) we have:

              [tex]x=\dfrac{-3}{3}\\\\\\x=-1[/tex]

please help geometry​ questions
find X

Answers

Answer:

D

Step-by-step explanation:

The line x originates from the center of the circle and forms a perpendicular line with line RS, which means that the line is bisected.

That means that line RT is half of line RS, or 7.

Then we can use the Pythagorean Theorem to find the measure of x.

[tex]7^2+b^2=9^2[/tex]

[tex]49+b^2=81[/tex]

[tex]b^2=32[/tex]

b = √32

b ≈ 5.66

Q.)Solve -37 + n = -56 for n. A.) -93. B.) -19. C.)19. D.) 93

Answers

Answer:

B.) -19

Step-by-step explanation:

-37 + n = -56

Add 37 to each side

-37 +37+ n = -56+37

n = -19

Answer: b) -19

Step-by-step explanation:

-37 + n=-56

use inverse operations and subtract -56 by 37 to get your answer

solve 30% of what = 60 step by step​

Answers

Answer:

200

Step-by-step explanation:

Of means multiply and is means equals

30% * W = 60

Change to decimal form

.30 * W = 60

Divide each side by .30

.30W /.30 = 60/.30

W = 200

Which geometric object is defined as the set of all points in a plane that are equidistant from two points ?

A. Line Segment

B. Circle

C. Parabola

D. Line

Answers

A geometric object which is defined as the set of all points in a plane that are equidistant from two (2) points is: D. Line.

What is a line?

A line can be defined as a geometric object which comprises the set of all points in a plane that are all equidistant from two (2) points.

This ultimately implies that, a line is a one-dimensional geometric object that is straight and forms the shortest distance between two (2) points because it extends endlessly in both directions.

Read more on line here: https://brainly.com/question/1655368

Answer:

a line

Step-by-step explanation:

What is the chance that a person randomly selected off the street was born in May
8%
12%
20%
30%

Answers

Answer: Eight percent.

Step-by-step explanation: In order to find this, we have to use the probability formula, which is:

The Event We Are Looking For/All of the Events.

In this case, plugging the numbers into the formula we get

May(1)/All the months in the year, including May (12).

Diving this, our answer will be 0.08333..., or rounded up to 0.8

However, since we are only looking for one specific event, we can take the number 100, and divide it by all the events. 12/100 is 8.333..., or rounded to 8.

Final answer:

The chance that a person randomly selected off the street was born in May is about 8%, assuming birth rates are evenly distributed throughout the year.

Explanation:

The question, "What is the chance that a person randomly selected off the street was born in May?" is one that pertains to the subject of probability in Mathematics. Since there are typically 12 equally likely months that a person could be born in, and assuming there is no significant variation in birth rates by month, the chance that someone chosen at random off the street was born in May is 1 out of 12 months.

Thus, to calculate the probability, you would divide 1 by 12, which equals approximately 0.0833. To express this as a percentage, we multiply by 100, yielding an 8.33% chance. Therefore, the closest answer among the provided options is 8%.

Two cylinders. The smaller cylinder has height labeled as 4 cm. The larger cylinder has height labeled as 8 cm.



The cylinders are similar. The volume of the larger cylinder is 2264 cubic centimeters. What is the volume of the smaller cylinder?



283 cm3


303 cm3


114 cm3


155 cm3

Answers

Answer:

283cm³

Step-by-step explanation:

The linear scale factor= Height of larger/Height of smaller cylinder.

=8cm/4cm=2

VOLUME scale factor = linear scale factor³

=2³=8

Therefore we divide the volume of the larger cylinder by  the volume scale factor.

volume of small cylinder=2264cm³÷8

=283cm³

Answer: first option.

Step-by-step explanation:

 You know that the height of the smaller cylinder is 4 cm and the height of the  larger cylinder is 8 cm, then you can find the volume ratio. This  is:

[tex]Volume\ ratio=(\frac{4\ cm}{8\ cm})^3\\\\Volume\ ratio=\frac{1}{8}[/tex]

Knowing that the volume of the larger cylinder is 2,264 cubic centimeters, you need to multiply it by the volume ratio to find the volume of the smaller cylinder.

Therefore:

[tex]V_{smaller}=\frac{1}{8}(2264\ cm^3)\\\\V_{smaller}=283\ cm^3[/tex]

Use long division to find the quotient below.

(15x^3+2x^2-75)÷(3x-5)​

Answers

Answer:

  5x^2 + 9x + 15.

Step-by-step explanation:

There is no term in x so we add  one (0x).

            5x^2 + 9x + 15  <------------Quotient.

          --------------------------------------

3x - 5 )  15x^3 + 2x^2 + 0 x  - 75

            15x^3 - 25x^2

           --------------------

                         27x^2 + 0x

                         27x^2 - 45x

                         ------------------

                                      45x - 75

                                       45x - 75

                                         ..........

Please help ASAP first to answer correctly gets brainly


What is the sum in its simplest form?

11/15 + 12/15 = ?

A) 23/30

B) 1

C) 23/15

D) 1 8/15

Answers

Answer:I believe your answer should be C: 23/15

Step-by-step explanation:

So you add 11/15 and 12/15 since the common denominator is already 15 you only need to add the numerator which is 11 and 12 and 11+12= 23 thus you get 23/15

PLEASE HELP PLEASE
A recipe that makes 2 dozen cookies calls for 4 1/2 cups of flour. How much flour would be needed to make 7 dozen cookies?

A) 31 1/2 cups

B) 9 cups

C) 14 cups

D) 15 3/4 cups

Answers

Answer:

Option D) 15 3/4 cups

Step-by-step explanation:

we know that

using proportion

Let

x ----> the cups of flour needed

[tex]4\frac{1}{2}=\frac{4*2+1}{2}=\frac{9}{2}\ cups\ flour[/tex]

[tex]\frac{(9/2)}{2}=\frac{x}{7} \\ \\x=(9/2)*7/2\\ \\x=63/4\ cups\ flour[/tex]

convert to mixed number

[tex]63/4\ cups=15.75=15\frac{3}{4}\ cups[/tex]

fourteen of the 100

digital video recorders​ (DVRs) in an inventory are known to be defective. What is the probability that a randomly selected item is​ defective?

Answers

Answer:

0.14

Step-by-step explanation:

Fourteen of the 100  digital video recorders​ (DVRs) in an inventory are known to be defective. It means that the probability that a randomly selected item is defective is: [tex]\frac{14}{100} = 0.14[/tex].

What’s the value of x

Answers

Answer:

x = 25

Step-by-step explanation:

The 2 given angles form a straight angle and are supplementary, that is

2x + 2 + 5x + 3 = 180

7x + 5 = 180 ( subtract 5 from both sides )

7x = 175 ( divide both sides by 7 )

x = 25

solve for x in the equation
I need help ASAP​

Answers

The answer is D

You just move all numbers to the left and set it equal to 0
And then you add all same variables together
After that you use the quadratic formula

Answer:

D

Step-by-step explanation:

Given

2x² + 3x - 7 = x² + 5x + 39

Subtract x² + 5x + 39 from both sides

x² - 2x - 46 = 0 ← in standard form

with a = 1, b = - 2, c = - 46

Solve for x using the quadratic formula

x = (- (- 2) ±[tex]\sqrt{(-2)^2-(4(1)(-46)}[/tex] ) / 2

  = ( 2 ± [tex]\sqrt{4+184}[/tex] ) / 2

  = ( 2 ± [tex]\sqrt{188}[/tex] ) / 2

  = ( 2 ± 2[tex]\sqrt{47}[/tex] ) / 2

  = 1 ± [tex]\sqrt{47}[/tex]

The zeros of a parabola are 6 and −5. If (-1, 3) is a point on the graph, which equation can be solved to find the value of a in the equation of the parabola?

3 = a(−1 + 6)(−1 − 5)
3 = a(−1 − 6)(−1 + 5)
−1 = a(3 + 6)(3 − 5)
−1 = a(3 − 6)(3 + 5)

Answers

ANSWER

[tex]3= a( - 1 +6)( - 1 - 5)[/tex]

EXPLANATION

The equation of a parabola in factored form is

[tex]y = a(x + m)(x + n)[/tex]

where 'a' is the leading coefficient and 'm' and 'n' are the zeros.

From the question, the zeros of the parabola are 6 and −5.

This implies that,

[tex]m = 6 \: \: and \: \: n = - 5[/tex]

We plug in these zeros to get:

[tex]y= a(x +6)(x - 5)[/tex]

If (-1, 3) is a point on the graph of this parabola,then it must satisfy its equation.

We substitute x=-1 and y=3 to obtain:

[tex]3= a( - 1 +6)( - 1 - 5)[/tex]

The first choice is correct.

I know that this is a lot but I really need help!! Hopefully, the reward will help!

A satellite dish has the shape of a parabola, the U-shaped graph of a quadratic function. Suppose an engineer has determined that the shape of one of the satellite dishes offered by the company can be modeled by the quadratic function y = 2/27x^2 - 4/3x, where y is the vertical depth of the satellite dish in inches and x is the horizontal width in inches.

a) Is the vertex of the function a maximum or minimum point, and how can you tell?

b) Find the x-coordinate of the vertex. Show all work leading your answer and write the answer in simplest form.

c) Find the y-coordinate of the vertex. Show all work leading your answer and write the answer in simplest form.

d) Write the vertex as an ordered pair (x, y). What does the vertex represent for this situation? Write 1 -2 sentences to explain your answer.

Answers

Step-by-step explanation:

y = 2/27 x² − 4/3 x

a) The leading coefficient (the coefficient of the x² term) is positive, so that means the parabola points up.  So the vertex is at the bottom of the parabola, making it a minimum.

b) For a parabola y = ax² + bx + c, the x coordinate of the vertex can be found at x = -b / (2a).  Here, a = 2/27 and b = -4/3.

x = -(-4/3) / (2 × 2/27)

x = (4/3) / (4/27)

x = (4/3) × (27/4)

x = 9

c) To find the y coordinate of the vertex, we simply evaluate the function at x=9:

y = 2/27 x² − 4/3 x

y = 2/27 (9)² − 4/3 (9)

y = 6 − 12

y = -6

d) The ordered pair is (9, -6).  This means that at the lowest point of the dish, the dish is 6 inches deep.  Also, since the dish is symmetrical, and the lowest point is 9 inches from the end, then the total width is double that, or 18 inches.

Final answer:

The vertex of the function is a minimum point. The x and y-coordinates of the vertex are 27 and -54 respectively, representing the deepest point in the dish where signals are concentrated.

Explanation:

a) The vertex of a parabolic function y = ax^2 + bx + c is a maximum point if 'a' is negative and a minimum point if 'a' is positive. In this case, we have a = 2/27, which is positive, so the vertex of the function is a minimum point.

b) The x-coordinate of the vertex can be found using the formula -b/2a. For the quadratic function y = 2/27x^2 - 4/3x, b = -4/3, and a = 2/27. So the x-coordinate of the vertex is -(-4/3)/(2*2/27) = 27.

c) The y-coordinate of the vertex can be obtained by substituting the x-coordinate of the vertex into the equation. Therefore, y = 2/27*(27)^2 - 4/3*27 = -54

d) So the vertex, as an ordered pair (x, y), is (27, -54). The vertex represents the shallowest point in the parabola, which in the case of a satellite dish, equates to the deepest point of the dish, where signals are most concentrated or focused.

Learn more about Quadratic Function here:

https://brainly.com/question/35505962

#SPJ3

use natural logarithms to solve the equation 5e^3x+7=21​

Answers

Answer:

5e^(3x+7)=21

e^(3x+7)=4.2

(3x+7)lne=ln4.2

lne=1

3x+7=1.435

3x= -5.565

x= -1.855

To solve the equation [tex]5e^{3x}+7=21[/tex], isolate the exponential term, take the natural logarithm of both sides, and then solve for x. This results in x ≈ 0.3362.

To solve the equation [tex]5e^{3x}+7=21[/tex], follow these steps:

First, isolate the exponential term by subtracting 7 from both sides:

[tex]5e^{3x} = 14[/tex]

Next, divide both sides of the equation by 5:

[tex]e^{3x} =\frac{14}{5}[/tex]

Now, take the natural logarithm (ln) of both sides:

[tex]ln(e^{3x}) = ln(\frac{14}{5})[/tex]

Since the natural logarithm and the exponential function are inverse operations, the left side simplifies to:

[tex]{3x} = ln(\frac{14}{5})[/tex]

Finally, solve for x by dividing by 3:

[tex]x =\frac{1}{3}\times ln(\frac{14}{5})[/tex]

Using a calculator, this results in:

x ≈ 0.3362

What is the point-slope form of a line with slope 2 that contains the point (1,3)?

A. y-1 = 2(x-3)
B. y+ 3 = -2(x - 2)
c. y + 3 = 2(x+1)
D. Y-3 = 2(x - 1)​

Answers

Y-3= 2(x-1)

The answer is D


Hope this helps!
Other Questions
The primary structure of an amino acid is based upon what Imagine that you are being interviewed by a local newspaper. Answer three of the following questions using complete sentences.Tell me about accomplishments or goals you have reached in your lifethese can be as big or as small as you would like. An accomplishment could be that you no longer bite your nails.Who helped you the most in accomplishing your goals and how?What was the biggest challenge or obstacle you faced in getting to where you are today and how did you overcome it?Were there people along the way who didn't believe in you? If yes, how did you respond to those people?What advice would you give a young person who wants to achieve great things in life?Example please Question 14 (1 point)Larry deposits $15 a week into a savings account. His balance in his savings account grows bya constant percent rate. Audra has applied formatting to text in her document. She would like to copy this formatting to one other value in the document Find the area of a parallelogram PGRM with vertices at (0,0) (6,0) (2,4) and (8,4) You have a 15.0 gram sample of gold at 20.0C. How much heat does it take to raise the temperature to 100.0C? Which naacp member who became the first african american supreme court justice? 79 POINTS!!!!!!One theme in Stowes Uncle Toms Cabin is _____.a)circle of lifeb)true Christianityc)American ideals and realityd)families destroyed by slavery The process by which Prokaryotic cells divide is known as: What is the factored form of 8x2 + 12x? Brett has consumed 1,400 calories so far today. He has also burned off 400 calories at the gym. He would like to keep his daily calorie total to 2,000 calories per day. How many calories does he have left to consume for the day? Is 1,200 a viable solution to this problem? Yes; 1,200 is less than 1,400. Yes; 1,200 is less than 2,000. No; 1,200 is more than the 400 he burned off at the gym. No; 1,200 will cause him to exceed 2,000. ABC Corporation has provided the following information: Cost per Unit Cost per Period Direct materials $ 6.80 Direct labor $ 4.15 Variable manufacturing overhead $ 1.65 Fixed manufacturing overhead $ 121,500 Variable selling and administrative expense $ 1.50 Fixed selling and administrative expense $ 40,500 If 10,000 units are produced, the total amount of manufacturing overhead cost is closest to: (check the ask for details section!!) How do the headings in the passage help to develop the authors ideas?The headings list the concerns of the participants and organizers of the March, focusing on those that were most critical.The headings sequence the events the day of the March from beginning to end, highlighting those that were most significant.They describe different perspectives on the March from people who were involved in planning, to those who participated, to the audience who watched it unfold.They organize the content, presenting the background of the March, the work to make it happen, and the outcome. A small bulb is rated at 7.5 W when operated at 125 V. Its resistance (in ohms) is : (a) 17 (b) 7.5 (c) 940 (d) 2100 (e) 0.45 What is the total surface area of this square pyramid? Germany Italy and Japan formed the tripartite pact in part because they: A. Add chicken wings to the United States to stay out of World War IIB. Share the ruling philosophies based on communist economicsC. Resented the agreements they were forced to sign at the munich conferenceD. Selena territories were threatened by aggressive foreign states What is the length of AB?A(2,-6). BIZ, 1) which of the following long term goals is most likely to be affected by how you conduct yourself online A.Finishing your schoolworkB.Getting a driver's license C. Getting a marriage licenseD.Getting a job What is the solution to the compound One number is five more than another, and their sum is three less than three times the smaller. Find the numbers. If x represents the smaller number, which equation could be used to solve for x? X 2 + 5 = 3x - 3 2x + 5 = 3x - 3 2x + 5 = 3(x - 3)