look at the figure, PQRS. Find the values of x and y

Look At The Figure, PQRS. Find The Values Of X And Y

Answers

Answer 1

Answer:

Solution set is

[tex]x=5\\y=7[/tex]

Step-by-step explanation:

Given that in a picture there is a parallelogram PQRS

The diagonals PR and QS intersect at T

[tex]PT=x+2, TR=yQT=2x, TS = y+3[/tex]

By properties of parallelograms we know that diagonals bisect each other

Using this we get

[tex]PT=TR\\QT=TS\\x+2=y\\2x=y+3[/tex]

Substitute for y to get

[tex]2x=x+2+3\\x=5\\y=7[/tex]

Solution set is

[tex]x=5\\y=7[/tex]

Answer 2

Answer:

X=5 y=7

Step-by-step explanation:


Related Questions

If you're any good at compound inequalities.

Cindy has $20 to spend at the store. She buys a pack of colored pencils that cost $4 and jelly beans that cost $2 per pound. If she spends more than $8 at the store, write a compound inequality that shows the possible number of pounds of jelly beans she could have purchased.

Answers

Answer:

Step-by-step explanation:

Let x be the amount of colored pencils she buys, and let y be the number of jelly beans that she buys. We have the following inequalities..

4x + 2y ≤ 20     (the cost times the amount has to be less than or equal to 20)

4x + 2y > 8       (she spends more than $8)

We can rewrite the inequality like this...

8 < 4x + 2y ≤ 20

Now reduce since all coefficients are even, they can be divided by 2

4 < 2x + y ≤ 10

We want values of x and y that can satisfy the situation.  

There are many points,

If x = 1, then you can have y =3 to 8

If x = 2,  then you can have y = 1 to 6  

If x = 3, then you can have y = 1 to 4

If x = 4, then you can have y = 1 or 2

x = 5,  the y = o

Final answer:

To find the possible number of pounds of jelly beans Cindy could purchase, we set up a compound inequality considering the $4 spent on colored pencils and the $2 per pound cost of jelly beans. Solving the inequality 4 < 4 + 2x < 20 gives us the range 0 < x < 8, meaning Cindy could have bought more than 0 pounds but less than 8 pounds of jelly beans.

Explanation:

To solve the problem involving Cindy's shopping at the store, let's create a compound inequality with the following conditions: she has $20 to spend, she has already spent $4 on colored pencils, and the jelly beans cost $2 per pound. Cindy wants to spend more than $8 in total at the store, which includes the cost of the pencils and the jelly beans.

Let's define x as the number of pounds of jelly beans that Cindy can purchase. The cost of the jelly beans is $2 per pound, so the total cost for the jelly beans is $2x.

Since she spent $4 on pencils, adding the cost of the jelly beans needs to be more than $4 (to exceed the $8 total spending) but less than $20 (to stay within her budget). Hence, the compound inequality will be:

4 < 4 + 2x < 20

Now let's solve for x:

First, subtract 4 from all parts of the inequality:

0 < 2x < 16

Next, divide all parts by 2:

0 < x < 8

The solution tells us that Cindy could have purchased more than 0 but less than 8 pounds of jelly beans.

Graph the function. Describe its position relative to the graph of the indicated basic function.
f(x)= 4^x-3 ; relative to f(x)= 4^x

Answers

Answer:

The answer is (b) moved right 3 units and moved down 3 units

Step-by-step explanation:

∵ f(x) = 4^x ⇒ red in the graph

∵ f(x) = 4^(x-3) - 3 ⇒ blue in the graph

x  becomes x - 3 ⇒ means:

 The graph moved right 3 units

∵ f(x) = 4^x becomes 4^(x-3) - 3 ⇒ means:

  The graph moved down 3 units

∴ The answer is (b)

The graph of f(x) = 4ˣ - 3  is shifted down 3 units compared to the graph of f(x) = 4ˣ

What is an exponential function?

An exponential function is in the form:

y = abˣ

Where y,x are variables, a is the initial value of y and b is the multiplication factor.

The graph of f(x) = 4ˣ - 3 and f(x) = 4ˣ is attached.

The graph of f(x) = 4ˣ - 3  is shifted down 3 units compared to the graph of f(x) = 4ˣ

Find out more on exponential function at: https://brainly.com/question/12940982

WILL GIVE BRAINLIEST! PLEASE HELP!


What is measure of angle R?

Enter your answer as a decimal in the box. Round only your final answer to the nearest hundredth.

Answers

Answer:

[tex] R = 28.07^\circ [/tex]

Step-by-step explanation:

Since you have the lengths of all the sides, you can use sine, cosine, or tangent to find the answer. Let's use the tangent ratio.

For angle R, PQ is the opposite leg, and QR is the adjacent leg.

[tex] \tan R = \dfrac{opp}{adj} [/tex]

[tex] \tan R = \dfrac{8}{15} [/tex]

[tex] R = \tan^{-1} \dfrac{8}{15} [/tex]

[tex] R = 28.07^\circ [/tex]

Answer:

were are the answer selection

Step-by-step explanation:

PLEASE HELP What is the radical form of the expression 423 ? 43−−√ 34−−√ 42−−√3 24−−√3

Answers

For this case we must express the number "423" in a radical way.

We have to, we can rewrite it as:

[tex]423 = 9 * 47 = 3 ^ 2 * 47[/tex]

So, we have to:

[tex]423 = \sqrt {3 ^ 2 * 47}[/tex]

By definition of properties of powers and roots we have:

[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]

So:

[tex]423 = \sqrt {3 ^ 2 * 47} = 3 \sqrt {47}[/tex]

Answer:

[tex]3 \sqrt {47}[/tex]

Answer:

3^√4^2

Step-by-step explanation:

Please help me out with this question, THANKS!

Answers

Answer:

line B.)

Step-by-step explanation:

2x+5y=10

5y=-2x+20

(5y/5) (2x+10/5)

y= (-2/5)x +2

PLEASE HELP!! TIMED QUESTION!!
Solve for x.
y=x^2 +23

A. x= +/- sq root y +23
B. x = y - 23
C. x= +/- sq root y = 23
D. x = y + 23

Answers

y=×^2+23

Answer letter B

×=y-23

The graph represents the ways Janelle can win the beanbag toss game. Which describes a way Janelle can win the game? land on round 7 times; land on square 1 time land on round 6 times; land on square 2 times land on round 5 times; land on square 3 times land on round 4 times; land on square 4 times

Answers

Answer:

Land on round 4 times; land on square 4 times

Step-by-step explanation:

Answer:

The correct option is 4.

Step-by-step explanation:

In the graph orange region represents the ways Janelle can win the beanbag toss game.

From the given graph it is clear that the related line passes through the points (2,5) and (10,0).

If a line passes through two points, then the equation of line is

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

The equation of related line is

[tex]y-5=\frac{0-5}{10-2}(x-2)[/tex]

[tex]y-5=-\frac{5}{8}(x-2)[/tex]

Add 5 on both the sides.

[tex]y-5+5=-\frac{5}{8}(x)+\frac{5}{4}+5[/tex]

[tex]y=-\frac{5}{8}(x)+\frac{25}{4}[/tex]

The shaded region is above the line, so the sign of inequality is ≥.

The required inequality is

[tex]y\geq -\frac{5}{8}(x)+\frac{25}{4}[/tex]

Check the each point whether it satisfy the inequality of not.

In option (1), the given point is (7,1).

[tex]1\geq -\frac{5}{8}(7)+\frac{25}{4}[/tex]

[tex]1\geq 1.875[/tex]

This statement is false.

In option (2), the given point is (6,2).

[tex]2\geq -\frac{5}{8}(6)+\frac{25}{4}[/tex]

[tex]2\geq 2.5[/tex]

This statement is false.

In option (3), the given point is (5,3).

[tex]3\geq -\frac{5}{8}(5)+\frac{25}{4}[/tex]

[tex]3\geq 3.125[/tex]

This statement is false.

In option (4), the given point is (4,4).

[tex]4\geq -\frac{5}{8}(4)+\frac{25}{4}[/tex]

[tex]3\geq 3.75[/tex]

This statement is true. It means the point (4,4) describes a way Janelle can win the game. Therefore the correct option is 4.

Find the exact value by using a half-angle identity.

tangent of seven pi divided by eight

tan (7pi/8)

please show step by step

Answers

Answer:

The exact form of [tex]\tan(\frac{7\pi}{8})[/tex] is [tex]-\sqrt{2}+1[/tex]

Step-by-step explanation:

We need to find the exact value of [tex]\tan(\frac{7\pi}{8})[/tex] using half angle identity.

Since, [tex]\frac{7\pi}{8}[/tex]  is not an angle where the values of the six trigonometric functions are known, try using half-angle identities.

[tex]\frac{7\pi}{8}[/tex]  is not an exact angle.

First, rewrite the angle as the product of [tex]\frac{1}{2}[/tex] and an angle where the values of the six trigonometric functions are known. In this case,

[tex]\frac{7\pi}{8}[/tex] can be written as ;

[tex](\frac{1}{2})\frac{7\pi}{4}[/tex]

Use the half-angle identity for tangent to simplify the expression. The formula states that [tex] \tan \frac{\theta}{2}=\frac{\sin \theta}{1+ \cos \theta}[/tex]

[tex]=\frac{\sin(\frac{7\pi}{4})}{1+ \cos (\frac{7\pi}{4})}[/tex]

Simplify the numerator.

[tex]=\frac{\frac{-\sqrt{2}}{2}}{1+ \cos (\frac{7\pi}{4})}[/tex]

Simplify the denominator.

[tex]=\frac{\frac{-\sqrt{2}}{2}}{\frac{2+\sqrt{2}}{2}}[/tex]

Multiply the numerator by the reciprocal of the denominator.

[tex]\frac{-\sqrt{2}}{2}\times \frac{2}{2+\sqrt{2}}[/tex]

cancel the common factor of 2.

[tex]\frac{-\sqrt{2}}{1}\times \frac{1}{2+\sqrt{2}}[/tex]

Simplify,

[tex]\frac{-\sqrt{2}(2-\sqrt{2})}{2}[/tex]

[tex]\frac{-(2\sqrt{2}-\sqrt{2}\sqrt{2})}{2}[/tex]

[tex]\frac{-(2\sqrt{2}-2)}{2}[/tex]

simplify terms,

[tex]-\sqrt{2}+1[/tex]

Therefore, the exact form of [tex]\tan(\frac{7\pi}{8})[/tex] is [tex]-\sqrt{2}+1[/tex]

The exact value of [tex]\( \tan\left(\frac{7\pi}{8}\right) \)[/tex] is [tex]\( \frac{2 - \sqrt{2}}{\sqrt{2}} \)[/tex].

To find the exact value of [tex]\( \tan\left(\frac{7\pi}{8}\right) \)[/tex] using the half-angle identity, we proceed as follows:

1. Identify the appropriate half-angle identity:

  The tangent half-angle identity is given by:

  [tex]\[ \tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{\sin(\theta)} \][/tex]

2. Apply the identity for [tex]\( \theta = \frac{7\pi}{4} \)[/tex] :

  First, determine [tex]\( \theta = \frac{7\pi}{4} \)[/tex] , then find [tex]\( \frac{\theta}{2} \)[/tex].

3. Calculate [tex]\( \cos\left(\frac{7\pi}{4}\right) \)[/tex] and [tex]\( \sin\left(\frac{7\pi}{4}\right) \)[/tex]:

  [tex]\[ \cos\left(\frac{7\pi}{4}\right) = \cos\left(\frac{2\pi + \frac{\pi}{4}}{2}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]

  [tex]\[ \sin\left(\frac{7\pi}{4}\right) = \sin\left(\frac{2\pi + \frac{\pi}{4}}{2}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]

4. Apply the half-angle identity:

  [tex]\[ \tan\left(\frac{7\pi}{8}\right) = \frac{1 - \cos\left(\frac{7\pi}{4}\right)}{\sin\left(\frac{7\pi}{4}\right)} = \frac{1 - \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} \][/tex]

5. Simplify:

  [tex]\[ \tan\left(\frac{7\pi}{8}\right) = \frac{2 - \sqrt{2}}{\sqrt{2}} \][/tex]

Therefore, [tex]\( \tan\left(\frac{7\pi}{8}\right) = \frac{2 - \sqrt{2}}{\sqrt{2}} \)[/tex].

Using the half-angle identity for tangent, we substituted [tex]\( \theta = \frac{7\pi}{4} \)[/tex] and calculated [tex]\( \cos\left(\frac{7\pi}{4}\right) \)[/tex] and [tex]\( \sin\left(\frac{7\pi}{4}\right) \)[/tex] to find [tex]\( \tan\left(\frac{7\pi}{8}\right) \)[/tex] in exact form.

At t=0, a rock is dropped from rest from the top of a building 256 ft high. With what velocity will it strike the ground? What is it acceleration

Answers

Answer:

128 ft / second.

Step-by-step explanation:

It's acceleration is due to gravity and is 32 ft s^-2.

To find the velocity when it hits the ground we use the equation of motion

v^2 = u^2 + 2gs    where  u = initial velocity, g = acceleration , s = distance.

v^2 = 0^2 + 2 * 32 * 256

v^2 = 16384

v =  128 ft s^-1.

Final answer:

The rock will strike the ground with a velocity of 128 ft/s and will experience an acceleration of 32 ft/s^2.

Explanation:

First, we need to calculate the time it takes for the rock to fall to the ground. We can use the equation h = (1/2)gt^2, where h is the height of the building (256 ft) and g is the acceleration due to gravity (32 ft/s^2). Solving for t, we find t = sqrt(2h/g) = sqrt(2(256)/32) = 4 seconds.

Next, we can calculate the velocity of the rock just before it hits the ground. We can use the equation v = gt, where g is the acceleration due to gravity and t is the time it takes to fall (4 seconds). Plugging in the values, we find v = (32 ft/s^2)(4s) = 128 ft/s.

Lastly, the acceleration of the rock is equal to the acceleration due to gravity, which is 32 ft/s^2.

Learn more about Physics here:

https://brainly.com/question/32123193

#SPJ2

Find the polar equation of the conic with the focus at the pole, directrix x = 4, and eccentricity 1.
(picture provided)

Answers

Answer:

Choice D is correct

Step-by-step explanation:

The eccentricity of the conic section is 1, implying we are looking at a parabola. Parabolas are the only conic sections with an eccentricity of 1.

Next, the directrix of this parabola is located at x = 4. This implies that the parabola opens towards the left and thus the denominator of its polar equation contains a positive cosine function.

Finally, the value of k in the numerator is simply the product of the eccentricity and the absolute value of the directrix;

k = 1*4 = 4

This polar equation is given by alternative D

Maria did the work to see if 8 is a solution to the equation s-3=11.

s-3=11
8-3=11
5=11

Does her work show that 8 a solution to the equation?

A.)Yes, because the last line of the work is true.
B.)Yes, because 11 minus 8 equals 3.
C.)No, because 8 is even and the other numbers in the equation are odd.
D.)No, because the last line of the work is not true. 5 and 11 are not equal.

Answers

Answer: Option D.

Step-by-step explanation:

The expressions of boths sides of the equation must have the same value Or, in other words, if we call the expresion on the left side of the equation A, and the expression on the right side of the equation B, then:

[tex]A=B[/tex]

Keeping the above on mind, you can see that 5 and 11 are not equal, then:

5≠11

The correct value of s is:

[tex]s-3=11\\s=11+3\\s=14[/tex]

Substituting:

[tex]14-3=11\\11=11[/tex]

Answer:

No, because the last line of the work is not true. 5 and 11 are not equal.

Step-by-step explanation:

MATH HELP PLEASE I WILL MARK BRAINLIEST 1st and 2nd picture are both for question 1 the 3rd picture is a different question

Kerim bought a $2,000 bicycle. The bicycle's value depreciates, or decreases, by $300 a year. Which graph represents this situation?

Answers

Answer:First one is D

Step-by-step explanation:

The graph passses through the pints neccessary for it to decrease by 300

23 points help asap
Which two categories, when added together, equal 65% of the credit score wheel?

Answers

Payment history and total debt

Payment history = 35%
Total debt = 30%

35% + 30% = 65%

add payment history and total debt it gibes you 65%

The cost of three tickets to a movie is at least $20. Select an inequality that represents the cost x (in dollars) of each ticket. Then solve the inequality. Write your solution in decimal form rounded to the nearest cent.

Answers

Answer:

3x=$20

Step-by-step explanation:

well first you divide    3x/3=$20/3                      

3 can go into 20 6 times that                                                                                                          would 18 and then u would have a remainder of 2 dollars and 3 cant go into 2 so it would be .67 so x=6.67

(Q9) How does the value of c affect the graph of f(x) = ex+c?

Answers

C will be the y-intercept in the equation which will shift it up and down
Answer : A

I will give you brainliest
PLZ HELP

A lifeguard earns $320 per week for working 40 hours plus $12 per hour worked over 40 hours. A lifeguard can work a maximum of 60 hours per week.


Which graph above best represents the lifeguard’s weekly earnings in dollars for working h hours over 40?

A) Answer choice F
B) Answer choice G
C) Answer choice H
D) Answer choice J

Answers

Answer:

Step-by-step explanation:

Answer is G

Graph [G] will be the correct graph representing the  lifeguard’s weekly earnings in dollars for working [h] hours over 40.

What is the general equation of a straight line?

The general equation of a straight line is -

y = mx + c

Where -

[m] is the slope of the line.

[c] is the y - intercept.

Given is A lifeguard earns $320 per week for working 40 hours plus $12 per hour worked over 40 hours. A lifeguard can work a maximum of 60 hours per week.

For over 40 hours of work, the graph on the y - axis will start from the point (0, 320). Of the two possible graphs, we have to find the find whose slope will be 12 since, the lifeguard receives $12 per hour.

Slope of graph [F] = (400 - 320)/(10 - 0) = 80/10 = 8

Now, slope of graph [G] = (500 - 320)/(15 - 0) = 180/15 = 12

Graph [G] is the correct choice.

Therefore, Graph [G] will be the correct graph representing the  lifeguard’s weekly earnings in dollars for working [h] hours over 40.

To solve more questions on straight line, visit the link below-

brainly.com/question/2954112

#SPJ2

Two less than 3 times a number is the same as the number plus 10. What is the number?

Answers

This should help

3 * a - 2 = a + 10

Consider the following problem: A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have. Let x denote the length of the side of the square being cut out. Let y denote the length of the base.
(a) Draw several diagrams to illustrate the situation, some short boxes with large bases and some tall boxes with small bases. Find the volumes of several such boxes. (Do this on paper. Your teacher may ask you to turn in this work.)

(b) Draw a diagram illustrating the general situation. Introduce notation and label the diagram with your symbols. (Do this on paper. Your teacher may ask you to turn in this work.)

(c) Write an expression for the volume V in terms of x and y.
V =


(d) Use the given information to write an equation that relates the variables. (Do this on paper. Your teacher may ask you to turn in this work.)

(e) Use part (d) to write the volume as a function of x.
V(x) =


(f) Finish solving the problem by finding the largest volume that such a box can have.
V = ft3

Answers

Final answer:

The largest volume that the box can have is 2.25 ft^3, and it's obtained when x = 0.5 ft. This came from a mathematical analysis of the volume function V(x) = 4x^3 - 12x^2 + 9x.

Explanation:

Given that a square is cut from each corner of the cardboard to form an open box, we can come up with the following: The width of the base, represented by y, would be equal to the initial width of the cardboard (3 ft) minus two times the sides of the squares being cut out (2x), so y = 3 - 2x. Part c: will be the Volume of the box which is given by V = x * y^2, substituting for y from the relation obtained above we get. Part d: V = x * (3 - 2x)^2. Part e: is just the simplification of the equation obtained in part d: V(x) = 4x^3 - 12x^2 + 9x. Part f: To find the maximum volume, we need to find the critical points of the V(x) function, these are obtained by setting the derivative of the function equal to zero, solving for x will give x = 0.5 and x =1.5 but since x > 1.5 would give a negative y, the maximum volume is obtained at x = 0.5, substituting this x into the V(x) equation gives V = 2.25 ft^3.

Learn more about Maximizing Volume here:

https://brainly.com/question/32196877

#SPJ3

Use the binomial expression (p+q)n

to calculate a binomial distribution with n = 5 and p = 0.3.

Answers

Answer:

{0.16807, 0.36015, 0.3087, 0.1323, 0.02835, 0.00243}

Step-by-step explanation:

The expansion of (p+q)^n for n = 5 is ...

(p+q)^5 = p^5 +5·p^4·q +10·p^3·q^2 +10·p^2·q^3 +5·p·q^4 +q^5

When the probability p=0.3 and q = 1-p = 0.7 the terms of this series correspond to the probabilities of 5, 4, 3, 2, 1, and 0 favorable outcomes out of 5 trials.

For example, p^5 = 0.3^5 = 0.00243 is the probability of 5 favorable outcomes in 5 trials where the probability of each favorable outcome is 0.3.

___

The attachment shows the calculation of these numbers using a graphing calculator. It lists them in reverse order of the expansion of (p+q)^5 shown above, so that they are the probabilities of 0–5 favorable outcomes in the order 0–5.

Solve the system using elimination. Write the solution as an ordered pair. (1 point) SHOW YOUR WORK FOR FULL CREDIT! (2 points)

5x + 4y = 1
-3x + 4y = -7

Answers

Final answer:

By using elimination to subtract the second equation from the first, we solve for x and then substitute x back into one of the original equations to solve for y, finding the solution as the ordered pair (1, -1).

Explanation:

To solve the system using elimination, we look at the given equations:

1) 5x + 4y = 1
2) -3x + 4y = -7

The goal is to eliminate one variable to solve for the other. In this case, we can subtract the second equation from the first one since they both have the same coefficient for y, which will eliminate the y variable.

5x + 4y = 1
-(-3x + 4y = -7)5x + 4y - (-3x + 4y) = 1 - (-7)5x + 4y + 3x - 4y = 1 + 78x = 8x = 1

Now that we have found x, we can substitute x into one of the original equations to find y:

5(1) + 4y = 1

5 + 4y = 14y = 1 - 54y = -4y = -1

The solution to the system is (1, -1), which is an ordered pair representing the x and y values that satisfy both equations.


2x + y = 3
x - 2y = -1

If equation one is multiplied by 2 and then the equations are added, the result is _____.


3x = 2
3x = 5
5x = 5




Answers

multiply 2x+y = 3 by 2

4x + 2y = 6

x - 2y = -1

add terms (be careful about signs!)

5x + 0 = 2

5x = 5

Answer:

5x=5

Step-by-step explanation:

1. C = 2(pi)r and C = d(pi) are the formulas for finding the _____________ of a circle.

Answers

Answer:

Circumference

Step-by-step explanation:

The circumference is the distance around the circle. It relates the number of times the diameter will encircle the circumference as 3.14 or π. As a result, the formulas for the circumference of a circle are C = 2πr and C = πd.

Find the slope of the line
40 Points!

Answers

Answer:

-1/2

Step-by-step explanation:

Rise in X / Rise in Y

1 / 2 = 1/2

The answer to ur question is slope =-1/2

Given F= {(0,1), (2,4), (4,6), (6,8)} and G= {(2,5), (4,7), (5,8), (6,9), (7,5)}(F-G) (6)

Answers

Answer:

(F-G)(x) = -1

Step-by-step explanation:

The notation (F - G)(x) means to subtract each function when x = 6. According to the sets when x = 6 then F is (6,8) and G is (6,9). To subtract the functions, subtract their output values. (F-G)(x) = 8 - 9 = -1.

Part A: The product of (n2 – 6n + 3) and -4n is
A. -4n^3+24n^2+12n
B. -4n^3+24n^2-12n
C. 4n^3+24n^2-12n

Part B: When this product is multiplied by -n, the result is
A. 4n^4-24n^3+12n^2
B. -4n^4+24n^3+12n^2
C. 4n^4+24n^3+12n^2

Answers

Answer:

Part A) Option B. [tex]-4n^{3}+24n^{2}-12n[/tex]

Part B) Option A. [tex]4n^{4}-24n^{3}+12n^{2}[/tex]

Step-by-step explanation:

Part A) we have

[tex](n^{2}-6n+3)(-4n)[/tex]

the product is equal to

[tex]=(n^{2})(-4n)-6n(-4n)+3(-4n)\\=-4n^{3}+24n^{2}-12n[/tex]

Part B) When this product is multiplied by -n, the result is

we have

[tex](-4n^{3}+24n^{2}-12n)(-n)[/tex]

[tex]=(-4n^{3})(-n)+24n^{2}(-n)-12n(-n)\\=4n^{4}-24n^{3}+12n^{2}[/tex]

Tom walks 1/3 of a mile in 1/4 of an hour. At this rate, how many miles will tom walk in 1 hour ?

Answers

Tom walks at a rate of 4/3 miles per hour, which means he will walk 1.333 miles in one hour at this rate.

To find out how many miles Tom will walk in 1 hour, we need to determine the distance he covers in 1/4 of an hour and then calculate how much he would walk in 1 hour at that rate.

Given Tom walks 1/3 of a mile in 1/4 of an hour, first find how much he walks in 1 hour:
1/3 mile ÷ (1/4 hour) = 1/3 mile * 4/1 hour = 4/3 miles in 1 hour

Therefore, Tom will walk 4/3 miles in 1 hour at that pace.

Tom would walk 4/3 miles or 1 and 1/3 miles in 1 hour given that he walks 1/3 of a mile in 1/4 of an hour based on the unit rate calculation.

The question deals with finding out how many miles Tom will walk in 1 hour if he walks 1/3 of a mile in 1/4 of an hour. To calculate this, we use the concept of a unit rate, which is finding how much of something is done in one unit of something else, in this case, miles per hour. Since Tom walks 1/3 of a mile in 1/4 of an hour, we can set up a proportion to find out how many miles he would walk in 1 full hour.

The proportion is: (1/3) miles / (1/4) hour = x miles / 1 hour. To solve for x, we multiply both sides of the equation by 1 hour so x would equal (1/3) miles \/ (1/4) hour. To simplify the right side, we invert the fraction in the denominator and multiply:
x = (1/3) miles \/ (1/4). When we multiply by the reciprocal of 1/4, which is 4, we get x = (1/3) \/ 1 \/ 4 = 4/3 miles.

Therefore, at this rate, Tom would walk 4/3 miles or 1 and 1/3 miles in 1 hour.

Find the circumference of the circle in terms of pi? [30]

Answers

Answer:

60π

Step-by-step explanation:

If the circle has radius of 30 units, substitute r=30 into the formula C = 2πr.

C = 2π(30)

C = 60π

To find the circumference of the circle shown here, let's start with writing the formula down.

Circumference = 2[tex]\pi[/tex]r

We have to divide 60 by 2 because the radius is always half the diameter. Now, we can plug in 30 for r in the formula.

Now we have

circumference = 2[tex]\pi[/tex]30.

This equals 60[tex]\pi[/tex].

What is the value of X to the nearest tenth in the triangle below? the triangle is not drawn to scale

Answers

Answer:

x = 13.9

Step-by-step explanation:

With respect to the angle shown, we have the hypotenuse (the side opposite the 90 degree angle) and we have the adjacent side (which is the side labeled x). thus we can use the ratio "cosine" to solve this.

The ratio of cosine is defined as:

[tex]Cos\theta=\frac{Adjacent}{Hypotenuse}[/tex]

Where adjacent and hypotenuse are the respective sides and [tex]\theta[/tex] is the angle

Thus, we can now write:

[tex]Cos\theta=\frac{Adjacent}{Hypotenuse}\\Cos(35)=\frac{x}{17}\\Cos(35)*17=x\\x=13.9[/tex]

The first answer choice is right, x = 13.9

The value of X to the nearest tenth in the triangle is 13.9.  

We have the neighboring side, which is the side with the letter x, and the hypotenuse, which is the side across from the 90-degree angle, with regard to the angle displayed.

Therefore, the ratio "cosine" can be used to solve this.

The definition of the cosine ratio is:  [tex]Cos \theta[/tex] = Adjacent side / hypotenuse.

where the angle and the corresponding sides are called the hypotenuse and adjacent.

So that we may write now:

[tex]Cos(35)= \frac{x}{17}[/tex]

[tex]Cos(35) \times 17 = x[/tex]

Therefore 13.9 = x  .

For similar question on triangle.

https://brainly.com/question/25215131

#SPJ3

Identify the graph of x^2-5x+y^2=3 for theta π/3 and write and equation of the translated or rotated graph in general form.

Answers

Answer:

The answer is circle; 2(x')² + 2(y')² - 5x' - (5√3)y' - 6 = 0 ⇒ answer (b)

Step-by-step explanation:

* At first lets talk about the general form of the conic equation

- Ax² + Bxy + Cy²  + Dx + Ey + F = 0

∵ B² - 4AC < 0 , if a conic exists, it will be either a circle or an ellipse.

∵ B² - 4AC = 0 , if a conic exists, it will be a parabola.

∵ B² - 4AC > 0 , if a conic exists, it will be a hyperbola.

* Now we will study our equation:

* x² - 5x + y² = 3

∵ A = 1 , B = 0 , C = 1

∴ B² - 4AC = (0) - 4(1)(1) = -4 < 0

∵ B² - 4AC < 0

∴  it will be either a circle or an ellipse

* Lets use this note to chose the correct figure

- If A and C are equal and nonzero and have the same sign,

 then the graph is a circle.

- If A and C are nonzero, have the same sign, and are not equal

 to each other, then the graph is an ellipse.

∵ A = 1 an d C = 1

∴ The graph is a circle.

* To find its center of the circle lets use

∵ h = -D/2A and k = -E/2A

∵ A = 1 and D = -5 , E = 0

∴ h = -(-5)/2(1) = 2.5 and k = 0

∴ The center of the circle is (2.5 , 0)

* Now lets talk about the equation of the circle and angle Ф

∵ Ф = π/3

- That means the graph of the circle will transformed by angle = π/3

- The point (x , y) will be (x' , y'), where

* x = x'cos(π/3) - y'sin(π/3) , y = x'sin(π/3) + y'cos(π/3)

∵ cos(π/3) = 1/2 and sin(π/3) = √3/2

∴ [tex]y=\frac{\sqrt{3}}{2}x'+\frac{1}{2}y'=(\frac{\sqrt{3}x'+y'}{2})[/tex]

∴ [tex]x=\frac{1}{2}x'-\frac{\sqrt{3}}{2}y'=(\frac{x'-\sqrt{3}y'}{2})[/tex]

* Lets substitute x and y in the equation x² - 5x + y² = 3

∵ [tex](\frac{x'-\sqrt{3}y'}{2})^{2}-5(\frac{x'-\sqrt{3}y'}{2})+(\frac{\sqrt{3}x'-y'}{2})^{2}=3[/tex]

* Lets use the foil method

∴ [tex]\frac{(x'^{2} -2\sqrt{3}x'y'+3y')}{4}-\frac{(5x'-5\sqrt{3}y')}{2}+\frac{(\sqrt{3}x'+2\sqrt{3}x'y'+y'^{2})}{4}[/tex]=3

* Make L.C.M

∴ [tex]\frac{(x'^{2}-2\sqrt{3}x'y'+3y'^{2})}{4}-\frac{(10x'-10\sqrt{3}y')}{4}+\frac{(3x'^{2}+2\sqrt{3}x'y'+y'^{2})}{4} =3[/tex]

* Open the brackets ∴[tex]\frac{x'^{2}-2\sqrt{3}x'y'+3y'^{2}-10x'+10\sqrt{3}y'+3x'^{2}+2\sqrt{3}x'y'+y'^{2}}{4}=3[/tex]

* Collect the like terms

∴ [tex]\frac{4x'^{2}+4y'^{2}-10x'+10\sqrt{3}y'}{4}=3[/tex]

* Multiply both sides by 4

∴ 4(x')² + 4(y')² - 10x' + (10√3)y' = 12

* Divide both sides by 2

∴ 2(x')² + 2(y')² - 5x' + (5√3)y' = 6

∵ h = -D/2A and k = E/2A

∵ A = 2 and D = -5 , E = 5√3

∴ h = -(-5)/2(2) = 5/4 =1.25

∵ k = (5√3)/2(2) = (5√3)/4 = 1.25√3

∴ The center of the circle is (1.25 , 1.25√3)

∵ The center of the first circle is (2.5 , 0)

∵ The center of the second circle is (1.25 , 1.25√3)

∴ The circle translated Left and up

* 2(x')² + 2(y')² - 5x' - (5√3)y' - 6 = 0

∴ The answer is circle; 2(x')² + 2(y')² - 5x' - (5√3)y' - 6 = 0

* Look to the graph

- the purple circle for the equation x² - 5x + y² = 3

- the black circle for the equation (x')² + (y')² - 5x' - 5√3y' - 6 = 0

Answer:

B

Step-by-step explanation:

edge

Your company has a plan that matches your retirement contributions up to 2% of your salary. Your annual salary is $22,000. You are paid bi-weekly (26 times per year). How much should you contribute to the retirement account each pay period to take full advantage of the company match

Answers

Answer:

The contribution is $ [tex]16.92\\[/tex] per biweekly payment

Step-by-step explanation:

Salary received in each of the [tex]26 \\[/tex] pay is

[tex]\frac{2}{100} * \frac{22000}{26} \\= 16.92\\[/tex]

Final answer:

To take full advantage of your company's retirement match, contribute at least $16.92 from each bi-weekly paycheck to your retirement account, which is 2% of your annual salary divided by 26 pay periods.

Explanation:

To determine how much you should contribute to the retirement account each pay period to take full advantage of the company match, you need to calculate 2% of your annual salary and then divide that number by the number of pay periods in a year. Here's the step-by-step calculation:

Calculate 2% of your annual salary ($22,000): 0.02 × $22,000 = $440.Divide the annual match by the number of pay periods: $440 ÷ 26 = approximately $16.92.

To fully utilize the company's matching program, you should contribute at least $16.92 from each bi-weekly paycheck to your retirement account.

Other Questions
What is a reasonable domain for this situation? Johnsons goals for a better America were supported bya. the hardships caused by the slumping economy.b. the prosperity resulting from the strong economy.c. the success of unions in organizing workers.d. the failure of business to create enough jobs. Do militants help or hinder the progress of a social movement? When a monopolist can perfectly price discriminate, it follows thata. price equals marginal revenue.b. price equals marginal cost at the quantity of output it chooses to produce.c. the monopolist is resource-allocative efficient.d. b and ce. a, b, and c? the sum of two numbers is 65. the smaller number is 21 less than the larger number. what are the numbers? add and express your answer in standard form (2x to the 4th +x to the third -4x squared +3) +(4x to the 4th -2x to the third-x squared +10x+2) Write an expression for 8 times r write the expression in complete factored form. 5b(y+1) -q (y+1) = A point is selected at random inside the given figure.77 Points plus ill give brainliest, What is the probability the point will be in the region labeled A?Enter your answer, as a fraction in simplest form, in the box.P(A) = Match each root with its meaning. MatchTermDefinition LocA) Measure JectB) To step MeterC) Place Grad/gressD) To join JunctE) To throw Please hurry!! :)))))Read the dialogue and choose the correct option for the blank.Seora Maurici: Buenas noches. Yo soy la seora Maurici.Natasha: Mucho gusto.Seora Maurici: ________. Me llamo Buenos das Yo estoy muy bien A sharp raises a note by A. A whole stepB. A half stepC. Two whole stepsD. One-and-one-half stepThank you What are the x-intercepts of the quadratic function y=x^2-x-2 When a plant grows in a location that is regularly placed in partial shadow by nearby buildings, this results in reducing what why do rising input costs shift the supply curve to the left? 1. Find the values of x.If you use Special Right Triangles, leave your answer in simplest radical form. If you use Trigonometry, round your answer to the nearest tenth. The diagram is not drawn to scale. (2 points) Many young girls dream of one day becoming a cheerleader. Seems harmless enough, right? Actually, cheerleading causes more injuries and even deaths than any other female-dominated sport. Recently, efforts have been made to make the sport safer, but these efforts have resulted in only minor reductions in injuries. As long as cheerleaders insist on performing risky routines, injuries are unavoidable.What type of exposition is illustrated in this paragraph?causal analysisdefinitioncomparison/contrastprocess analysis What do the details in these lines reveal about the fear and oppression experienced by the people in argentina WILL MARK BRAINLIEST!!!! HELP ASAP!!!Explain how animals can affect rocks? Animals can step on rocks and break it to smaller pieces. Animals can relocate rocks to areas with a lot of wind. Animals can relocate rocks to areas near a river or stream. Animals can chew on rocks changing its chemical components. what part did the slave trade play in helping Europeans take control of much of Africa in the 1800s