materiel in which the relative location of the atom is fixed are

Answers

Answer 1
In terms of the states that matter can be, solid material is when the atoms are closely packed and are in relatively fixed location for the atoms that compose the substance.

Related Questions

a car has a speed of 2m/s and a mass of 1500 kg. what is the car's kinetic energy

Answers

We have: K.E. = mv² / 2
Here, m = 1500 Kg
v = 2 m/s

Substitute their values in the formula, 
K.E. = 1500 ×2² / 2
K.E. = 6000 / 2
K.E. = 3000 J or 3 KJ

Finally, answer of your question would be 3000 Joule or 3 Kilojoule

Hope this helps!

a substance that is made up of only one kind of atom is an?

Answers

Element, elements are the building blocks of our universe and are only composed of themselves

It is an element


that his the answer :)

A 4000kg truck is parked on a 15.0∘ slope.

How big is the friction force on the truck?

Answers

A 4000kg truck is parked on a 15.0∘ slope, the friction force on the truck is approximately 10,293 N.

We must take into account the truck's weight and the slope's angle in order to calculate the friction force on a truck that is parked on a hill.

The following formula can be used to determine the truck's weight:

Weight = mass × gravitational acceleration

Weight = 4000 kg × 9.8 m/s²

= 39,200 N

Parallel Component = Weight × sin(angle)

The angle of the slope is given as 15.0 degrees. Converting this to radians, we get:

Angle in radians = 15.0 degrees × (π/180)

≈ 0.2618 radians

Now we can calculate the parallel component:

Parallel Component = 39,200 N × sin(0.2618)

≈ 10,293 N

Therefore, the friction force on the truck is approximately 10,293 N.

For more details regarding friction force, visit:

https://brainly.com/question/13707283

#SPJ6

Substances X and Y are both nonpolar. If the volatility of X is higher than that of Y, what is the best explanation?
X’s molecules experience stronger dipole-dipole forces than Y’s molecules.
Y’s molecules experience stronger dipole-dipole forces than X’s molecules.
X’s molecules experience stronger London dispersion forces than Y’s molecules.
Y’s molecules experience stronger London dispersion forces than X’s molecules. r

Answers

The answer is,

D. Y’s molecules experience stronger London dispersion forces than X’s molecules.

(:

Suppose that a sled is accelerating at a rate of 2 m/s^2. if the net force is tripled and the mass is doubled, then what is the the new acceleration of the sled?

Answers

So new acceleration is 3 m/s^2
Final answer:

By using Newton's second law of motion, we can determine that the new acceleration of the sled when the net force is tripled and the mass is doubled is 3 m/s².

Explanation:

To calculate the new acceleration, we will use Newton's second law of motion which is F = m * a, where F is the net force, m is the mass of the object, and a is the acceleration. Initially, consider the force as F = m * a. After the changes, the new force and mass become F' = 3F = 2m * a', where F' is the new force, m' is the new mass, and a' is the new acceleration.

So, now you have the equation 3F = 2m * a'. Substitute the initial force F (m * a) into the equation and you get 3 * m * a = 2m * a'. Now you can solve for the new acceleration a', a' = (3/2) * a. Therefore, the new acceleration of the sled is 1.5 times the original, in this case 1.5 * 2 m/s² = 3 m/s². So the new acceleration of the sled is 3 m/s².

Learn more about Newton's Second Law here:

https://brainly.com/question/13447525

#SPJ2

How would the acceleration of a chain of three shopping carts compare with the acceleration of a single cart if the same force acted on both?
A. 1/3 as much the single
B. 1/2 as much the single
C. 3 times as much the single
D. 2 times as much the single

Answers

So in order to know the correct answer, let us analyze the problem. Given that a = F/m where a is acceleration, F is force and m is mass, here is the solution.

a = F/m 

a' = F/3m 

a'/a = 1/3

Based on this, the correct answer would be option A. 

1/3 as much the single  Hope this helps.

Which best compares AC and DC?

AC flows in one direction, and DC repeatedly switches direction.
DC flows in one direction, and AC repeatedly switches direction
AC is used only in generators, and DC is used only in motors
DC is used only in generators, and AC is used only in motors

Answers

Answer: DC flows in one direction, and AC repeatedly switches direction

Explanation:

DC stands for direct current.

AC stands for alternating current.

When current flows only in single direction, it is known as direct current. When current changes direction i.e. it alternates direction, it is known as alternating current.

There are both AC generators and DC generators.

AC generators supply power to home appliances and small motors. DC generators are used to power large electric motors.

Final answer:

AC flows in one direction, and DC repeatedly switches direction.

Explanation:

AC flows in one direction, and DC repeatedly switches direction. This is incorrect. AC, or alternating current, periodically changes direction, while DC, or direct current, flows in one direction only. Examples of AC include household electrical outlets and power generated by generators, while DC is commonly used in batteries and electronic devices.

DC flows in one direction, and AC repeatedly switches direction. This is the correct answer. As mentioned earlier, DC flows in one direction, while AC repeatedly switches direction.

Therefore, the best comparison between AC and DC is that DC flows in one direction, and AC repeatedly switches direction.

Learn more about AC and DC here:

https://brainly.com/question/33342198

#SPJ6

Which of the following is not a property of cells:

ability to reproduce
using energy for growth
all cells are the same
adapting to their environment

its timed

Answers

all cells are the same


(they all are quite different)

A volume of 229 mL of hydrogen is collected over water; the water level in the collecting vessel is the same as the outside level. Atmospheric pressure is 756.0 Torr and the temperature is 25°C. Calculate the atomic mass of the metal.

Answers

Final answer:

To calculate the atomic mass of the metal, we can use the ideal gas law. Given the pressure, volume, and temperature, we can determine the number of moles of hydrogen gas. By dividing the mass of hydrogen by the number of moles, we can calculate the atomic mass of the metal.

Explanation:

To calculate the atomic mass of the metal, we need to use the ideal gas law. The ideal gas law equation is PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, we need to convert the given pressure from Torr to atm by dividing it by 760. So, the pressure becomes 0.995789 atm.

Next, we convert the volume from mL to L by dividing it by 1000. So, the volume becomes 0.229 L.

Now, we can use the ideal gas law to calculate the number of moles of hydrogen. Rearranging the equation, we get n = (PV) / (RT).

Plugging in the values, we have n = (0.995789 atm * 0.229 L) / (0.08205 L atm /(K mol) * (25 + 273.15)K).

Simplifying the equation gives us n = 0.01012 mol.

Since hydrogen gas has a molar mass of 2.02 g/mol, the atomic mass of the metal can be calculated by dividing the mass of hydrogen by the number of moles. So, the atomic mass of the metal is (2.02 g/mol) / (0.01012 mol) = 199.60 g/mol.

a 20kg rock is on the edge of a 100m cliff. what gravitational energy does the rock process relative to the base of the cliff

Answers

The rock has 19600 J of gravitational potential energy relative to the base of the cliff.

The gravitational potential energy [tex]\( E_p \)[/tex] of an object relative to a reference point (in this case, the base of the cliff) can be calculated using the formula:

[tex]\[ E_p = mgh \][/tex]

Where:

m is the mass of the object (20 kg in this case)

g is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \) on Earth)[/tex]

h is the height of the object relative to the reference point (100 m in this case)

Substituting the values:

[tex]\[ E_p = (20 \, \text{kg}) \times (9.8 \, \text{m/s}^2) \times (100 \, \text{m}) \]\[ E_p = 20 \times 9.8 \times 100 \, \text{J} \]\[ E_p = 19600 \, \text{J} \][/tex]

So, the gravitational potential energy that the rock possesses relative to the base of the cliff is [tex]\( 19600 \, \text{J} \).[/tex]

Coughing forces the trachea to contract, which affects the velocity v of the air passing through the trachea. Suppose the velocity of the air during coughing is v = k(R-r)r2 where k and R are constants, R is the normal radius of the trachea, and r is the radius during coughing. What radius will produce the maximum air velocity?

Answers

The normal radius of the trachea does not change so you can view R as a constant as well. 


Find v ' and solve v ' = 0. 

v ' = k(R-r)(2r) + k(-1)(r^2) 

v ' = 2rk(R-r) + -kr^2 

v ' = 2rkR - 2kr^2 - kr^2 

v ' = 2rkR - 3kr^2 


Set v ' = 0 and solve for r. 


0 = 2rkR - 3kr^2 

0 = rk(2R - 3r) 

rk = 0 or 2R - 3r = 0 

r = 0 or 2R = 3r 

r = 0 or r = 2R/3 


Plug 0 and 2R/3 for the orginal v and the larger value is the maximum. 


If r = 0, then v = k(R - 0)(0^2) = 0 

If r = 2R/3, then v = k(R - 2R/3)(2R/3)^2 


v = k(R/3)(4R^2 / 9) 

v = 4kR^3 / 27 


Therefore, the radius of 2R/3 will produce the maximum air velocity of 4kR^3 / 27.

To find the radius that maximizes air velocity during coughing, we differentiate the given velocity equation, set it to zero, and solve for the radius. The maximum air velocity occurs when the radius r is two-thirds of the normal radius R. Therefore, the radius that maximizes air velocity is 2R / 3.

To find the radius[tex]\( r \)[/tex]that produces the maximum air velocity  v  during coughing, we need to maximize the function  v = [tex]k(R - r)r^2 \),[/tex] where  k  and  R are constants.

First, let's rewrite the function for clarity:

[tex]\[ v(r) = k(R - r)r^2 \][/tex]

To find the maximum value, we need to take the derivative of [tex]\( v(r) \)[/tex] with respect to  r , set it equal to zero, and solve for  r .

Take the derivative:

[tex]\[ \frac{dv}{dr} = k \frac{d}{dr}[(R - r)r^2] \][/tex]

Using the product rule:

[tex]\[ \frac{dv}{dr} = k \left[ (R - r) \cdot \frac{d}{dr}(r^2) + r^2 \cdot \frac{d}{dr}(R - r) \right] \][/tex]

[tex]\[ \frac{dv}{dr} = k \left[ (R - r) \cdot 2r + r^2 \cdot (-1) \right] \][/tex]

[tex]\[ \frac{dv}{dr} = k \left[ 2r(R - r) - r^2 \right] \][/tex]

[tex]\[ \frac{dv}{dr} = k \left[ 2rR - 2r^2 - r^2 \right] \][/tex]

[tex]\[ \frac{dv}{dr} = k \left[ 2rR - 3r^2 \right] \][/tex]

Set the derivative equal to zero:

[tex]\[ 0 = k \left[ 2rR - 3r^2 \right] \][/tex]

Since  k  is a constant and not equal to zero, we can divide both sides by  k :

[tex]\[ 0 = 2rR - 3r^2 \][/tex]

Factor out of the r :

[tex]\[ r(2R - 3r) = 0 \][/tex]

So, the solutions are:

[tex]\[ r = 0 \][/tex]

[tex]\[ 2R - 3r = 0 \][/tex]

Solve for r :

[tex]\[ 2R = 3r \][/tex]

[tex]\[ r = \frac{2R}{3} \][/tex]

The solution [tex]\( r = 0 \)[/tex] is not physically meaningful in this context since it would imply the trachea is completely closed. Thus, the radius that produces the maximum air velocity is:

[tex]\[ r = \boxed{\frac{2R}{3}} \][/tex]

A gas is confined to a container with a massless piston at the top. A massless wire is attached to the piston. When an external pressure of 2.03 bar is applied to the wire, the gas compresses from 6.40 to 3.20 L . When the external pressure is increased to 2.53 bar, the gas further compresses from 3.20 to 2.56 L .

In a separate experiment with the same initial conditions, a pressure of 2.53 bar was applied to the gas, decreasing its volume from 6.40 to 2.56 L in one step.

If the final temperature was the same for both processes, what is the difference between q for the two-step process and q for the one-step process in joules?

Answers

Final answer:

The difference in heat, q, between the two processes cannot be determined without additional information, such as the specific heat capacities or the number of moles of gas. Since the final temperature is the same, the difference in work done relates to the difference in heat q due to the first law of thermodynamics, but exact values require further data.

Explanation:

To determine the difference between q for the two-step process and q for the one-step process, we need to apply the principles of thermodynamics. Since the gas is ideal, we can use the formula q = nCΔT, where n is the number of moles, C is the molar heat capacity, and ΔT is the change in temperature. However, since the final temperature is the same for both processes, ΔT will be the same, implying that the heat exchange, q, is simply dependent on the pathway taken by the process.

In the two-step process, the work done is the sum of the work in each step. According to the formula W = -PΔV (work done by the gas is negative when compressed), the external pressure multiplied by the change in volume gives us the work. Since the work done by the gas is different in the two-step and one-step processes, the heat q will also differ according to the first law of thermodynamics, which states that the change in internal energy is equal to the heat added to the system plus the work done on the system (ΔU = q + W).

Given that the final internal energy is the same in both cases because the final temperature is the same, the difference in work done between the processes will equal the difference in heat exchanged. However, without specific heat capacities or the amount of substance (moles), we cannot calculate the exact difference in q.

two cars are each traveling at 72 km/h one car is traveling northeast, and the other is traveling south the two cars have different ____

Answers

There velocities will be different cuz velocity is a vector quantity ( depends on magnitude as well direction). Here same magnitude but different direction. So answer is velocity.

Answer:

Velocities

Explanation:

Given that, two cars are each traveling at 72 km/h one car is traveling northeast, and the other is traveling south. Since, both objects are moving with same speeds but the direction of both cars is opposite. In this case, both cars will have different velocities. Velocity of an object is vector quantity i.e. it will have same magnitude but different velocity.

Hence, two cars have different velocities.

Where are valence electrons located?

Inner most shell

Outer most shell

Answers

it is the outer most shell

High energy waves have
Choose one answer.
a. long wavelengths and low frequencies.
b. long wavelengths and high frequencies.
c. short wavelengths and low frequencies.
d. short wavelengths and high frequencies

Answers

Wavelength and frequency are inversely related, and frequency and energy are directly related. This means that if the wavelength increases, both frequency and energy are going to decrease (since they direction is the same), and vice versa.
So, having that in mind, high energy waves have D. short wavelengths and high frequencies. 

MgBr2 2 is a subscript what does the subscript indiacate

Answers

The subscript in symbol equations within chemistry represents how many atoms there of that element within the compound or molecule. So your equation is magnesium bromide(2) essentially meaning it is a compound consisting of 1 magnesium atoms and 2 bromine atoms attached to it (bound with).

through which medium would sound travel the fastest, water, a steel bar, or nitrogen gas explain

Answers

It would travel faster through a steel bar, because sound waves travel by vibrating molecules in a medium. In solids, these molecules are spaced closer together, causing sound to travel faster through it. so that means the second fastest medium is liquid and the slowest is gas

A rock is dropped from a cliff and hits the ground 6.0 seconds later. How high is the cliff?

Answers

it all depends on the wight of the rock to but each 1 sec is 1 mile so about 6 miles

Answer:

The height of the cliff is found to be 176.4 m

Explanation:

Since, the body is being dropped from a certain height and reaches the ground in some time. Thus, we can apply the equations of motion (modified for vertical motion) in this case, due to constant accelerated motion. We have the following data:

Acceleration due to gravity = g = 9.8 m/s²

Time to reach ground = t = 6 sec

Initial Velocity of the Rock = Vi = 0 m/s (Because, the rock will be at rest, initially)

Height of cliff = H = ?

Now, applying second equation of motion (modified for vertical motion), to the rock, between the top of the cliff and ground, we get:

H = Vi t + (1/2)gt²

Using values:

H = (0 m/s)(6 sec) + (1/2)(9.8 m/s²)(6 sec)²

H = 176.4 m

Kathy is changing the tire of her car on a steep hill 20m high. She trips and drops the 10kg spare tire which rolls down the hill. What is the speed of the tire at the top of the next hill if the height of the hill is 5m high?

Answers

Final answer:

The speed of the tire at the top of the 5m hill, calculated using conservation of energy principles and ignoring any work done by friction, is approximately 17.15 m/s.

Explanation:

To solve this problem, we can use the conservation of energy principle, which states that if no external work is done on the system (like work by friction), the total mechanical energy remains constant. This means that the potential energy lost by the tire as it rolls down from the higher hill will be converted into kinetic energy.

The potential energy at the top of the 20m hill is given by PE = mgh, where m is mass, g is acceleration due to gravity (9.8 m/s2), and h is the height of the hill. At the 20m hill, PE = 10kg × 9.8 m/s2 × 20m. When the tire reaches the top of the next hill, its potential energy will be PE = 10kg × 9.8 m/s2 × 5m.

We can then equate the initial potential energy minus the final potential energy to the kinetic energy at the top of the 5m hill: KE = ½ mv2, and solve for the speed v.

Conservation of energy: mgh1 - mgh2 = ½ mv2

Calculation:

PE at 20m: (10 × 9.8 × 20) J = 1960 J

PE at 5m: (10 × 9.8 × 5) J = 490 J

Kinetic energy at 5m hill: 1960 J - 490 J = 1470 J

1470 J = ½ × 10kg × v2

v2 = (1470 J × 2) / 10kg

v2 = 294 m2/s2

v = √294 m2/s2

v ≈ 17.15 m/s

Therefore, the speed of the tire at the top of the 5m hill is approximately 17.15 m/s.

Which energy-level change shown in the diagram below emits electromagnetic radiation with the longest wavelength?

a) an electron moving from 4 to 5
b) an electron moving from 5 to 2
c) an electron moving from 6 to 1
d) an electron moving from 2 to 1

Answers

D.

Emission occurs when electrons move from a higher to a lower energy level and the energy of the emitted particle is inversely proportional to the wavelength. Thus, a high wave length means it was a small energy transition.

Which of the following statements best describes the current state of understanding regarding the apparent acceleration of the expansion of the universe?

Answers

There are no good statements on that list of choices.

In deep space, there is very little friction. Once they launch a probe into deep space, where there are no external forces acting on it, scientists shut the probe’s engines off because the scientists want the probe to stop immediately. speed up. slow down. move at constant velocity.

Answers

move at constant velocity. 



Answer:

move at constant velocity.

Explanation:

Newton's first law (also known as law of inertia) states that:

"when the net force acting on an object is zero, the object will keep its state of rest or if it is moving, it will continue moving at constant velocity".

In the case of the probe, friction in deep space is negligible, therefore when the engine is shut down, there are no more forces acting on the probe: the net force therefore will be zero, so the probe will move at constant velocity.

Is it true or false that at 40 mph, your response time for steering is ½ of a second and you will travel 29 feet during that time

Answers

I say it is true that at 40mph

Answer:

"At 40 mph, your response time for steering is ½ of a second and you will travel 29 feet during that time." The statement is true.

Explanation:

Speed, s = 40 mph

Converting mph to m/s :

1 mph = 0.44704 m/s

40 mph = 17.8816 m/s

Time taken, t = 1/2 seconds

Distance covered, d = speed × time

d = 17.8816 m/s × (1/2 s)

d = 8.9408 meters

Now converting meters to feet :

1 meter = 3.28084 foot

So, 8.9408 meters = 29.4 feets

or d = 29 feets

Hence, the given statement is true.

How much of earths water is found in our oceans??

Answers

According to some official datas, Approximately 97% of earth's water is in Oceans. That's the Greatest amount than any other water body,

Hope this helps!

How did Rutherford change the model of the atom?

A.
He used an experiment with gold foil to prove that an atom had a positive nucleus in the middle and was surrounded by negative electrons.

B.
He used thought problems to determine that matter could be divided into smaller pieces until it got to the atomic level.

C.
He used an experiment with Cathode Ray tubes to prove electrons existed when they changed the color of a gas.

D.
He used various experiments to prove that atoms of the same element have the same mass.

Answers

A.) He used an experiment with gold foil to prove that an atom had a positive nucleus in the middle and was surrounded by negative electrons.

Hope this helps!

Bobby tries to push his new big screen TV into the living room. However, Bobby does not push hard enough and cannot move the TV. List and describe the forces that would be included on the free body diagram of Bobby's TV. Be sure to include the name, direction and brief description for each force. ...?

Answers

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.

Have Bobby as a horizontal force pushing towards/against the tv.
Have the force of gravity going downwards from the tv on the floor.
Have the force of fric±on between the Foor and the tv

Maybe another force could be bobby's feet pushing from the Foor and his weight (from gravity) bearingdown on his feet. If he didn't weigh more then the tv then he wouldn't be able to put enough pressureon the Foor to create the gripping fric±on force necessary to push the tv

What is the acceleration of an object if it goes from a velocity of 25 m/s to rest in 5.0 s?
a.–5 m/s2b. 5 m/s2c.–25 m/s2d. 25 m/s2

Answers

Acceleration = v/ t = - 25/5 = - 5 m/s^2 . Minus because object is deaccelerating. A is the correct answer.

A 60-W light bulb radiates electromagnetic waves uniformly in all directions. At a distance of 1.0 m from the bulb, the light intensity is I0, the average energy density of the waves is u0, and the rms electric and magnetic field values are E0 and B0, respectively.

1. At 2.0 m from the bulb, what is the light intensity?

2. At 2.0 m from the bulb, what is the rms magnetic field value?

3. At 2.0 m from the bulb, what is the average energy density of the waves?

Answers

Final answer:

The light intensity at 2.0 m from the bulb would be I0/4. The rms magnetic field value at 2.0 m from the bulb would be B0/2. The average energy density of the waves at 2.0 m from the bulb would be u0/4.

Explanation:

1. The light intensity follows the inverse square law, which means that the intensity decreases as the distance squared increases. So at 2.0 m from the bulb, the light intensity would be I0/4.

2. The rms magnetic field value is related to the light intensity through the equation B0 = sqrt((2u0cI0)/(ε0c^2)), where c is the speed of light and ε0 is the vacuum permittivity. Therefore, at 2.0 m from the bulb, the rms magnetic field value would be B0/sqrt(4) = B0/2.

3. The average energy density of the waves is equal to the energy per unit volume. It can be calculated using the formula u0 = ε0E0^2/2, where E0 is the rms electric field value. At 2.0 m from the bulb, the average energy density of the waves would be u0/4.

Learn more about Light intensity here:

https://brainly.com/question/29561338

#SPJ11

At 2.0 m from the 60-W light bulb, the light intensity is one-fourth of the intensity at 1.0 m, the RMS magnetic field value is half of the initial value, and the average energy density also becomes one-fourth of the initial value.

To solve the problem involving a 60-W light bulb radiating electromagnetic waves:

Light intensity at a distance of 2.0 m: Considering that intensity (I) varies inversely with the square of the distance (r) from the source, we apply the formula: [tex]\( I_2 = \frac{I_0}{4} \)[/tex]. Thus, at 2.0 m, the intensity [tex]\( I_2 = \frac{I_0}{4} \)[/tex]RMS Magnetic Field Value at 2.0 m: The RMS magnetic field value B is inversely proportional to the distance r. Therefore,[tex]\( B_2 = \frac{B_0}{2} \)[/tex]  at 2.0 m.Average Energy Density at 2.0 m: The energy density u is proportional to the intensity. Hence, at 2.0 m, u2 = u0 / 4.

Which is an example of transforming potential energy to kinetic energy? Check all that apply.



changing thermal energy to electrical energy


changing chemical energy to thermal energy


changing nuclear energy to radiant energy


changing radiant energy to electrical energy


changing mechanical energy to chemical energy

Answers

When we say potential energy, this is the energy at rest. And kinetic energy is the energy at motion. So, here are the examples of energy that is transforming from potential energy to kinetic energy: changing thermal energy to electrical energy, and changing radiant energy to electrical energy. Hope this answer helps.

what is the average salt content of seawater?

Answers

This gots to be the answer, average, seawater in the world's oceans has a salinity of approximately 3.5%, or 35 parts per thousand.
Other Questions
A computer virus is eating disk space. during the first day it eats 1/2 of the disk. during the second day, it eats 1/3 the remaining disk space. the third day it eats 1/4 of what still remains and the fourth day it eats 1/5 of what is left. what fraction of the original disk space remains intact? What is the difference between active transport and passive? Please be sure....Thank you. :3One of the core goals of successful businesses is to ______.A.decrease working capitalB.provide a return for investorsC.increase the operating ratioD.All of the above. Find the new price :Food bill : $55Sales Tax : 8%Tip : 18% A 200 centimeter-long wire is cut into three pieces. The second piece is 3 times as long as the first. The third piece is 2 times as long as the second. How long is each piece? In Van Goghs Starry Night, he incorporated symbolic expression, using the visual elements of art, through all of the following actions, except which?a.The stars appear to interact with nature and the environment below, rather than being above it as they often appear in various other pieces of art.b.The houses are painted small and seem to almost blend into the ground.c.The artist has created the piece so that the negative space overpowers the positive space.d.The cedar trees and mountains seem to be reaching for the sky. 2.Construct a line that is perpendicular to line m and that passes through point P. based on their chemical formulas, which of these compounds is not likely to be an ionic compound: KBr, SO2, or AlCl3? explain your answer. What did Pope Urban II promise the people, as the First Crusade started? What is the absolute value of -5.75? Rocky shores serve as a feeding ground forA. large fish. B. lichens. C. birds. D. sea squirts. A basketball player team posts player foul shot ratios: Jon made 18 of 19 Jim got 5/8 in Joe wrote .94. Who was a better shooter? The state of Utah covers 82, 144 square miles. The state of Montana covers 145, 552 square miles. What is th3 total area of the two states? Which text in these excerpts from Virginia Woolf's Mrs. Dalloway deal with the motif of water?How fresh, how calm, stiller than this of course, the air was in the early morning; like the flap of a wave; the kiss of a wave; chill and sharp and yet (for a girl of eighteen as she then was) solemn, feeling as she did, standing there at the open window, that something awful was about to happen; looking at the flowers, at the trees with the smoke winding off them and the rooks rising, falling; standing and looking until Peter Walsh said, "Musing among the vegetables?"was that it?"I prefer men to cauliflowers"was that it? He must have said it at breakfast one morning when she had gone out on to the terracePeter Walsh.(June had drawn out every leaf on the trees. The mothers of Pimlico gave suck to their young. Messages were passing from the Fleet to the Admiralty. Arlington Street and Piccadilly seemed to chafe the very air in the Park and lift its leaves hotly, brilliantly, on waves of that divine vitality which Clarissa loved. To dance, to ride, she had adored all that.) A recent poll asked 82 college students 7 questions about their experience at college. When asked their age only 58 responded. A. Self interestB. Correlation and casualty C. Loaded questions D. Nonresponse Im stuck between self interest or Nonresponse Round 6,852 to the nearest thousand A "bit" is 1/8 of a dollar. How many bits are in a dollar. RATE FROM 1-51 = totally acceptable and appropriate2 = possibly wrong, but no action needs to be taken3 = wrong, and school authorities or internet services provides should take action4 = wrong, civil action would be taken by the target or the target's parents5 = wrong, and criminal charges should be pressedA student posts a negative review of a concert given by another student's band. The review focused on the band members' skill as musicians and the quality of their music.So which one do you think? Rate from 1-5!!Thank youuu Show that f is strictly monotonic on the given interval and therefore has an inverse function on that interval: f(x) = cot(x), (0,pi) Math 7 . Grade 7What is -2y + 10 + 2y - 8 simplified?HINT: write it down on paper first to see what you get!