on a very muddy football field, a 120 kg linebacker tackles an 75 kg halfback. immediately before the collision, the linebacker is slipping with a velocity of 8.6 m/s north and the halfback is sliding with a velocity of 7.4 m/s east. What is the magnitude of the velocity at which the two players move together immediately after the collision

Answers

Answer 1
Momentum 
- a vector quantity; has both magnitude and direction
- has the same direction as object's velocity
- can be represented by components x & y.

Find linebacker momentum given m₁ = 120kg, v₁ = 8.6 m/s north
P₁ = m₁v₁
P₁ = (120)(8.6)
[ P₁ = 1032 kg·m/s ] = y-component, linebacker momentum

Find halfback momentum given m₂ = 75kg, v₂ = 7.4 m/s east
P₂ = m₂v₂
P₂ = (75)(7.4)
[ P₂ = 555 kg·m/s ] = x-component, halfback momentum

Find total momentum using x and y components.
P = √(P₁)² + (P₂)²
P = √(1032)² + (555)²
[[ P = 1171.77 kg·m/s ]] = magnitude 

!! Finally, to find the magnitude of velocity, take the divide magnitude of momentum by the total mass of the players.
P = mv
P = (m₁ + m₂)v
1171.77 = (120 + 75)v      [solve for v]
v = 1171.77/195
v = 6.0091 ≈ 6.0 m/s

If asked to find direction, take inverse tan of x and y components.
tanθ = (y/x)
θ = tan⁻¹(1032/555)
[ θ = 61.73° north of east. ]

The magnitude of the velocity at which the two players move together immediately after the collision is approximately 6.0 m/s.
Answer 2
Final answer:

The two football players move together at a velocity of 5.99 m/s immediately after the collision. This value was obtained by conserving the momentum of the system: calculating individual momenta before the collision, summing them to obtain total momentum, and then dividing this by the total mass of both players. This is a typical conservation of momentum problem in high school level physics.

Explanation:

The situation you're describing is a perfect example of a conservation of momentum problem in physics. In this problem, the two football players can be seen as a system, and their individual momenta before the tackle add up to yield the total momentum of the system after the tackle, when they're moving together.

Momentum is calculated as mass times velocity, so we first calculate the momentum of each player before the collision. For the linebacker: 120kg× 8.6m/s = 1032 kg×m/s north. For the halfback: 75kg× 7.4m/s = 555 kg×m/s east.

These two momentum vectors form a right triangle, with the hypotenuse representing the  result vector or total momentum of the system after the tackle. We can use the Pythagorean theorem to calculate the magnitude of this vector: sqrt((1032²)+(555²)) = 1169 kg*m/s.

Since the players are moving together after the collision, the mass we use to find the final velocity should be the total mass of both players: 120kg + 75kg = 195 kg. The magnitude of the velocity at which the two players move together immediately after the collision can then be obtained by dividing the total momentum by the total mass: 1169kg×m/s / 195kg = 5.99 m/s.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ2


Related Questions

Which material are you most likely to find in the D horizon? A.Plant roots B.Bedrock C.Humus D.Iron oxide

Answers

i truly believe it's D. iron oxide
Answer;

Bedrock

Explanation;Soil is made up of several main horizons, namely; A, B, and C. Some soil may have O horizons which may be a thin or a thick layer and lack in some other soils. other layers are D, R and E horizons,When all the layers are put together they form a soil profile. D- horizon is a layer of soil that may occur below the B-horizon or C-horizon when it is present. Materials such as bedrock are found on this layer.

What is the defining feature of a system?  A. properties that don’t change  B. collision   C. interaction   D. gravitational force

Answers

The correct option is C. 
A system is defined as a collection of components or elements which are dependent on one another and are working together to form a complete unit. The defining feature of a system is interaction; this is because the components of the system are interacting together in order to perform their expected functions.

An earth satellite moves in a circular orbit at a speed of 5000 m/s. part a what is its orbital period? express your answer using two significant figures

Answers

Its orbital period is about 5.6 hours

[tex]\texttt{ }[/tex]

Further explanation

Newton's gravitational law states that the force of attraction between two objects can be formulated as follows:

[tex]\large {\boxed {F = G \frac{m_1 ~ m_2}{R^2}} }[/tex]

F = Gravitational Force ( Newton )

G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )

m = Object's Mass ( kg )

R = Distance Between Objects ( m )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

speed of satellite = v = 5000 m/s

mass of earth = M = 6 × 10²⁴ kg

Asked:

orbital period = T = ?

Solution:

[tex]\Sigma F = ma[/tex]

[tex]G \frac{ M m} { R^2 } = m \frac{v^2}{R}[/tex]

[tex]G \frac{ M } { R^2 } = \frac{v^2}{R}[/tex]

[tex]G \frac{ M } { R } = v^2 [/tex]

[tex]R = G \frac{ M } { v^2 } [/tex]

[tex]2 \pi R = 2 \pi G \frac{ M } { v^2 } [/tex]

[tex]\frac{ 2 \pi R }{ v } = (2 \pi G \frac{ M } { v^2 } ) \div v[/tex]

[tex]T = 2 \pi G \frac{ M } { v^3 }[/tex]

[tex]T = 2 \pi \times 6.67 \times 10^{-11} \times \frac{ 6 \times 10^{24} } { 5000^3 }[/tex]

[tex]T \approx 20116 \texttt{ s}[/tex]

[tex]T \approx 5.6 \texttt{ hours}[/tex]

[tex]\texttt{ }[/tex]

Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Gravitational Fields

The orbital period of a satellite moving at 5000 m/s in a circular orbit around Earth is approximately 8500 seconds.

To find the orbital period (T) of a satellite moving in a circular orbit at a speed of 5000 m/s, we need to use the formula for orbital speed:

[tex]v = \frac{2\pi r}{T}[/tex]

Here, v is the orbital speed, and r is the radius of the orbit. We can rearrange this formula to solve for the period (T):

[tex]T = \frac{2\pi r}{v}[/tex]

First, we need to find the radius of the satellite's orbit. Assuming the satellite is close to Earth's surface, we'll use Earth's radius plus an additional small altitude:

r = 6371 km + 400km = 6.771 x 10⁶ m

Now, substitute the values into the formula:

[tex]T = \frac{2\pi (6.771 \times 10^6 \, \text{m})}{5000 \, \text{m/s}}[/tex]

Calculating this gives:

T ≈ 8515.68 seconds

Expressing the answer with two significant figures:

T ≈ 8500 seconds

The orbital period of a satellite moving at 5000 m/s in a circular orbit around Earth is approximately 8500 seconds. This calculation uses the Earth's radius and the orbital speed provided.

When the cab is carrying its maximum capacity, at what average rate must the motor deliver energy to get the cab up to cruising speed?

Answers

A motor must lift a 1400-kg elevator cab. The cab's maximum occupant capacity is 400 kg, and its constant "cruising" speed is 1.6m/s . The design criterion is that the cab must achieve this speed within 2.0 s at constant acceleration, beginning from rest.

A 0.14-kg baseball is dropped from rest from a height of 2.0 m above the ground. what is the magnitude of its momentum just before it hits the ground if we neglect air resistance?

Answers

If a 0.14-kg baseball is dropped from rest from a height of 2.0 m above the ground, then the magnitude of its momentum just before it hits the ground would be  0.8764 kg - m / s.

What is momentum?

It can be defined as the product of the mass and the speed of the particle, it represents the combined effect of mass and the speed of any particle, and the momentum of any particle is expressed in Kg m/s unit.

As given in the problem if a 0.14-kg baseball is dropped from rest from a height of 2.0 m above the ground.

The velocity just before hitting the ground = √ ( 2 × 9.8 × 2)

                                                                       = 6.26 m / s

The magnitude of its momentum just before it hits the ground = 0.14 × 6.26

= 0.8764 kg - m / s

Thus, the magnitude of its momentum just before it hits the ground would be  0.8764 kg - m/s

To learn more about momentum from here  , refer to the link given below ;  

brainly.com/question/17662202

#SPJ5

The radius of the earth's very nearly circular orbit around the sun is 1.5×1011m. find the magnitude of the earth's velocity. assume a year of 365 days.

Answers

Final answer:

The magnitude of Earth's velocity in its orbit around the sun is approximately 29,450 m/s.

Explanation:

Given that the radius of Earth's orbit around the sun is 1.5 x 10^11 m, we can calculate the magnitude of Earth's velocity using the formula for the circumference of a circle: v = 2 × Pi × r / T, where v is the velocity, r is the radius of the orbit, and T is the period of the orbit. Since one year is equivalent to 365 days, we have T = 365 days. Plugging in the values, we get:  v = 2 × 3.14159 × 1.5 × 10^11 m / (365 × 24 × 60 × 60 s)

Simplifying the expression gives us:v ≈ 29,450 m/s

Part b suppose the magnitude of the gravitational force between two spherical objects is 2000 n when they are 100 km apart. what is the magnitude of the gravitational force fg between the objects if the distance between them is 150 km ? express your answer in newtons to three significant figures. hints fg = 889 n submitmy answersgive up correct significant figures feedback: your answer 890 n was either rounded differently or used a different number of significant figures than required for this part. part c what is the gravitational force fg between the two objects described in part b if the distance between them is only 50 km ?

Answers

The formula for gravitational force is:

F = G m1 m2 / r^2

where G m1 m2 are constants, therefore:

F r^2 = constant

 

Part b. Given F1 = 2000 N, r1 = 100 km

Find F2 = ?, r2 = 150 km

 

(2000 N) * (100 km)^2 = F2 * (150 km)^2

F2 = 888.89 N

 

 

Part c. Given F1 = 2000 N, r1 = 100 km

Find F2 = ?, r2 = 50 km

 

(2000 N) * (100 km)^2 = F2 * (50 km)^2

F2 = 8000 N

For each of the following systems and time intervals, select the appropriate version of
ΔK + ΔU + ΔEint = W + Q + TMW + TET + TER,
the conservation of energy equation.
(a) the heating coils in your toaster during the first five seconds after you turn the toaster on

ΔEint = Q + TET + TER

ΔK + ΔU + ΔEint = W + Q + TMW + TMT


ΔU = Q + TMT

0 = Q + TMT + TET + TER

ΔK = W + Q

ΔEint = W + Q + TET

ΔU = W + Q + TMW + TMT

(b) your automobile from just before you fill it with gas until you pull away from the gas station at speed v

ΔEint = Q + TET + TER

ΔK + ΔU + ΔEint = W + Q + TMW + TMT


ΔU = Q + TMT

0 = Q + TMT + TET + TER

ΔK = W + Q

ΔEint = W + Q + TET

ΔU = W + Q + TMW + TMT

(c) your body while you sit quietly and eat a peanut butter and jelly sandwich for lunch

ΔEint = Q + TET + TER

ΔK + ΔU + ΔEint = W + Q + TMW + TMT


ΔU = Q + TMT

0 = Q + TMT + TET + TER

ΔK = W + Q

ΔEint = W + Q + TET

ΔU = W + Q + TMW + TMT

(d) your home during five minutes of a sunny afternoon while the temperature in the home remains fixed

ΔEint = Q + TET + TER

ΔK + ΔU + ΔEint = W + Q + TMW + TMT


ΔU = Q + TMT

0 = Q + TMT + TET + TER

ΔK = W + Q

ΔEint = W + Q + TET

ΔU = W + Q + TMW + TMT

Answers

Final answer:

The correct forms of the conservation of energy equation are chosen for different scenarios based on the type of energy transformations occurring. For a toaster, ΔEint = Q is more appropriate. For a car moving from a gas station, ΔK = W + Q and ΔU = W + Q are relevant. When eating a sandwich, ΔEint = W + Q is appropriate. For a house with constant temperature, 0 = Q + TMT + TET + TER is relevant.

Explanation:

The conservation of energy equation in physics considers various energy forms in the system, including kinetic energy (represented as ΔK), potential energy (represented as ΔU), and internal energy (represented as ΔEint). In each scenario, different energy forms come into play.

(a) For the toaster, the main transformation involves electrical energy is being converted into heat energy due to the heating coils' resistance. Therefore, the equation best suited for this scenario is ΔEint = Q , which signifies the increase in internal energy as equivalent to the heat gained.(b) For a car moving from a gas station, the potential and kinetic energies are of relevance. Therefore, ΔK = W + Q and ΔU = W + Q are more relevant as they represent the changes in kinetic and potential energies as equivalent to work done and heat transferred.(c) When you're eating a sandwich, the body is primarily converting the sandwich's chemical energy into internal energy, making ΔEint = W + Q the best equation.(d) When the temperature inside the house remains constant, and there is no kinetic or potential energy involved, the conservation of energy equation simplifies to 0 = Q + TMT + TET + TER as there is no energy being added or lost.

Learn more about Conservation of Energy here:

https://brainly.com/question/35373077

#SPJ3

How can you make a solution saturated

A. Add more solvent
B. Add more solute
C. Add more solution
D. Decrease the concentration

Answers

Answer: The answer is B. Add more solute (took test)

Explanation:

Answer:

It's definitely B add more solute.

Explanation:

Mountain climbers have climbed to the top of mt. everest at an altitude of 8.85 km above sea level. the air pressure at this level is approximately _________ mb, and there is _______% of the atmosphere above the mountain climbers.

Answers

Mountain climbers have climbed to the top of mt. everest at an altitude of 8.85 km above sea level. the air pressure at this level is approximately 8850mb, and there is 33% of the atmosphere above the mountain climbers.

Final answer:

The air pressure at the top of Mt. Everest is around 253 mm Hg (33.7 kPa) due to the high altitude, resulting in significantly lower oxygen levels and causing extreme drying of breathing passages due to the cold, thin air.

Explanation:

The air pressure at the top of Mt. Everest (8.85 km above sea level) is significantly lower than at sea level due to the altitude. Specifically, the atmospheric pressure on the summit of Mt. Everest can be as low as 253 mm Hg, which corresponds to about 33.7 kPa (kiloPascals) or 0.308 atm (atmospheres).

This reduced pressure means that the oxygen content is much lower as well, posing significant challenges to climbers such as reduced oxygen availability for breathing and the extreme drying of breathing passages.

The partial pressure of oxygen at this altitude, considering that it comprises 20.9% of the atmospheric composition, would be considerably less than at sea level.

Climbers often need supplemental oxygen to compensate for the lower oxygen levels. The extreme drying experienced by climbers at high altitudes occurs because the cold, thin air contains very little moisture, leading to rapid evaporation of moisture from the breathing passages.

Which of the following is the SI unit used in measuring the temperature of a hot cup of coffee?

A. Joule

B. centigrade

C. Celsius

D. kelvin

Answers

Which of the following is the Sl unit used in measuring the temperature of a hot cup of coffee ?


Answer: Kevin 

                Good luck and have a nice day! :D

kelvin is the right answer

The mixture you separated was mixture of iron filings, sand, and salt. Based on your understanding of matter, is this mixture a homogeneous mixture or heterogeneous mixture? How do you know?

Answers

The answer is "Heterogeneous mixture because the filings and particles of sand and salt are distributed randomly in the mixture."

A mixture is a mix of at least two substances in any extent. This is not quite the same as a compound, which comprises of substances in settled extents.

A heterogeneous mixture is formed when the chemicals in the blend are not consistently conveyed all through the blend. For example, on the off chance that you add sand to salt, no measure of crushing can make sand and salt frame a homogeneous blend like salt and water. In this way, we can state that a blend of sand and salt will shape a heterogeneous mixture.

Answer;

-Heterogeneous mixture because the filings and particles of sand and salt are distributed randomly in the mixture

Explanation;A mixture is a substance that is made up of two or more substances.  Mixtures are not pure substances like the case of elements and compounds. A mixture may be either homogeneous or heterogeneous. A homogeneous mixture is a mixture in which the components are uniformly distributed. This means there is only one phase of matter, hence a homogeneous mixture can exist as a solid, gas or liquid. A heterogeneous mixture on the other hand is a type of mixture in which the components making the mixture are not uniform. A heterogeneous mixture contains more than one phases of matter. These types of mixtures may be either suspensions or colloids.

If x=450 mm, determine the mass of the counterweight s required to balance a 90-kg load, l.

Answers

Final answer:

To balance the 90-kg load, a counterweight with a mass of 90 kg is required.

Explanation:

To balance the system, the torque exerted by the 90-kg load, l, must be equal to the torque exerted by the counterweight, s. The torque is given by the product of the force and the lever arm. Since the distance from the fulcrum to the load is x=450 mm, the torque exerted by the load is (90 kg)(9.8 m/s^2)(0.45 m). To balance this torque, the counterweight must exert an equal torque but in the opposite direction. Therefore, the mass of the counterweight can be calculated using the equation:

 

torque load = torque counterweight
(90 kg)(9.8 m/s^2)(0.45 m) = mass counterweight(9.8 m/s^2)(0.45 m)

 

Simplifying and solving for the mass of the counterweight, we have:

 

mass counterweight = (90 kg)(0.45 m) / 0.45 m = 90 kg

 

Therefore, the mass of the counterweight required to balance the 90-kg load is 90 kg.

What is the magnitude of the frictional force exerted on the mug?

Answers

I can;t answer this question without any context. However, I found a similar problem with a given illustration as shown in the first picture attached. The angle is said to be 17°. The free body diagram is constructed as shown in the second picture attached. The solution is as follows:

∑Fy = 0
Fn = Wy
Fn = Wcos17° = (0.27 kg)(cos 17°) = 0.258 N

∑Fx = 0
Ff - Wx = 0
Ff = Wsin17° = (0.27 kg)(sin 17°) = 0.079 N

Thus, the magnitude of the frictional force is 0.079 N.

How are all paths that have a displacement of zero similar?

Answers

Displacement is known as the net movement of an object with respect to its original position. One may travel out of his city and return. Despite having covered many miles, he will have a displacement of 0.
This is true for all paths that have zero displacement, that they all return to their original position.
They all end where they began.

Can an object be in mechanical equilibrium when only a single force acts on it? explain.

Answers

No because if there is a force, there is acceleration which means the object is getting faster.

What is a Punnett square for a dragon

Answers

Dragon Genetics and the Punnet Square.Dragon Genetics showing how the manipulation of alleles changed the dragon phenotype. Punnett square showing the traits of the fruitfly. Genetics is the study of biologicial  in heritance.
A Punnett square is a diagram that is used to predict an outcome of a particular cross or breeding experiment. The diagram is used by biologists to determine the probability of an offspring having a particular genotype.

For the rotational part of the experiment, a student measures a force of 1.8 n when the radius is 12 cm and the angular velocity 10 rad/s.
a.what is the total mass of the object undergoing uniform circular motion?
b.if the same mass (at the same radius) is rotated at 5 rad/s, what will be the measured force?

Answers

Ans : The total measured force will be : total centripetal force F = m*r*w^2 F = force r = radius w = angular velocity 1.8 = m*0.12*10^2 mass m = 0.15 kg

The findings of Henri Becquerel and the Curies helped to discredit what notion held for a very long time? That matter can never be created or destroyed. Matter is made up of any smaller parts. Matter is radioactive and decays over time. That matter is invisible and indestructible.

Answers

Matter is radioactive and decays over time



Henri Becquerel discovered that uranium salts spontaneously emit a penetrating radiation that can be registered on a photographic plate.

hope this helps

The answer is: That matter is indivisible and indestructible

Through his experiment, Henri Becquerel found that matters can be stored within another object, (He took potassium uranyl sulfate and put it under the sun and then put the substance within photographic plates that he cover with black paper, ) . Curie found that over time matters would decay and eventually gone.

Rank the tensions in the ropes, t1, t2, and t3, from smallest to largest, when the boxes are in motion and there is no friction between the boxes and the horizontal surface.

Answers

The tensions in the ropes, from smallest to largest, are T1, T3, and T2.

When the boxes are in motion and there is no friction between the boxes and the horizontal surface, the tensions in the ropes can be ranked from smallest to largest as follows:

1. Tension in rope T1:

This is the smallest tension because it only needs to support the weight of box 1.

As long as box 1 is not accelerating vertically, the tension in T1 is equal to the weight of box 1.

2. Tension in rope T3:

This tension is greater than the tension in T1 because it needs to support the weight of both box 1 and box 2.

Since the two boxes are connected by T3, the tension in T3 is equal to the sum of the weights of box 1 and box 2.

3. Tension in rope T2:

This is the largest tension because it needs to support the weight of box 3, as well as the combined weight of box 1 and box 2.

Since both box 1 and box 2 are connected to box 3 by T2, the tension in T2 is equal to the sum of the weights of box 1, box 2, and box 3.

Hence, the tensions in the ropes, from smallest to largest, are T1, T3, and T2.

To know more about motion visit:

brainly.com/question/2748259

#SPJ12

The tensions in the ropes (t1, t2, and t3) when the boxes are in motion and frictionless can be ranked as follows: t1 < t2 < t3. by the principles of Newton's second law of motion.

When the boxes are in motion on a frictionless surface, the net force acting on each box is equal to its mass multiplied by its acceleration

(F = ma). Since all boxes experience the same acceleration, the ranking of tensions can be determined by comparing the magnitudes of the forces.

t1 corresponds to the box with the smallest mass. Its tension is just enough to overcome the gravitational force pulling it downward.

t2 corresponds to the middle box. It experiences a tension slightly greater than t1, as it needs to overcome both its own weight and the weight of the box below it.

t3 corresponds to the largest box. It experiences the highest tension among the three ropes since it needs to overcome its own weight and the combined weight of the other two boxes above it.

Therefore, the ranking of tensions from smallest to largest is t1 < t2 < t3, reflecting the relationship between mass, acceleration, and force in accordance with Newton's laws of motion.

Learn more about Newton's Laws here:

https://brainly.com/question/15280051

#SPJ3

Which group of animals would be served best by the following adaptations?

Large ears to dissipate heat.
Kidneys adapted to check water loss.
A nocturnal lifestyle

A) animals that live in deserts
B) animals that live in the tundra
C) animals that live in grasslands
D) animals that live in the rain forest

Answers

The answer to this question would be: A) animals that live in deserts 

Desert temperature is high, especially in the day, An animal that lives in the desert needs to adapt to the high temperature either by reducing the heat or by increasing heat loss. By becoming nocturnal, the animal also able to evade the sunlight so it was less exposed to the heat. 
Unlike other option, the desert is lacking water. Desert is mostly dry and water would be a resource that hard to find. In this case, kidneys adapted to check water loss would be a great help
The answer is A..........:3

G: assume that, at a certain angular speed ω2, the radius r becomes twice l. find ω2.

Answers

The angular speed at twice the initial radius becomes half of the initial angular speed.

Further Explanation:

Speed is the measure of a quantity of an object the tells how fast the object is moving in the other words we can define the speed that it is the distance covered by an body divided by the time taken to cover that distance. It is a quantity with only magnitude so it is a scalar quantity.

Given:

The certain angular speed is [tex]{\omega _2}[/tex].

The radius is [tex]r[/tex].

Concept:

The expression for the linear motion can be written as:

[tex]\fbox{\begin\\v=\dfrac{s}{t}\end{minispace}}[/tex]                               …… (1)

Here, [tex]v[/tex] is the linear speed, [tex]s[/tex] is the total distance covered and [tex]t[/tex] is the time taken to cover to distance.

The expression for the circular speed can be written as:

[tex]\fbox{\begin\\\omega=\dfrac{\theta }{t}\end{minispace}}[/tex]

Here, [tex]\omega[/tex] is the circular speed and [tex]\theta[/tex] is the angular displacement.

The expression for the total distance covered in term of angular displacement is:

[tex]s=\theta r[/tex]

Substitute [tex]\theta r[/tex] for [tex]s[/tex] in equation (1)

[tex]\begin{aligned}v&=\frac{{\theta r}}{t}\hfill\\v&=\frac{\theta }{t}\cdot r\hfill\\v&=\omega\cdot r\hfill\\\omega&=\frac{v}{r} \hfill\\ \end{aligned}[/tex]

From above expression the angular speed is inversely proportional to the radius.

[tex]\fbox{\begin\\\omega\propto\dfrac{1}{r}\end{minispace}}[/tex]

That is if the radius increases the angular speed decreases and if the radius decreases the angular speed increases.

Considered the linear speed remain content.

Case 1:

The angular speed is given by

[tex]{\omega _1}=\dfrac{v}{r}[/tex]                                                               …… (2)

Case 2:

The radius is double that is [tex]2r[/tex].

The angular speed is given by

[tex]{\omega _2}=\dfrac{v}{{2r}}[/tex]                                                         …… (3)

Divide equation (2) by equation (3).

[tex]\begin{aligned}\frac{{{\omega _2}}}{{{\omega _1}}}&=\frac{{\frac{v}{{2r}}}}{{\frac{v}{r}}}\hfill\\\frac{{{\omega _2}}}{{{\omega _1}}}&=\frac{1}{2}\hfill\\{\omega _2}&=\frac{{{\omega _1}}}{2}\hfill\\\end{aligned}[/tex]

Therefore, the angular speed at twice the initial radius becomes half of the initial angular speed.

Learn more:

1. Angular speed https://brainly.in/question/7744338

2. Angular velocity https://brainly.com/question/11209367

3. Angular speed https://brainly.com/question/4721004

Answer Details:

Grade: college

Subject: Physics

Chapter: Kinematics

Keywords:

Certain, angular speed, w2, radius, r, twice, w1/2, half, initial angular speed.

When there is no number in front of a chemical formula in a chemical equation, what number is understood?

Answers

The number in front is the number of molecules (or atoms) taking part in the (balanced) chemical reaction equation.

Final answer:

In a chemical equation, an absent coefficient in front of a chemical formula indicates that the understood number is '1', signifying one mole of the substance in the reaction.

Explanation:

When there is no number in front of a chemical formula in a chemical equation, it is understood that the number is '1'. In a balanced chemical equation, coefficients are used to indicate the mole ratio in which the reactants combine to form products. If a chemical formula has no coefficient written before it, we assume the coefficient is 1. This means one mole of the substance is involved in the reaction. Coefficients are particularly important as they reflect the relative numbers of molecules or formula units in the reactants and products.

A car speeds up as it rolls down a hill. which is this an example of? positive acceleration negative acceleration relative velocity

Answers

positive acceleration
Positive acceleration

A hot-air balloon is accelerating upward under the influence of two forces, its weight and the buoyant force. for simplicity, consider the weight to be only that of the hot air within the balloon, thus ignoring the balloon fabric and the basket. the hot air inside the balloon has a density of ρhot air = 0.93 kg/m3, and the density of the cool air outside is ρcool air = 1.29 kg/m3. what is the acceleration of the rising balloon?

Answers

Let V = the volume of the balloon
Force of gravity = V * ?hot * g downward
Buoyant force = V * ?cool * g upward
Net upward force F = V * ?cool * g - V * ?hot * g

F = V g (?cool - ?hot)

Mass of the balloon m = V ?hot

a = F/m = V g (?cool - ?hot)/(V ?hot)

a = g(?cool/?hot - 1)

a = 9.8(1.29/0.93 - 1)

a = 3.79 m/s^2

Answer is 3.79 m/s^2

Suppose that data are stored on 8.54-gbyte single-sided, double-layer dvds that weigh 15 g each. suppose that an eurostar rail service train, london to paris via chunnel, carries 10 4 kg of these dvds. the great circle distance of the line is 640 km and the traveling time is 2 hours, 15 minutes. what is the data transmission rate in bits per second of this system?

Answers

we get answer this quation


The data transmission rate of the Eurostar rail service train, London to Paris via Chunnel  is  11516003 bite/second.

What is  transfer rate?

Transfer rate is a common metric for gauging how quickly data or information moves from one place to another.

Amount of of data stored in single-side = 8.54-gbyte.

Mass of the one double-layer DVDs= 0.015 g.

Total mass of DVDs = 10⁴ kg.

Total number of DVDs = 10⁴  ÷ 0.015  = 666667

Total amount of data =  666667 × 2 × 8.54 × 1024 × 8 bite

Total time taken = 2 hour 15 min = 2.25 hour = (2.25 × 3600) s = 8100 second

The data transmission rate is = (666667 × 2 × 8.54 × 1024 × 8) ÷ 8100 bite/second

= 11516003 bite/second.

Therefore, the data transmission rate of the Eurostar rail service train, London to Paris via Chunnel is  11516003 bite/second.

Learn more about transfer rate here:

https://brainly.com/question/17029788

#SPJ6

A blue car pulls away from a red stop-light just after it has turned green with a constant acceleration of 0.3 m/s2. a green car arrives at the position of the stop-light 5 s after the light had turned green. what is the slowest constant speed which the green car can maintain and still catch up to the blue car?

Answers

Final answer:

The slowest constant speed that the green car can maintain and still catch up to the blue car is 3.75 meters per second.

Explanation:

To find the slowest constant speed which the green car can maintain and still catch up to the blue car, we need to determine the distance that the blue car travels during the 5-second interval before the green car arrives at the position of the stop-light.

Using the equation of motion for constant acceleration, we can calculate the distance traveled by the blue car with an initial velocity of 0 and an acceleration of 0.3 m/s²:

d = ut + 1/2at²

Where d is the distance, u is the initial velocity, t is the time, and a is the acceleration.

Substituting the given values into the equation, we have:

d = 0(5) + 1/2(0.3)(5)²

d = 0 + 1/2(0.3)(25)

d = 1/2(7.5)

d = 3.75 meters

Therefore, the slowest constant speed that the green car can maintain and still catch up to the blue car is 3.75 meters per second.

A dry cell does 7.5 j of work through chemical energy transfer 5.00C between terminals of the cell . What is the electric potential between the two terminals?

Answers

Final answer:

The electric potential between the terminals of a dry cell that does 7.5 joules of work to transfer 5.00 coulombs of charge is 1.5 volts.

Explanation:

The student asked for the electric potential between the terminals of a dry cell that does 7.5 joules (J) of work to transfer 5.00 coulombs (C) of charge. To find the electric potential (also known as voltage) across the terminals, we use the relationship that the work done (W) by the cell through electrical energy is equal to the charge (Q) multiplied by the potential difference (V), which can be expressed as W = QV. Rearranging this equation for V gives us V = W/Q.

Substituting the given values into the equation, we have:

V = 7.5 J / 5.00 C = 1.5 volts (V)

Therefore, the electric potential between the two terminals of the dry cell is 1.5 V. This result is the voltage of the dry cell when it is not supplying current and is therefore at its electromotive force (emf).

One mole of helium atoms has a mass of 4 grams. if a helium atom in a balloon has a kinetic energy of 1.224e-21 j, what is the speed of the helium atom? (the speed is much lower than the speed of light.) v = 6.12e-19 incorrect: your answer is incorrect. m/s

Answers

607 m/s First, let's calculate the mass of a helium atom. You do that by dividing the mass of 1 mole of helium atoms by avogadro's number. So 4 / 6.0221409e23 = 6.6422e-24 g = 6.6422e-27 kg The equation for kinetic energy is E = 0.5 M V^2 And we have 1.224e-21 J, which is 1.224e-21 kg*m^2/s^2 So substitute the known values into the equation for kinetic energy and solve for V 1.224e-21 kg*m^2/s^2 = 0.5 6.6422e-27 kg V^2 1.224e-21 kg*m^2/s^2 = 3.32108e-27 kg V^2 368555 m^2/s^2 = V^2 607 m/s = V

An object is suspended from the ceiling with two wires that make an angle of 40° with the ceiling. The weight of the body is 150 N. What is the tension in each wire?

41.6 newtons
82.3 newtons
150 newtons
117 newtons

Answers

Refer to the diagram shown below.

Let T =  the tension in each wire.
For equilibrium,
2T cos(50°) = 150 N
1.2856T = 150
T = 116.677 N ≈ 117 N

Answer: 117 N

Answer:

the Answer is D 117 newtons

Explanation:

Other Questions
As Saturn revolves around the sun, it travels at a speed of approximately 6 miles per second. Convert this speed to miles per minute. At this speed, how many miles will Saturn travel in 4 minutes? Do not round your answers. The Treaty of Indian Springs- sometimes referred to as the Second Treaty of Indian Springs- was signed in 1825. Led by Chief William McIntosh, the treaty ceded Creek lands in western Georgia to the United States government in exchange for lands west of the Mississippi River.Which of these BEST describes the motive of McIntosh when making this deal with the United States?A) He knew the land they were moving to was home to gold and silver deposits. B) He believed it was his people's best chance at avoiding bloodshed with Georgia settlers. C) He wanted to avoid the kind of war that began after the death of General Custer at Little Big Horn. D) He planned to use the money from the treaty to arm his warriors to strike against U.S. soldiers on the frontier. What were the three type of technology that helped the europeans to explore? How did the use of iron affect medieval farming What kind of interview should you recommend to goliath industries if they want to uncover the candidate's hidden attitudes and characteristics? N shooting an elephant, why does the subinspector call the narrator? How does geography influence the way we live? To a young infant, out of sight is literally out of mind. piaget stated that this was due to a lack of Neisseria meningitidis is able to survive inside macrophages and be transported throughout the body in them. neisseria meningitidis is able to survive inside macrophages and be transported throughout the body in them. a. True b. False In Jane Eyre by Charlotte Bront, which of the following is a true statement? Helen persuades Jane that it is better to endure pain yourself than to pass trouble along to others. Helen begins to see a different point of view after she talks with Jane about a teacher. Jane is happy to make a friend despite the harsh conditions at her new boarding school. Jane is dismayed by the harsh conditions and surprised by Helens self-effacing acceptance of cruelty. How is jamie pugh from britain's got talent doing now with his career? How did the artist create contrast in this artwork?A.primary colors next to secondary colorsB.light values next to dark valuesC.shapes next to formsD.shallow space next to deep space Which of the following is true? A. Stimulants can make anger worse. B. Stimulants can make depression worse. C. Depressants can make anger worse. D. All of the above use two unit multipliers to convert 56 centimeters to feet PLEASE ANSWER FAST!!!What characteristic makes osmosis different from diffusion?Question options:A. Osmosis occurs through a semipermeable membrane. Diffusion occurs through a permeable membrane.B. Net movement in osmosis is from areas of higher concentration to areas of lower concentration. Net movement in diffusion occurs from areas of higher concentration to areas of lower concentration.C. Osmosis requires facilitation by an energy-carrying molecule, such as ATP. Diffusion requires no additional energy to move molecules across the concentration gradient.D. Osmosis is used for gases, such as oxygen and carbon dioxide. Diffusion is used for water that contains salt or sugar molecules Between 1870 and 1900, the number of children younger than 16 working for wages rose from 700,000 to How to differentiate between cervical and thoracic vertebrae? How many grams of oxygen are formed when 8.20 moles of KOH are formed? 4 KO(s) + 2 H2O(l) 4 KOH(s) + O2(g) HELPThe element zinc is represented by the abbreviation ___. what weaknesse in the national government did shays's rebellion reveal Steam Workshop Downloader