Noam chose 3 songs from a pile of 20 songs to play at a piano recital. What is the probability that she chose The
Entertainer, Something Doing, and The Ragtime Dance?

Answers

Answer 1

Answer:

[tex]Pr=\dfrac{1}{1,140}[/tex]

Step-by-step explanation:

The probability definition is

[tex]Pr=\dfrac{\text{Number of favorable outcomes}}{\text{Number of all possible outcomes}}[/tex]

1. The number of favorable outcomes is 1, because there is the only way to choose The Entertainer, Something Doing, and The Ragtime Dance.

2. The number of all possible outcomes is

[tex]C^{20}_3=\dfrac{20!}{3!(20-3)!}=\dfrac{17!\cdot 18\cdot 19\cdot 20}{2\cdot 3\cdot 17!}=\dfrac{18\cdot 19\cdot 20}{6}=3\cdot 19\cdot 20=1,140[/tex]

Hence, the probability is

[tex]Pr=\dfrac{1}{1,140}[/tex]

Answer 2
Final answer:

The probability of Noam choosing 'The Entertainer', 'Something Doing', and 'The Ragtime Dance' from a pile of 20 songs for a piano recital is found by calculating the number of favorable outcomes (1 way to select these three songs) over the total number of ways to choose any 3 songs from 20, which is given by the combination formula C(20, 3).

Explanation:

The question you're asking about relates to the probability of Noam choosing three specific songs from a pile of 20. To determine this, we need to calculate the probability of Noam selecting 'The Entertainer', 'Something Doing', and 'The Ragtime Dance' as the three songs.

Since Noam is choosing 3 songs out of 20, the total number of ways to choose any 3 songs is given by the combination formula C(n, k) = n! / (k! (n-k)!) where n is the total number of items, and k is the number of items to choose. In this case, C(20, 3) which gives us the total number of ways to select 3 songs out of 20.

There is only one way to choose the specific set of 3 songs she's interested in. Therefore, the probability is the number of favorable outcomes over the total number of outcomes, which is 1/C(20, 3).


Related Questions

If f(x)=3x^2-2 and g(x)=4x+2, what is the value of (f+g)(2)

Answers

[tex](f+g)(x)=3x^2-2+4x+2=3x^2+4x\\\\(f+g)(2)=3\cdot2^2+4\cdot2=12+8=20[/tex]

Problem Page
A delivery truck is transporting boxes of two sizes: large and small. The combined weight of a large box and a small box is 80 pounds. The truck is transporting 55 large boxes and
70 small boxes. If the truck is carrying a total of 4850 pounds in boxes, how much does each type of box weigh?

Answers

For this case we propose a system of equations:

x: Variable representing the weight of large boxes

y: Variable that represents the weight of the small boxes

So

[tex]x + y = 80\\55x + 70y = 4850[/tex]

We clear x from the first equation:

[tex]x = 80-y[/tex]

We substitute in the second equation:

[tex]55 (80-y) + 70y = 4850\\4400-55y + 70y = 4850\\15y = 450\\y = 30[/tex]

We look for the value of x:

[tex]x = 80-30\\x = 50[/tex]

Large boxes weigh 50 pounds and small boxes weigh 30 pounds

Answer:

Large boxes weigh 50 pounds and small boxes weigh 30 pounds

Answer: A large box weighs 50 pounds and a small box weighs 30 pounds.

Step-by-step explanation:

Set up a system of equations.

Let be "l" the weight of a large box and "s" the weight of a small box.

Then:

[tex]\left \{ {{l+s=80} \atop {55l+70s=4,850}} \right.[/tex]

You can use the Elimination method. Multiply the first equation by -55, then add both equations and solve for "s":

[tex]\left \{ {{-55l-55s=-4,400} \atop {55l+70s=4,850}} \right.\\.............................\\15s=450\\\\s=\frac{450}{15}\\\\s=30[/tex]

Substitute [tex]s=30[/tex] into an original equation and solve for "l":

[tex]l+(30)=80\\\\l=80-30\\\\l=50[/tex]

Use a Venn diagram to answer the question. A survey of 180 families showed that 67 had a​ dog; 52 had a​ cat; 22 had a dog and a​ cat; 70 had neither a cat nor a​ dog, and in addition did not have a​ parakeet; 4 had a​ cat, a​ dog, and a parakeet. How many had a parakeet​ only?

Answers

Answer:

There are 13 families had a parakeet only

Step-by-step explanation:

* Lets explain the problem

- There are 180 families

- 67 families had a dog

- 52 families had a cat

- 22 families had a dog and a cat

- 70 had neither a cat nor a​ dog, and in addition did not have a​

 parakeet

- 4 had a​ cat, a​ dog, and a parakeet (4 is a part of 22 and 22 is a part

 of 67 and 520

* We will explain the Venn-diagram

- A rectangle represent the total of the families

- Three intersected circles:

 C represented the cat

 D represented the dog

 P represented the parakeet

- The common part of the three circle had 4 families

- The common part between the circle of the cat and the circle of the

 dog only had 22 - 4 = 18 families

- The common part between the circle of the dog and the circle of the

 parakeet only had a families

- The common part between the circle of the cat and the circle of the

 parakeet only had b families

- The non-intersected part of the circle of the dog had 67 - 22 - a =

  45 - a families

  had dogs only

- The non-intersected part of the circle of the cat had 52 - 22 - b =  

  30 - b families

  had cats only

- The non-intersected part of the circle of the parakeet had c families

  had parakeets only

- The part out side the circles and inside the triangle has 70 families

- Look to the attached graph for more under stand

∵ The total of the families is 180

∴ The sum of all steps above is 180

∴ 45 - a + 18 + 4 + 30 - b + b + c + a + 70 = 180 ⇒ simplify

- (-a) will cancel (a) and (-b) will cancel (b)

∴ (45 + 18 + 4 + 30 + 70) + (-a + a) + (-b + b) + c = 180

∴ 167 + c = 180 ⇒ subtract 167 from both sides

∴ c = 180 - 167 = 13 families

* There are 13 families had a parakeet only

a(12) = 50- 1.25x

how do I solve it​

Answers

Answer:

a(12) = 35

Step-by-step explanation:

Given

a(12) = 50- 1.25x

Value of x is 12

50 - 1.25(12)

Simplify

50 - 15

Solve

a(12) = 50 - 15

a(12) = 35

In a sample of 8 high school students, they spent an average of 28.8 hours each week doing sports with a sample standard deviation of 3.2 hours. Find the 95% confidence interval, assuming the times are normally distributed.

Answers

Answer:

[tex]26.12\:<\:\mu\:<\:31.48[/tex]

Step-by-step explanation:

Since the population standard deviation [tex]\sigma[/tex] is unknown, and the sample standard deviation [tex]s[/tex], must replace it, the [tex]t[/tex] distribution  must be used for the confidence interval.

The sample size is n=8.

The degree of freedom is [tex]df=n-1[/tex], [tex]\implies df=8-1=7[/tex].

With 95% confidence level, the [tex]\alpha-level[/tex](significance level) is 5%.

Hence with 7 degrees of freedom, [tex]t_{\frac{\alpha}{2} }=2.365[/tex]. (Read from the t-distribution table see attachment)

The 95% confidence interval can be found by using the formula:

[tex]\bar X-t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n} } )\:<\:\mu\:<\:\bar X+t_{\frac{\alpha}{2}}(\frac{s}{\sqrt{n} } )[/tex].

The sample mean is [tex]\bar X=28.8[/tex] hours.

The sample sample standard deviation is [tex]s=3.2[/tex] hours.

We now substitute all these values into the formula to obtain:

[tex]28.8-2.365(\frac{3.2}{\sqrt{8} } )\:<\:\mu\:<\:28.8+2.365(\frac{3.2}{\sqrt{8} } )[/tex].

[tex]26.12\:<\:\mu\:<\:31.48[/tex]

We are 95% confident that the population mean is between 26.12 and 31.48  hours.

​Thirty-five math​ majors, 23 music majors and 65 history majors are randomly selected from 586 math​ majors, 224 music majors and 254 history majors at the state university. What sampling technique is​ used?

Answers

Answer: Simple random sampling

Step-by-step explanation:

Simple random sampling is a technique of sampling in which an experimenter selects the group of samples or subjects randomly from a large group of population. Each sample is chosen randomly by chance and each entity of a population has equal possibility of being selected as sample.

According to the given situation, simple random sampling is the technique that should be used for sampling.

The Royal Fruit Company produces two types of fruit drinks. The first type is 55% pure fruit juice, and the second type is 100% pure fruit juice. The company is attempting to produce a fruit drink that contains 70% pure fruit juice. How many pints of each of the two existing types of drink must be used to make 240 pints of a mixture that is 70%
pure fruit juice?

Answers

Answer:

First type of fruit drinks: 160 pints

Second type of fruit drinks: 80 pints

Step-by-step explanation:

Let's call A the amount of first type of fruit drinks. 5.5% pure fruit juice

Let's call B the amount of second type of fruit drinks. 100% pure fruit juice

The resulting mixture should have 70% pure fruit juice and 240 pints.

Then we know that the total amount of mixture will be:

[tex]A + B = 240[/tex]

Then the total amount of pure fruit juice in the mixture will be:

[tex]0.55A + B = 0.7 * 240[/tex]

[tex]0.55A + B = 168[/tex]

Then we have two equations and two unknowns so we solve the system of equations. Multiply the first equation by -1 and add it to the second equation:

[tex]-A -B = -240[/tex]

[tex]-A -B = -240[/tex]

                  +

[tex]0.55A + B = 168[/tex]

--------------------------------------

[tex]-0.45A = -72[/tex]

[tex]A = \frac{-72}{-0.45}[/tex]

[tex]A = 160\ pints[/tex]

We substitute the value of A into one of the two equations and solve for B.

[tex]160 + B = 240[/tex]

[tex]B = 80\ pints[/tex]

Final answer:

To make 240 pints of a mixture that is 70% pure fruit juice, you will need 160 pints of the first type of fruit drink (55% pure fruit juice) and 80 pints of the second type of fruit drink (100% pure fruit juice).

Explanation:

To solve this problem, we can set up a system of equations. Let's say x represents the number of pints of the first type of fruit drink (55% pure fruit juice) and y represents the number of pints of the second type of fruit drink (100% pure fruit juice). We know that the total number of pints of the mixture is 240, so we can write the equation x + y = 240. We also know that the desired percentage of pure fruit juice in the mixture is 70%, so we can write the equation (55% * x + 100% * y) / 240 = 70%. To solve this system of equations, we can use substitution or elimination method. Let's use substitution:

From the first equation, we can solve for x in terms of y: x = 240 - y. Substituting this into the second equation, we get ((55% * (240 - y)) + 100% * y) / 240 = 70%. Simplifying the equation, we have (0.55(240 - y) + y) / 240 = 0.70. Distributing and combining like terms, we get (132 - 0.55y + y) / 240 = 0.70. Simplifying further, we have (132 + 0.45y) / 240 = 0.70. Cross multiplying, we get 132 + 0.45y = 0.70 * 240. Simplifying, we have 132 + 0.45y = 168. Multiplying 0.45 with y, we get 0.45y = 168 - 132. Subtracting 132 from 168, we get 0.45y = 36. Dividing both sides of the equation by 0.45, we get y = 36 / 0.45. Evaluating this expression, we get y = 80. So, the number of pints of the second type of fruit drink (100% pure fruit juice) needed is 80. Substituting this value back into the first equation, we can solve for x: x + 80 = 240. Subtracting 80 from both sides of the equation, we get x = 240 - 80. Evaluating this expression, we get x = 160. Therefore, the number of pints of the first type of fruit drink (55% pure fruit juice) needed is 160.

Learn more about Solving Systems of Equations here:

https://brainly.com/question/29050831

#SPJ3

Walgreens sells both Kleenex and NyQuil. In a random sample of 5000 purchases, it was found that 1200 contained Kleenex and 540 contained NyQuil. These are not independent because sick people are more likely to buy both and healthy people more likely to buy neither. In looking into that, it was found that 360 purchases contained both.
a. Make a two-way table to display this information. Fill in the table with the missing entries, and be sure your table has row and column totals.

b. If we randomly select a purchase that contained Kleenex, what is the probability it also contained NyQuil?

c. What percent of all purchases didn’t contain either product?

Answers

I’m just doing this for the thing

If (-3, y) lles on the graph of y = 3*, then y =

Answers

The line y = 3 means that x = 0.

The point (-3, y) tells me that x = -3 when y is 3.

So, y = 3 completes the point (-3, 3).

Suppose that we have a sample space S = {E 1, E 2, E 3, E 4, E 5, E 6, E 7}, where E 1, E 2, ..., E 7 denote the sample points. The following probability assignments apply: P(E 1) = 0.1, P(E 2) = 0.15, P(E 3) = 0.15, P(E 4) = 0.2, P(E 5) = 0.1, P(E 6) = 0.05, and P(E 7) = 0.25.
A= {E1, E4, E6}
B= {E2, E4, E7}
C= {E2, E3, E5, E7}
(a) Find P(A), P(B), and P(C). (b) What is P(A ∩ B)? (c) What is P(A ∪ B)? (d) Are events A and C mutually exclusive?

Answers

Answer:

(a) The probability of P(A), P(B), and P(C) are 0.35, 0.6 and 0.65 respectively.

(b) The probability of P(A ∩ B) is 0.2.

(c) The probability of P(A ∪ B) is 0.75.

(d) Events A and C mutually exclusive because the intersection of set A and C is null set or ∅.

Step-by-step explanation:

The given sample space is

[tex]S=\{E_1,E_2,E_3,E_4,E_5,E_6,E_7\}[/tex]

[tex]P(E_1)=0.1, P(E_2)=0.15,P(E_3)=0.15,P(E_4)=0.2,P(E_5)=0.1,P(E_6)=0.05, P(E_7)=0.25[/tex]

It is given that

[tex]A=\{E_1,E_4,E_6\}[/tex]

[tex]B=\{E_2,E_4,E_7\}[/tex]

[tex]C=\{E_2,E_3,E_5,E_7\}[/tex]

(a)

[tex]P(A)=P(E_1)+P(E_4)+P(E_6)=0.1+0.2+0.05=0.35[/tex]

[tex]P(B)=P(E_2)+P(E_4)+P(E_7)=0.15+0.2+0.25=0.6[/tex]

[tex]P(C)=P(E_2)+P(E_3)+P(E_5)+P(E_7)=0.15+0.15+0.1+0.25=0.65[/tex]

Therefore the probability of P(A), P(B), and P(C) are 0.35, 0.6 and 0.65 respectively.

(b)

A ∩ B represent the common elements of set A and set B.

[tex]A\cap B=\{E_4\}[/tex]

[tex]P(A\cap B)=P(E_4)=0.2[/tex]

The probability of P(A ∩ B) is 0.2.

(c)

A ∪ B represent all the elements of set A and set B.

[tex]A\cup B=\{E_1,E_2,E_4,E_6,E_7\}[/tex]

[tex]P(A\cup B)=P(E_1)+P(E_2)+P(E_4)+P(E_6)+P(E_7)[/tex]

[tex]P(A\cup B)=0.1+0.15+0.2+0.05+0.25=0.75[/tex]

The probability of P(A ∪ B) is 0.75.

(d)

Set A and C has no common element. So, the intersection of set A and C is empty set.

Yes, events A and C mutually exclusive because the intersection of set A and C is null set or ∅.

Final answer:

The probability of events A, B, and C are calculated by summing the individual probabilities of their constituent sample points. The probability of the intersection of events A and B is equal to the probability of the common sample point. The probability of the union of events A and B is obtained by subtracting the probability of the intersection from the sum of their individual probabilities. Events A and C are not mutually exclusive because they have common sample points.

Explanation:

(a) Probability of events A, B, and C:

P(A) = P(E1) + P(E4) + P(E6) = 0.1 + 0.2 + 0.05 = 0.35P(B) = P(E2) + P(E4) + P(E7) = 0.15 + 0.2 + 0.25 = 0.6P(C) = P(E2) + P(E3) + P(E5) + P(E7) = 0.15 + 0.15 + 0.1 + 0.25 = 0.65

(b) Probability of intersection of events A and B:

P(A ∩ B) = P(E4) = 0.2

(c) Probability of union of events A and B:

P(A ∪ B) = P(A) + P(B) - P(A ∩ B) = 0.35 + 0.6 - 0.2 = 0.75

(d) Mutually exclusive events A and C:

No, events A and C are not mutually exclusive because they have common sample points in E2 and E7.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative. f(t) = sqrt 9-x

Answers

Answer:The derivative of the function is:

       [tex]f'(x)= \dfrac{-1}{2\sqrt{9-x}}[/tex]

The domain of the function is:  [tex]x\leq 9[/tex]and the domain of the derivative function is: [tex]x\leq 9[/tex]Step-by-step explanation:

The function f(x) is given by:

   [tex]f(x)=\sqrt{9-x}[/tex]

The domain of the function is the possible values of x where the function is defined.

We know that the square root function [tex]\sqrt{x}[/tex] is defined when x≥0.

Hence, [tex]\sqrt{9-x}[/tex] will be defined when [tex]9-x\geq 0\\\\i.e.\\\\x\leq 9[/tex]

Hence, the domain of the function f(x) is: [tex]x\leq 9[/tex]

Also, the definition of derivative of x is given by:

[tex]f'(x)= \lim_{h \to 0}  \dfrac{f(x+h)-f(x)}{h}[/tex]

Hence, here by putting the value of the function we get:

[tex]f'(x)= \lim_{h \to 0} \dfrac{\sqrt{9-(x+h)}-\sqrt{9-x}}{h}\\\\i.e.\\\\f'(x)= \lim_{h \to 0} \dfrac{\sqrt{9-(x+h)}-\sqrt{9-x}}{h}\times \dfrac{\sqrt{9-(x+h)}+\sqrt{9-x}}{\sqrt{9-(x+h)}+\sqrt{9-x}}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{(\sqrt{9-(x+h)}-\sqrt{9-x})(\sqrt{9-(x+h)}+\sqrt{9-x})}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{9-(x+h)-(9-x)}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}[/tex]

Since,

[tex](a-b)(a+b)=a^2-b^2[/tex]

Hence, we have:

[tex]f'(x)= \lim_{h \to 0} \dfrac{-h}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{-1}{(\sqrt{9-(x+h)}+\sqrt{9-x})}\\\\\\i.e.\\\\\\f'(x)= \dfrac{-1}{2\sqrt{9-x}}[/tex]

Since, the domain of the derivative function is equal to the derivative of the square root function.

Also, the domain of the square root function is: [tex]x\leq 9[/tex]

Hence, domain of the derivative function is:  [tex]x\leq 9[/tex]

Answer:

-1/sqrt(1-9x)

Step-by-step explanation:

This is the answer

In terms of x, find an expression that represents the area of the shaded region. The outer square has side lengths of (x+5) and the inner square has side lengths of (x-2), as shown.

Answers

Answer:

Area = 14x + 21 square units

Step-by-step explanation:

The formula of an area of a square with side length a:

[tex]A=a^2[/tex]

The big square:

[tex]a=x+5[/tex]

Substitute:

[tex]A_B=(x+5)^2[/tex]           use  [tex](a+b)^2=a^2+2ab+b^2[/tex]

[tex]A_B=x^2+2(x)(5)+5^2=x^2+10x+25[/tex]

The small square:

[tex]a=x-2[/tex]

Substitute:

[tex]A_S=(x-2)^2[/tex]       use  [tex](a-b)^2=a^2-2ab+b^2[/tex]

[tex]A_S=x^2-2(x)(2)+2^2=x^2-4x+4[/tex]

The area of a shaded region:

[tex]A=A_B-A_S[/tex]

Substitute:

[tex]A=(x^2+10x+25)-(x^2-4x+4)=x^2+10x+25-x^2+4x-4[/tex]

combine like terms

[tex]A=(x^2-x^2)+(10x+4x)+(25-4)=14x+21[/tex]

if the probability of an event happening is 65% then the probability this event does not occur?

Answers

You must know that percent are ALWAYS taken out of 100. This means that 100 subtracted by 65 will give the percent that this event won't happen:

100 - 65 = 35

This event has 65% probability of happening and a 35% of NOT happening

Hope this helped!

~Just a girl in love with Shawn Mendes

Two friends went to get ice cream sundaes. They each chose a flavor of ice cream from a list of vanilla and chocolate and toppings from a list of hot fudge, strawberries, sprinkles, peanuts, and whipped cream. Use the sets below describing their choices and find B'.
Let A = {vanilla, chocolate, hot fudge, strawberries, sprinkles, peanuts, whipped cream}
Let B = {vanilla, hot fudge, sprinkles, whipped cream}
Let C = {chocolate, hot fudge, peanuts, whipped cream}
{vanilla, hot fudge, sprinkles, whipped cream}
{chocolate, strawberries, peanuts}
{chocolate, strawberries}
{vanilla, strawberries, peanuts}

Answers

Answer:

{chocolate, strawberries, peanuts}

Step-by-step explanation:

Given that three sets are

Let A = {vanilla, chocolate, hot fudge, strawberries, sprinkles, peanuts, whipped cream}

Let B = {vanilla, hot fudge, sprinkles, whipped cream}  

Let C = {chocolate, hot fudge, peanuts, whipped cream}

Then Universal set U = AUBUC

= {vanilla, chocolate, hot fudge, strawberries, sprinkles, peanuts, whipped cream}

B'=elements in U but not in B

={chocolate, strawberries, peanuts}

The resulting set is B' = {chocolate, strawberries, peanuts}.

To solve for B', we first need to understand that B' (B complement) consists of elements that are in set A but not in set B.

Given the sets:

A = {vanilla, chocolate, hot fudge, strawberries, sprinkles, peanuts, whipped cream}B = {vanilla, hot fudge, sprinkles, whipped cream}C = {chocolate, hot fudge, peanuts, whipped cream}

Set B includes: vanilla, hot fudge, sprinkles, and whipped cream. Therefore, B' will be the elements of set A excluding those in B.

Thus, B' is:

chocolatestrawberriespeanuts

Therefore, the set B' = {chocolate, strawberries, peanuts}.

This method can help you understand combinations without repetition effectively.

Expand the logarithm log 7(3x − 2)^2

Answers

[tex]\textbf{Transform}\\ \textrm{log} (7(3x -2)^2) \textbf{ into} \textrm{ log}(7) + \textrm{log}(3x-2)^2\\\\ \textbf{Expand} \\ \text{log}(3x-2)^2\\\\ \text{You can move 2 outside of }\text{log}(3x-2)^2\\\\ \textbf{Answer}\\ \text{log }7 + 2\text{ log}(3x-2)[/tex]

The lengths of plate glass parts are measured to the nearest tenth of a millimeter. The lengths are uniformly distributed with values at every tenth of a millimeter starting at 590.2, and continuing through 590.8. Determine the mean and variance of the lengths. (a) mean (in tenths of millimeters) Round your answer to two decimal places (e.g. 98.76). (b) variance (in tenths of millimeters2) Round your answer to three decimal places (e.g. 98.765).

Answers

Answer:     [tex]\text{Mean length}=590.5\ mm\\\\\text{Variance of the lengths}=0.03\ mm[/tex]

Step-by-step explanation:

The mean and variance of a continuous uniform distribution function with parameters m and n is given by :-

[tex]\text{Mean=}\dfrac{m+n}{2}\\\\\text{Variance}=\dfrac{(n-m)^2}{12}[/tex]

Given : [tex] m=590.2\ \ \ n=590.80[/tex]

[tex]\text{Then, Mean=}\dfrac{590.2+590.8}{2}=590.5\ mm\\\\\text{Variance}=\dfrac{(590.8-590.2)^2}{12}=0.03\ mm[/tex]

Problem Page
The Bailey family and the Harris family each used their sprinklers last summer. The water output rate for the Bailey family's sprinkler was 15 L per hour. The water output rate for the Harris family's sprinkler was 40 L per hour. The families used their sprinklers for a combined total of 55 hours, resulting in a total water output of 1325
. How long was each sprinkler used?

Answers

Answer:

Bailey family's sprinkler was used for 35 hours and Harris family's sprinkler was used for 20 hours.

Step-by-step explanation:

 Set up a system of equations.

Let be "b" the time Bailey family's sprinkler was used and "h" the time Harris family's sprinkler was used.

Then:

[tex]\left \{ {{b+h=55} \atop {15b+40h= 1,325}} \right.[/tex]

You can use the Elimination method. Multiply the first equation by -15, then add both equations and solve for "h":

[tex]\left \{ {{-15b-15h=-825} \atop {15b+40h= 1,325}} \right.\\.............................\\25h=500\\\\h=\frac{500}{25}\\\\h=20[/tex]

Substitute [tex]h=20[/tex] into an original equation and solve for "b":

[tex]b+20=55\\\\b=55-20\\\\b=35[/tex]

The AWP for a gallon (3785 ml) of antihistamine/ antitussive cough syrup is $18.75, with an additional 20% discount from the wholesaler. What is the cost of 1 pint of the medication?

Answers

Answer:

The cost of 1 pint of the medication would be $1.875.

Step-by-step explanation:

The AWP of 3785 ml ( 1 gallon ) cough syrup = $18.75

After an additional 20% discount from wholesaler the price would be

New price = 18.75 - (0.20 × 18.75)

                 = 18.75 - 3.75

                 = $15.00

Since 1 gallon ( 3785 ml) = 8 pints

Therefore, the price for 1 pint = [tex]\frac{15}{8}[/tex] = $1.875

The cost of 1 pint of the medication would be $1.875.

Consider the equation of the line, c(c2 + 2)y = c − x where c > 0 is a constant. (a) Find the coordinates of the x-intercept and the y-intercept. x-intercept ( , ) y-intercept ( , ) (b) Find a formula for the area of the triangle enclosed between the line, the x-axis, and the y-axis. A(c) =

Answers

The equation of the line indicates that the x and y-intercept and the formula for the area of the triangle are;

x-intercept (c, 0)

y-intercept (0, 1/(c² + 7))

A(c) = c/(2·(c² + 7))

The steps used to find the x-intercept and the y-intercept are presented as follows;

The equation of the line c·(c² + 7)·y = c - x, can be expressed in the slope intercept form to find the coordinates of the x-intercept and the coordinates of the y-intercept as follows;

c·(c² + 7)·y = c - x

y = (c - x)/(c·(c² + 7))

y = c/(c·(c² + 7)) - x/(c·(c² + 7))

y = 1/((c² + 7)) - x/(c·(c² + 7))

The above equation is in the slope-intercept form, y = m·x + c

Where c is the y-coordinate of the y-intercept, and (0, c) ids the coordinate of the y-intercept; Therefore, the coordinates of the y-intercept is; (0,  1/((c² + 7)))

The coordinate of the x-intercept can be found by plugging in y = 0, in the above equation to get;

0 = 1/((c² + 7)) - x/(c·(c² + 7))

x/(c·(c² + 7)) = 1/((c² + 7))

x = (c·(c² + 7))/((c² + 7))

(c·(c² + 7))/((c² + 7)) = c

x = c

Therefore coordinates of the x-intercept is; (c, 0)

The triangle enclosed by the line and the x-axis and y-axis is a right triangle, therefore;

The positive x and y-values of the x-intercept and y-intercept indicates that the area of the triangle is the product half the distance from the origin to the y-intercept and the distance from the origin to the x-intercept

Area = (1/2) × (1/((c² + 7)) - 0) × (c - 0)

(1/2) × (1/((c² + 7))) × (c) = c/(2·(c² + 7)

Area of the triangle, A(c) = c/(2·(c² + 7)

The complete question found through search can be presented as follows;

Consider the equation of the line c·(c² + 7)·y = c - x where c > 0 is a constant

(a) Find the coordinates of the x-intercept and the y-intercept

x-intercept (  ,  )

y-intercept (  ,  )

(b) Find a formula for the area of the triangle enclosed between the line, the x-axis and the y-axis

A square pyramid is 6 feet on each side. The height of the pyramid is 4 feet. What is the total area of the pyramid?

60 ft2
156 ft2
96 ft2
120 ft2

Answers

Answer:

Option C

Step-by-step explanation:

96ft2

Answer:

Area of pyramid = [tex]96[/tex]. square feet.

Step-by-step explanation:

Given : A square pyramid is 6 feet on each side. The height of the pyramid is 4 feet.

To find:  What is the total area of the pyramid.

Solution : We have given

Each side of square pyramid = 6 feet .

Height = 4 feet .

Area of pyramid = [tex](side)^{2} + 2* side\sqrt{\frac{(side)^{2}}{4} +height^{2}}[/tex].

Plug the values side =  6 feet  , height = 4 feet .

Area of pyramid = [tex](6)^{2} + 2* 6\sqrt{\frac{(6)^{2}}{4} + 4^{2}}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{\frac{36}{4} + 16}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{9 +16}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{25}[/tex].

Area of pyramid = [tex]36+ 12 *5[/tex].

Area of pyramid = [tex]36+ 60[/tex].

Area of pyramid = [tex]96[/tex]. square feet.

Therefore, Area of pyramid = [tex]96[/tex]. square feet.

Given the stem and leaf plot, which of the following statements is true?

STEM LEAF

2 9

3 2 6 7

4 1 2

5 0

6

7 5

a) There are no outliers on the stem and leaf plot; b) the numbers 29 and 75 are the outliers on the stem and leaf plot; c) the number 75 is an outlier on the stem and leaf plot; d) the number 60 is the outlier on the stem and leaf plot.

Answers

Answer: c) The number 75 is an outlier on the stem and leaf plot.

Step-by-step explanation:

An outlier is a value in data which is extremely large or small from all the values. It appears detached from the other values in data.

When we look in the given stem-leaf plot, there is no leaf attached to the stem with value 6.

It mean there is no value between 50 and 75.

It shows that the value of 75 is detached from the other values in the data.

The number 75 is an outlier on the stem and leaf plot.

Answer:

The answer is C

Step-by-step explanation:

You pick 7 digits (0-9) at random without replacement, and write them in the order picked. What is the probability that you have written the first 7 digits of your phone number

Answers

Final answer:

The probability of writing the first 7 digits of your phone number is 1/60480.

Explanation:

To determine the probability of choosing the first 7 digits of your phone number in the given scenario, we need to calculate the probability of choosing each digit correctly and in order. Since there are 10 digits to choose from, the probability of choosing the first digit correctly is 1/10. The probability of choosing the second digit correctly is 1/9, since one digit has already been chosen. Continuing this pattern, the probability of choosing all 7 digits correctly and in order is:



P(choosing all seven numbers correctly) = P(choosing 1st number correctly) * P(choosing 2nd number correctly) * ... * P(choosing 7th number correctly)



So, the probability is:



1/10 * 1/9 * 1/8 * 1/7 * 1/6 * 1/5 * 1/4 = 1/60480

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ2

Final answer:

The probability of writing the first 7 digits of your phone number is 1/604,800.

Explanation:

The probability of writing the first 7 digits of your phone number depends on the specific digits in your phone number. However, assuming that all digits are equally likely to be chosen, the probability can be calculated by multiplying the probabilities of choosing each digit correctly. Since there are 10 digits to choose from and you are picking 7, the probability would be:

Probability of choosing the first digit correctly: 1/10Probability of choosing the second digit correctly: 1/9 (since you are picking without replacement)Probability of choosing the third digit correctly: 1/8Probability of choosing the fourth digit correctly: 1/7Probability of choosing the fifth digit correctly: 1/6Probability of choosing the sixth digit correctly: 1/5Probability of choosing the seventh digit correctly: 1/4

To calculate the overall probability, you multiply these individual probabilities together:

1/10 * 1/9 * 1/8 * 1/7 * 1/6 * 1/5 * 1/4= 1/(10*9*8*7*6*5*4)= 1/604,800

So, the probability of writing the first 7 digits of your phone number is 1/604,800.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ12

Define a function sinc(x) (pronounced "sink of x") by: sinc(x)= {sin(x)/x if x is not 0 {1 if x = 0 Use this list of Basic Taylor Series to find the Taylor Series for f(x) = (sinc(x)) based at 0. a.Give your answer using summation notation. b.Give the interval on which the series converges.

Answers

You probably know that

[tex]\sin x=\displaystyle\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)!}[/tex]

Then

[tex]\mathrm{sinc}\,x=\displaystyle\frac1x\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)!}=\sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n+1)!}[/tex]

when [tex]x\neq0[/tex], and 1 when [tex]x=0[/tex].

By the ratio test, the series converges if the following limit is less than 1:

[tex]\displaystyle\lim_{n\to\infty}\left|\frac{\frac{(-1)^{n+1}x^{2n+2}}{(2n+3)!}}{\frac{(-1)^nx^{2n}}{(2n+1)!}}\right|=|x^2|\lim_{n\to\infty}\frac{(2n+1)!}{(2n+3)!}[/tex]

The limit is 0, so the series converges for all [tex]x[/tex].

A refrigerator contains 6 apples, 5 oranges, 10 bananas, 3 pears, 7 peaches, 11 plums, and 2 mangos. Imagine you stick your hand into the refrigerator and pull out a piece of fruit at random. What is the sample space for your action? ????={6, 5, 10, 3, 7, 11, 2}S={6, 5, 10, 3, 7, 11, 2} ????={apple, orange, banana, pear, peach, plum, mango}S={apple, orange, banana, pear, peach, plum, mango} ????={6 apples, 5 oranges, 10 bananas, 3 pears, 7 peaches, 11 plums, 2 mangos}

Answers

Answer:

4th Option is correct.

Step-by-step explanation:

Given:

Number of apples in refrigerator = 6

Number of oranges in refrigerator = 5

Number of bananas in refrigerator = 10

Number of pears in refrigerator = 3

Number of peaches in refrigerator = 7

Number of plums in refrigerator = 11

Number of mangoes in refrigerator = 2

A piece is randomly taken out from refrigerator.

To find: Sample Space of the experiment

Sample Space : It is a set which contain all the possible outcome / results of the experiment.

So, here Sample Space = { 6 apples , 5 oranges , 10 bananas , 3 pears , 7 peaches , 11 plums , 2 mangoes }

Therefore, 4th Option is correct.

trains A and B are 240 miles apart. Both start at the same time and travel toward each other. They meet 3 hours later. The speed of train A is 20 miles faster than train B. Find the speed of each train.

Answers

Final answer:

Train B travels at a speed of 30 miles per hour and train A travels at a speed of 50 miles per hour.

Explanation:

Let's say the speed of train B is x miles per hour. Since train A is 20 miles per hour faster, the speed of train A is x + 20 miles per hour.

Distance = Speed x Time

For train A, Distance = (x +20) * 3

For train B, Distance = x * 3

Since they meet 240 miles apart, the sum of their distances is 240:

(x + 20) * 3 + x * 3 = 240

3x + 60 + 3x = 240

6x = 180

x = 30

Hence, train B travels at a speed of 30 miles per hour and train A travels at a speed of 50 miles per hour.

In a survey of 520 likely voters in a certain city, 307 said that they planned to vote to reelect the incumbent mayor. What is the probability that a surveyed voter plans to vote to reelect the mayor? Write only a number as your answer. Round to two decimal places (for example: 0.43).

Answers

Answer: 0.59

Step-by-step explanation:

Probability is a measure that quantifies the likelihood that events will occur.

Probabilities can be numerically described by the number of desired outcomes divided by the total number of all outcomes .

In this case, the number of desired outcomes is 307 (surveyed voters who plan to vote to reelect the mayor), and the total number of all outcomes is 520 (total of surveyed voters) .

Then, the probability that a surveyed voter plans to vote to reelect the mayor is calculated as:

[tex]\frac{307}{520}=0.59[/tex]

Final answer:

The probability that a surveyed voter plans to vote to reelect the mayor is 0.59.

Explanation:

To find the probability that a surveyed voter plans to vote to reelect the mayor, we divide the number of surveyed voters who plan to reelect the mayor by the total number of surveyed voters.


Given that 307 out of 520 likely voters plan to reelect the incumbent mayor, the probability is:


Probability = Number of surveyed voters who plan to reelect the mayor / Total number of surveyed voters


Probability = 307 / 520 = 0.59 (rounded to two decimal places)

. Geometry The area of a triangular sign is 33 square meters. The base of the triangle is 1 meter less than double the altitude. Find the altitude and the base of the sign.

Answers

Answer: The altitude and the base of the sign are 6 meters and 11 meters respectively.

Step-by-step explanation:

Since we have given that

Area of triangular sign = 33 sq. meters

Let the altitude of the triangle be 'x'.

Let the base of the triangle be ' 2x-1'.

As we know the formula for "Area of triangle ":

[tex]Area=\dfrac{1}{2}\times base\times height\\\\33=\dfrac{1}{2}\times x(2x-1)\\\\33\times 2=2x^2-x\\\\66=2x^2-x\\\\2x^2-x-66=0\\\\2x^2-12x+11x-66=0\\\\2x(x-6)+11(x-6)=0\\\\(2x+11)(x-6)=0\\\\x=-\dfrac{11}{2},6\\\\x=-5.5,6[/tex]

Discarded the negative value of x for dimensions:

So, altitude of triangle becomes 6 meters

Base of triangle would be [tex]2(6)-1=12-1=11\ meters[/tex]

The probability that a student graduating from Suburban State University has student loans to pay off after graduation is .60. If two students are randomly selected from this university, what is the probability that neither of them has student loans to pay off after graduation?

Answers

Answer: 0.16

Step-by-step explanation:

Given: The probability that a student graduating from Suburban State University has student loans to pay off after graduation is =0.60

Then the probability that a student graduating from Suburban State University does not have student loans to pay off after graduation is =[tex]1-0.6=0.4[/tex]

Since all the given event is independent for all students.

Then , the probability that neither of them has student loans to pay off after graduation is given by :-

[tex](0.4)\times(0.4)=0.16[/tex]

Hence, the probability that neither of them has student loans to pay off after graduation =0.16

You want to have $600,000 when you retire in 10 years. If you can earn 8% interest compounded monthly, how much would you need to deposit now into the account to reach your retirement goal?

Answers

Answer:

  $270,314.08

Step-by-step explanation:

The multiplier each month is 1+0.08/12 ≈ 1.0066667, so after 120 months, the amount is multiplied by (1.0066667)^120 ≈ 2.2196402. The amount needed is ...

  $600,000/2.2196402 ≈ $270,314.08

Final answer:

To reach a retirement goal of $600,000 in 10 years with an 8% interest rate compounded monthly, you would need to deposit approximately $277,002.66 now.

Explanation:

In this case, we're using a formula to determine the amount needed to deposit today (P) for a future goal ($600,000) using an interest rate (r) of 8% compounded monthly for ten years. The formula to use is P = F / (1 + r/n)^(nt), where:

F is the future value of the investment ($600,000) r is the annual interest rate (8% or 0.08 as a decimal) n is the number of times that interest is compounded per unit t (12 times a year for our case) t is the time the money is invested for in years (10 years).

So, you need to plug these figures into the equation: P = 600,000 / (1 + 0.08/12)^(12*10). After doing the math, you would need to deposit around $277,002.66 now to reach your retirement goal of $600,000 in ten years given an 8% annual interest rate compounded monthly.

Learn more about Compound Interest here:

https://brainly.com/question/34614903

#SPJ2

It is known that for all tests administered last​ year, the distribution of scores was approximately normal with mean 74 and standard deviation 7.1. a. A particular employer requires job candidates to score at least 80 on the dexterity test. Approximately what percentage of the test scores during the past year exceeded 80​?

Answers

Answer: 19.77%

Step-by-step explanation:

Given: Mean : [tex]\mu=74[/tex]

Standard deviation : [tex]\sigma = 7.1[/tex]

The formula to calculate z-score is given by :_

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 80, we have

[tex]z=\dfrac{80-74}{7.1}\approx0.85[/tex]

The P-value = [tex]P(z>0.85)=1-P(z<0.85)=1-0.8023374=0.1976626[/tex]

In percent , [tex]0.1976626\times100=19.76626\%\approx19.77\%[/tex]

Hence, the approximate percentage of the test scores during the past year exceeded 80 =19.77%

Other Questions
Reporter Christopher Wren wrote about the miraculous escape from bombing of the dome of St. Pauls cathedral, designed by Sir Ernest PyleTrue or false Which graph represents a nonlinear relationship? A 5.0-kg object is pulled along a horizontal surface at a constant speed by a 15-n force acting 20 above the horizontal. How much work is done by this force as the object moves 6.0 m? when the author provides the details about angels and demons, he is? In the trade network, American colonists depended on England forA. Factory goodsB.cash cropsC. Skilled workers D. Raw materials 99 POINTS HELP ASAP PLEASE!!!Select the mathematical statement that is true. A.22 % 2 > 3 B.22 % 2 < 5 C.22 % 2 == 4 D.22 % 2 != 1This is for my python coding class thank you List 2 types of bone tissue. What does Muhammads view of Christian figure Jesus suggest about the Islamic faith? True or False. Helper T cells secrete chemicals known as cytokines which cause proliferation of B cells into antibody-secreting plasma cells and memory B cells. Which man witnessed d day as a correspondent Simplify 8 over negative 4 divided by negative 3 over 9. 6 6 12 12please help WILL MARK BRAINLIESTWhich expression represents the surface area of the cone? Calculate the kinetic energy of a 1158-kg car moving at 55 km/h. Lines g and h are parallel and m 1 = 45What is m 2 8? Given the functions, f(x) = 2x^2 + 2 and g(x) = 3x + 1, perform the indicated operation. When applicable, state the domain restriction. A)2x2 - 3x + 1B)2x2 - 3x + 3C)5x3 + 2x2 + 2D)6x3 + 6x + 3 As the old man stood there he saw something coming across the moor, something which terrified him so that he lost his witsThere was the long, gloomy tunnel down which he fled. And from what? A sheep-dog of the moor? Or a spectral hound, black, silent, and monstrous? Was there a human agency in the matter? Did the pale, watchful Barrymore know more than he cared to say? It was all dim and vague, but always there is the dark shadow of crime behind it. What do you notice about the style of this passage? It is an example of informal writing.The tone of the piece is conversational.Doyle has avoided the use of descriptive language.The sentences have different structures and lengths. Your environment can affect your health. Now that you have made a personal wellness plan,consider how you can make your environment "well." (12 points)1. How do you think ideas about what is normal or good in your community influence howpeople treat the environment around them?2. Research at least one way that your environment influences your health and differentways that you can lessen your negative impact on and improve your environmentDescribe your findings and cite your sources here.3. Do you think it is important to involve health, wellness, education, safety, and businessprofessionals in plans for improving the health of the environment? Explain your answer.4. Develop a long-term plan describing how you can positively impact your environment.Describe your plan here. which choices are equivalent to the expression below? check all that apply.6 square root of 3a square root of 54b square root of 108c square root of 18 * square root of 6d square root of 3 * square root of 6e square root of 3 * square root of 36f 108 Suppose that we have a sample space S = {E 1, E 2, E 3, E 4, E 5, E 6, E 7}, where E 1, E 2, ..., E 7 denote the sample points. The following probability assignments apply: P(E 1) = 0.1, P(E 2) = 0.15, P(E 3) = 0.15, P(E 4) = 0.2, P(E 5) = 0.1, P(E 6) = 0.05, and P(E 7) = 0.25.A= {E1, E4, E6}B= {E2, E4, E7}C= {E2, E3, E5, E7}(a) Find P(A), P(B), and P(C). (b) What is P(A B)? (c) What is P(A B)? (d) Are events A and C mutually exclusive? What role did farmers play in the development of economically stable communities?Farmers produced enough food to allow others to take on other jobsFarmers had difficulty fending off warriors from other groups.Women were no longer allowed to farmWarriors and craftsmen worked on behalf of the farmers.The abundance of food allowed for civilizations to form under the leadership of a rising political class.NEXT QUESTIONOTURN IT INASK FOR HELP2014 Glvalvon Inc. All rights reserved