Let u solve cu = 0. Show that any derivative, say w = uxt, also solves cw = 0. In cu = 0, u = u(t, x) do the change of variables (ξ, η) specified below, to find the equation for v(ξ, η). Is it vξξ − c 2vηη = 0? (a) Translation ξ = t − T, η = x − y where y, T are fixed. (b) Dilation ξ = at, η = ax for any constant a. (c) Find the change of variables (ξ, η) = (?, ?) such that v(ξ, η) satisfies 1v = vξξ −vηη = 0

Answers

Answer 1

Answer:

See the pictures attached

Step-by-step explanation:

Let U Solve Cu = 0. Show That Any Derivative, Say W = Uxt, Also Solves Cw = 0. In Cu = 0, U = U(t, X)
Let U Solve Cu = 0. Show That Any Derivative, Say W = Uxt, Also Solves Cw = 0. In Cu = 0, U = U(t, X)

Related Questions

If np is greater than or equal to 15 and n(1-p) is greater than or equal to 15, what is the approximate shape of the sampling distribution of the sample proportion?

A. p-hat
B. true proportion p
C. x-bar
D. sqrt(p*(1-p)/n)
E. Normal
F. sigma/sqrt(n)
G. Binomial
H. Bimodal

Answers

Answer:

We need to check the conditions in order to use the normal approximation.

[tex]np \geq 15[/tex]

[tex]n(1-p) \geq 15[/tex]

If we see that we satisfy the conditions and then we can apply the approximation.

If we appply the approximation the new mean and standard deviation are:

[tex]E(X)=np[/tex]

[tex]\sigma=\sqrt{np(1-p)}[/tex]

[tex] X \sim N (\mu = np, \sigma=\sqrt{np(1-p)}) [/tex]

So then the correct answer for this case would be:

E. Normal

Step-by-step explanation:

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Let X the random variable of interest, on this case we assume that:

[tex]X \sim Binom(n, p)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

We need to check the conditions in order to use the normal approximation.

[tex]np \geq 15[/tex]

[tex]n(1-p) \geq 15[/tex]

If we see that we satisfy the conditions and then we can apply the approximation.

If we appply the approximation the new mean and standard deviation are:

[tex]E(X)=np[/tex]

[tex]\sigma=\sqrt{np(1-p)}[/tex]

[tex] X \sim N (\mu = np, \sigma=\sqrt{np(1-p)}) [/tex]

So then the correct answer for this case would be:

E. Normal

The approximate shape of the sampling distribution of the sample will be normal.

Option E is correct.

Sampling distribution:

It is a statistic that determines the probability of an event based on data from a small group within a large population.

Given that, [tex]np[/tex] is greater than or equal to 15 and [tex]n(1-p)[/tex] is greater than or equal to 15.

     [tex]np\geq 15[/tex]  and [tex]n(1-p)\geq 15[/tex]

So that the new mean and standard deviation will be,

           [tex]mean=\mu=np\\\\Deviation=\sigma=\sqrt{np(1-p)}[/tex]

Thus, the approximate shape of the sampling distribution of the sample will be normal.

Learn more about the sampling distribution here:

https://brainly.com/question/12892403

The researcher also determined that the standard deviation of all horses coming to the veterinary clinic is 8 years. Based on the Central Limit Theorem we know the distribution of means from every sample of size 60 will be , with a mean of and a standard deviation of . The probability that a sample mean is 12 or larger for a sample from the horse population is_________

Answers

Answer: 0.9013

Step-by-step explanation:

Given mean, u = 10, standard deviation =8

P(X) =P(Z= X - u /S)

We are to find P(X> or =12)

P(X> or = 12) = P(Z> 12-10/8)

P(Z>=2/8) = P(Z >=0.25)

P(Z) = 1 - P(Z<= 0.25)

We read off Z= 0.25 from the normal distribution table

P(Z) = 1 - 0.0987 = 0.9013

Therefore P(X> or=12) = 0.9013

Note the question was given as an incomplete question the correct and complete question had to be searched online via Google. So the data used are those gotten from the online the Googled question.

One of Shakespeare's sonnets has a verb in 11 of its 18 lines, an adjective in 13 lines, and both in 8 lines. How many lines have a verb but no adjective?

Answers

Answer:

Step-by-step explanation:

The total number of lines, n(U) = 18

Let the number of lins with verb be n(V) = 11

Let the number of lines with adjectives be n(A) = 13

n(V n A) = 8

Find the number of lines that have a verb but no adjective, that is, n(V n A')

Mathematically, according to sets theory,

n(V) = n(V n A) + n(V n A')

So,

n(V n A') = n(V) - n(V n A) = 11 - 8 = 3.

Hence, only 3 lines have a verb but no adjectives.

Consider the following events for a driver selected at random from a general population.



A = driver is under 25 years old (1)
B = driver has recieved a speeding ticket (2)



Translate each of the following phrases into symbols.

(a) The probability the driver is under 25 years old and has recieved a speeding ticket.
(b) The probability a driver who is under 25 years old has recieved a speeding ticket.
(c) The probability a driver who has recieved a speeding ticket is 25 years or older.
(d) The probability the driver is under 25 years old or has recieved a speeding ticket.
(e) The probability the driver is under 25 years old or has not recieved a speeding ticket.

Answers

Answer:

a. P(AnB)

b. P(B|A)

c. [tex]P(A^I|B)[/tex]

d. P(A or B)

e. [tex]P(B^I or A)[/tex]

Step-by-step explanation:

Since  A= driver is under 25 years old (1)

B = driver has received a speeding ticket (2)

a.The probability the driver is under 25 years old and has recieved a speeding ticket.

this simple means the intersection of both set, which can be written as

P(AnB)

b. The probability a driver who is under 25 years old has received a speeding ticket.

This is a conditional probability, probability that B will occur given that A as occur.

P(B|A)

c. the probability a driver who has received a speeding ticket is 25 years or older.

[tex]P(A^I|B)[/tex]

d. The probability the driver is under 25 years old or has received a speeding ticket.

P(A or B)

e. The probability the driver is under 25 years old or has not received a speeding ticket.

[tex]P(B^I or A)[/tex]

I need help with my homework?

Answers

Answer:

1. D

2. 6 7/12

3. 3 1/4

Answer:

D

Explaination:

If you do 12 times 2 24 then add 6=30



Jim began a 226-mile bicycle trip to build up stamina for a triathlete competition. Unfortunately, his bicycle chain broke, so he finished the trip walking. The whole trip
took 7 hours. If Jim walks at a rate of 4 miles per hour and rides at 40 miles per hour, find the amount of time he spent on the bicycle



Answers

Answer: 5.5hours

Step-by-step explanation:

Total distance = 226miles

Total time = 7 hours

Let b represent total time spent while walking.

Distance (walking) = 4b

Distance ( riding) = 40(7-b)

Total distance 226 = 4b + 40(7-b)

226 = 4b + 280 - 40b

226 = 280-36b

b = 54/36

b = 1.5hours

Amount of time spent walking = 1.5hours

Amount of time spent riding = 7-1.5 = 5.5hours

Amount of time spent on bicycle = 5.5hours

An insurance company is reviewing its current policy rates. When originally setting the rates, they believed that the average claim amount was $1,800. They are concerned that the true mean is actually higher than this because they could potentially lose a lot of money. They randomly select 40 claims and calculate a sample mean of $1,950. Assuming that the standard deviation of claims is $500, and set α= 0.05; α= 0.1, test to see if the insurance company should be concerned.

Answers

Answer:

Reject  There is sufficient evidence to support the claim that true mean is actually higher than the claim amount $1800.

Step-by-step explanation:

Based on the decision rule, the test statistic is lies in the rejection region. So reject the null hypothesis at 5% level of significance.

There is sufficient evidence to support the claim that the true mean is actually higher than the claim amount $1800.

Solution is attached below

A five-card poker hand is dealt at random from a standard 52-card deck. Note the total number of possible hands is C(52,5)=2,598,960. Find the probabilities of the following scenarios: (a) What is the probability that the hand contains exactly one ace?

Answers

Answer:

(a) Probability = 0.29947

Step-by-step explanation:

The probability of the hand containing exactly one ace would be:

Number of ways this can happen = 4C1 * 48C4      (using combinations)

Number of ways this can happen = 4 * 194580

Number of ways this can happen = 778,320

Total number possible hands = 2,598,960 (as stated in question)

Total probability of exactly one ace = Number of ways to get an ace / total number of ways

Total probability = 778320 / 2598960 = 0.29947

Thus, the probability of the hand containing exactly one ace will be 0.2994

Another way to solve this:

Probability of one ace and 5 other cards = [tex]\frac{4}{52}*\frac{48}{51}*\frac{47}{50}*\frac{46}{49}*\frac{45}{48}[/tex] = 0.059894

Number of ways to arrange 1 ace and 4 other cards = 5

Total probability = 0.0598 * 5 = 0.29947

Final answer:

The probability of getting exactly one ace in a five-card poker hand is 0.2556 (rounded to four decimal places).

Explanation:

To find the probability of getting exactly one ace in a five-card poker hand, we need to determine the number of favorable outcomes and divide it by the total number of possible outcomes. In a standard 52-card deck, there are 4 aces, and we need to choose 1 ace out of the 4. The remaining 4 cards in the hand can be chosen from the remaining 48 non-ace cards in the deck. Hence, the number of favorable outcomes is C(4,1) * C(48,4). The probability can be calculated as:

P(exactly one ace) = (C(4,1) * C(48,4)) / C(52,5)

Substituting the values and evaluating the expression, we get:

P(exactly one ace) = (4 * 171,230) / 2,598,960 = 0.2556 (rounded to four decimal places)

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ3

Suppose a liquor store sells beer for a net profit of $1 per unit and wine for a net profit of $2 per unit. Let x equal the amount of beer sold and y equal the amount of wine sold. An algebraic formulation of the profit function is:_______

a. max(2x + y)
b. min(2x + y)
c. max(x + 2y)
d. min(x + 2y)

Answers

Answer:

The correct optiion is C

Step-by-step explanation:

Beer =$1 and amount sold is x

so $1×x= $x which is the profit on beer

Wine=$2 and amount sold is y

so, $2×y= $2y which is the profit on wine

so an algebraic formulation of the profit function will be,

the sum off both the profit of the beer and wine which is

x+2y= max(x+2y)

6 Consider a situation in which a random sample of 1000 adults is surveyed and the proportion that primarily buys organic vegetables is found. If a new random sample of 1000 adults is taken from the same population, explain whether each of the following would change: a. The population proportion, p. b. The sample proportion, p^. c. The standard deviation of p^. d. The standard error of p^. e. The sampling distribution of p^, including its shape, mean, and standard deviation.

Answers

Answer:

In the Step-by-step explanation.

Step-by-step explanation:

If a new sample is taken out of the same population,

a. The population proportion, p will not change. It is an unknown value that is estimated with the statistics of the samples.

b. The sample proportion, p^ is expected to change, because it is a new sample that has its own statistic value that may or may not be equal to the first sample.

c. The standard deviation of p^ is expected to change, because it depends on the sample and its size.

d. The standard error of p^ will change, because it depends on the sample.

e. The sampling distribution of p^, including its shape, mean, and standard deviation, will not change, because it is estimated with the data of the previous sample and it is supposed to be a property of the population and the sample size. Although the new information can be used to review the sample mean and standard deviation.

Suppose X is a continuous variable with the following probability density: f(x)={C(10−x)2,0, if 0

Answers

Answer:

                                          [tex]C = 1/18[/tex]

Step-by-step explanation:

Remember that for a probability density function

                                     [tex]\int_{-\infty}^{\infty } f(x) dx = 1[/tex]

Since [tex]f(x) = 0[/tex]   outside [tex][0,2][/tex]   we would have that

                                       [tex]\int_{0}^{2} C(10-x) dx = 1[/tex]

Therefore  

                                              [tex]18C = 1 \\C = 1/18[/tex]

An outbreak of the deadly Ebola virus in 2002 and 2003 killed 91 of the 95 gorillas in 7 home ranges in the Congo. To study the spread of the virus, measure distance by the number of home ranges separating a group of gorillas from the first group infected. Here are data on distance and number of days until deaths began in each later group:

Distance x 1 4 6 6 6 7
Days y 2 20 29 38 44 50
Find the correlation r between x and y.

r = ?

Answers

Answer:

Correlation between x and y is 0.9508          

Step-by-step explanation:

We are given the following in the question:

Distance(x):   1     4       6     6       6       7

      Days(y):  2    20    29    38     44     50

We have to find the correlation between x and y.

[tex]\sum y = 183\\\sum x=30\\\bar{x} = \displaystyle\frac{\sum x}{n} = \frac{30}{6} = 5\\\\\bar{y} = \displaystyle\frac{\sum y}{n} = \frac{183}{6} = 30.5\\\\(x-\bar{x}) = -4,-1,+1,+1,+1,+2\\(y-\bar{y}) = -28.5,-10.5,-1.5,7.5,13.5,19.5\\\sum (x-\bar{x}) (y-\bar{y}) = 183\\\sum(x-\bar{x})^2 = 24\\\sum(y-\bar{y})^2= 1543.5\\[/tex]

Formula:

[tex]r = \dfrac{\sum(x-\bar{x})(y - \bar{y})}{\sqrt{\sum(x-\bar{x})^2\sum(y-\bar{y})^2}}[/tex]

Putting values, we get,

[tex]r = \dfrac{183}{\sqrt{24\times 1543.5}} = 0.9508[/tex]

Thus, correlation between x and y is 0.9508

Final answer:

To find the correlation between the distance and the number of days until deaths began, we can use a statistical measure called the correlation coefficient (r). The formula for calculating r is given, and we can use the provided data to calculate the correlation coefficient, which is approximately -0.994, indicating a strong negative correlation.

Explanation:

To find the correlation between the distance and the number of days until deaths began, we can use a statistical measure called the correlation coefficient (r). The formula for calculating r is:

r = (n(Σxy) - (Σx)(Σy)) / √((n(Σx^2) - (Σx)^2)(n(Σy^2) - (Σy)^2))

Using the provided data, we can calculate the correlation coefficient:

Calculate the sum of x, y, xy, x^2, and y^2.Substitute the values into the formula and simplify.Calculate the square root to find the correlation coefficient (r).

After performing the calculations, we find that the correlation coefficient (r) is approximately -0.994, indicating a strong negative correlation between distance and the number of days until deaths began.

Learn more about Correlation coefficient here:

https://brainly.com/question/15577278

#SPJ3

Can someone help me with this question?

Answers

Step-by-step explanation:

Hope it helps you in your learning process.

A lab is testing the amount of a certain active chemical compound in a particular drug that has been recently developed. The manufacturer claims that the average amount of the chemical is 90 mg. It is known that the standard deviation in the amount of the chemical is 6 mg. A random sample of 31 batches of the new drug is tested and found to have a sample mean concentration of 92.2 mg of the active chemical.
Calculate the 95% confidence interval for the mean amount of the active chemical in the drug.

Answers

Answer:

95% confidence interval for the mean amount of the active chemical in the drug = [ 90.088 , 94.312 ]

Step-by-step explanation:

We are given that a lab is testing the amount of a certain active chemical compound in a particular drug that has been recently developed. It is known that the standard deviation in the amount of the chemical is 6 mg.

A random sample of 31 batches of the new drug is tested and found to have a sample mean concentration of 92.2 mg of the active chemical i.e.;

Population standard deviation, [tex]\sigma[/tex] = 6 mg

Sample mean, [tex]Xbar[/tex] = 92.2 mg

Sample size, n = 31

Now, the pivotal quantity for 95% confidence interval is given by;

          [tex]\frac{Xbar -\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)

So, 95% confidence interval for the mean amount of the active chemical in the drug is given by;

P(-1.96 < N(0,1) < 1.96) = 0.95

P(-1.96 < [tex]\frac{Xbar -\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95

P(-1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex] < [tex]Xbar - \mu[/tex] < 1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.95

P(Xbar - 1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < Xbar + 1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [Xbar - 1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex] , Xbar + 1.96 * [tex]\frac{\sigma}{\sqrt{n} }[/tex] ]

                                                  = [ 92.2 - 1.96 * [tex]\frac{6}{\sqrt{31} }[/tex] , 92.2 + 1.96 * [tex]\frac{6}{\sqrt{31} }[/tex] ]

                                                  = [ 90.088 , 94.312 ]

Final answer:

To calculate the 95% confidence interval for the mean amount of the active chemical in the drug, substitute the sample mean concentration, standard deviation, and sample size into the formula: 95% Confidence Interval = Sample Mean ± (Z * (Standard Deviation / √Sample Size)).

Explanation:

To calculate the 95% confidence interval for the mean amount of the active chemical in the drug, we can use the formula:

95% Confidence Interval = Sample Mean ± (Z * (Standard Deviation / √Sample Size))

Given that the sample mean concentration is 92.2 mg, the standard deviation is 6 mg, and the sample size is 31 batches, we can substitute these values into the formula:

95% Confidence Interval = 92.2 mg ± (1.96 * (6 mg / √31))

Calculating this expression gives us a 95% confidence interval of approximately 90.855 mg to 93.545 mg.

J. P. Morgan Asset Management publishes information about financial investments. Over the past years, the expected return for the S&P was with a standard deviation of and the expected return over that same period for a Core Bonds fund was with a standard deviation of (J. P. Morgan Asset Management, Guide to the Markets, 1st Quarter, ). The publication also reported that the correlation between the S&P and Core Bonds is . You are considering portfolio investments that are composed of an S&P index fund and a Core Bonds fund. a. Using the information provided, determine the covariance between the S&P and Core Bonds. Round your answer to two decimal places. If required enter negative values as negative numbers.

Answers

Final answer:

The covariance between two investments such as the S&P index fund and Core Bonds fund is calculated using the standard deviations of each investment and their correlation coefficient. This measure indicates if their returns move together. However, key data is not provided in the question.

Explanation:

In finance, the covariance between two investments, such as the S&P index fund and a Core Bonds fund, is used as a measure of how their returns move together. The formula for covariance is standard deviation of instrument one multiplied by standard deviation of instrument two, multiplied by their correlation coefficient. However, there is missing data in your question: the standard deviations and correlation coefficient were not provided. Once you have those, use the formula: Covariance = (Standard Deviation of S&P) * (Standard Deviation of Core Bonds) * (Correlation coefficient of the S&P and Core Bonds). Now, if you find that the outcome is a large number, it means that the returns move a lot in unison, for both good and bad outcomes. A low positive or negative number means that any movements are not strongly linked.

Learn more about Covariance in Finance here:

https://brainly.com/question/33638776

#SPJ2

Ted is making trail mix for a party. He mixes 1 1/2 cups of nuts, 1/4 cup of raisins, and 1/4 cup of pretzels. How many cups of pretzels does Ted need to make 15 cups of trail mix?

Answers

Answer:

Ted will need [tex]3\frac{3}{4}[/tex] cups of pretzels to make 15 cups of trail mix.

Step-by-step explanation:

Ted is making trail mix for a party. He mixes 1 1/2 cups of nuts, 1/4 cup of raisins, and 1/4 cup of pretzels.

So, 1/4 cup of pretzels to make 1 trail mix

       x cups of pretzels to make 15 trail mix

Using the ratio and proportional

∴ x = (1/4) * 15 = 3.75 = [tex]3\frac{3}{4}[/tex] cups.

Ted will need [tex]3\frac{3}{4}[/tex] cups of pretzels to make 15 cups of trail mix.

The sum of a number and 47 is prime. Which could be the sum

Answers

Answer:

53

Step-by-step explanation:

47+6=53

Answer:

53

Step-by-step explanation:

Air at 3.4 bar, 530 K, and a Mach number of 0.4 enters a converging–diverging nozzle operating at steady state. A normal shock stands in the diverging section at a location where the Mach number is Mx=1.8. The flow is isentropic, except where the shock stands. The air behaves as an ideal gas with k=1.4

Answers

Answer:

The question has some details missing. The remaining part of the question says ;

Determine

a) The stagnation temperature Tox in K

b) The stagnation pressure Pox in bar

c) The pressure Px in bar

d) The pressure py in bar

e) The stagnation pressure Poy in bar

f) The stagnation temperature Toy in K

g) If the throat area is 7.6 x 10^-4m2, and the exit plane pressure is 2.4bar, determine the mass flow rate in kg/s and the exit area in m2

Step-by-step explanation:

The detailed step by step calculation and appropriate substitution is carefully shown in the attached files

You play two games against the same opponent. The probability you win the first game is 0.7. If you win the first​ game, the probability you also win the second is 0.5. If you lose the first​ game, the probability that you win the second is 0.3.(a) Are the two games independent?(b) What's the probability you lose both games?

Answers

Answer:

(a) No

(b) 0.21 or 21%

Step-by-step explanation:

(a) Since the outcome of the first game influences in the probability of winning the second game, the two games are not independent.

(b) The probability of losing both games is given by the product of the probability of losing the first game and the probability of losing the second game given that you have lost the first:

[tex]P = (1-0.7)*(1-0.3)\\P=0.21=21\%[/tex]

The probability you lose both games is 21%

Given Information:

Probability of wining 1st game = p₁ = 0.7

Probability of wining 2nd game given 1st game won = p₂|p₁ = 0.5

Probability of wining 2nd game given 1st game lost = p₂|q₁ = 0.3

Required Information:

(a) Are the two games independent = ?

(b) Probability of losing both games = ?

Answer:

(a) Are the two games independent = No

(b) Probability of losing both games = 0.21

Step-by-step explanation:

(a) Independent Events:

Two events are said to be independent when the success of one event is not affected by the success or failure of another event.

In this case, the probability of 2nd game depends on the success or failure of the 1st game, therefore, the two games are not independent.

(b) Probability of losing both games

The probability of losing the both games is the product of the probabilities of losing each game.

Probability of losing 1st game = 1 - Probability of wining 1st game

Probability of losing 1st game = 1 - 0.7 = 0.30

Probability of losing 2nd game = 1 - Probability of wining 2nd game given 1st game lost

Probability of losing 2nd game = 1 - 0.3 = 0.70

Please note that since we are finding the probability of losing both games that's why we used the condition of 1st game lost

Probability of losing both games = Probability of losing 1st game*Probability of losing 2nd game

Probability of losing both games = 0.30*0.70

Probability of losing both games = 0.21

It takes approximately 4 medium apples to make 3 servings of homemade
apple sauce. The cafeteria purchased a bushel of apples (approximately 126
medium apples) at a discount. How many whole servings of applesauce can they
make with the bushel? (Round to the nearest whole number.)

Answers

Answer: 95 servings of applesauce

Step-by-step explanation:

It takes approximately 4 medium apples to make 3 servings of homemade apple sauce. It means that the number of servings of homemade apple sauce that can be made from 1 medium apple is

3/4 = 0.75 servings

Approximately 126 medium apples were purchased. Therefore, the number of servings of applesauce that they can make with the bushel is

126 × 0.75 = 95 servings of applesauce rounded to the nearest whole number.

Write the Leibniz notation for the derivative of the given function and include units. The cost, , of a steak, in dollars, is a function of the weight, , of the steak, in pounds.

Answers

Answer:

note:

please find the attachment

The life in hours of a biomedical device under development in the laboratory is known to be approximately normally distributed. A random sample of 15 devices is selected and found to have an average life of 5323.8 hours and a sample standard deviation of 220.9 hours.

Test the hypothesis that the true mean life of a biomedical device is greater than 5200.

Answers

Answer:

We conclude that the true mean life of a biomedical device is greater than 5200 hours.

Step-by-step explanation:

We are given that the life in hours of a biomedical device under development in the laboratory is known to be approximately normally distributed. For this a random sample of 15 devices is selected and found to have an average life of 5323.8 hours and a sample standard deviation of 220.9 hours.

We have to test that the true mean life of a biomedical device is greater than 5200 or not.

Let, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] 5200 {means that the true mean life of a biomedical device is less than or equal to 5200 hours}

Alternate Hypothesis, [tex]H_1[/tex] : [tex]\mu[/tex] > 5200 {means that the true mean life of a biomedical device is greater than 5200 hours}

The test statistics that will be used here is;

        T.S. = [tex]\frac{Xbar-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, Xbar = sample average life = 5323.8 hours

               s = sample standard deviation = 220.9 hours

               n = sample devices = 15

So, test statistics = [tex]\frac{5323.8-5200}{\frac{220.9}{\sqrt{15} } }[/tex] ~ [tex]t_1_4[/tex]

                            = 2.171

Since, we are not given with the significance level, so we assume it to be 5%, now the critical value of t at 14 degree of freedom in t table is given as 1.761. Since our test statistics is more than the critical value of t which means our test statistics will lie in the rejection region. So, we have sufficient evidence to reject our null hypothesis.

Therefore, we conclude that the true mean life of a biomedical device is greater than 5200 hours.

Consider two securities, A and B. Security A and B have a correlation coefficient of 0.65. Security A has standard deviation of 12, and security B has standard deviation of 25. Calculate the covariance between these two securities

Answers

Answer:

195

Step-by-step explanation:

The relationship between the covariance (cov_AB), and the correlation coefficient (ρ_AB = 0.65), and the standard deviations (σ_A = 12 and σ_B = 25) for the securities A and B is :

[tex]cov_{A,B} = \rho_{A,B}*\sigma_A*\sigma_B[/tex]

Applying the given data:

[tex]cov_{A,B} = 0.65*12*25\\cov_{A,B} = 195[/tex]

The covariance between these two securities is 195.

A researcher is interested in studying crime rates in each state. To do so, he records the number of violent crimes that occur per every 1000 people living in the state. The collection of crime rates from all 50 states represents the:a. datab. scorec. variable

Answers

Answer:

A. Data

Step-by-step explanation: Data is a term used to describe facts, information or statistics that are collected together in order for it to be used as a reference or for analysis.

An effective data collection is one of the most important aspects in research,experiments or statistics as it helps to guarantee a reliable and effective outcome.

Data collection should be done in such a way that it helps to solve the problem which is being studied or handled.

12x - 5y = - 20,
12x - 5y = -20y = x + 4
y = x +4

Answers

12x-5y=-20

y=x+4

12x-5(x+4)=-20

12x-5x-20=-20

7x=0,

So, we get: x=0 and y=4

A local board of education conducted a survey of residents in the community concerning a property tax levy on the coming local ballot. They randomly selected 850 residents in the community and contacted them by telephone. Of the 850 residents surveyed, 410 supported the property tax levy. Let p p represent the proportion of residents in the community that support the property tax levy. A 90% confidence interval for p p is_______________.
A.0.4489 to 0.5159.
B. 0.4542 to 0.5105.
C.0.4487 to 0.5161.
D.0.4463 to 0.5185.

Answers

Answer:

[tex]0.482 - 1.64 \sqrt{\frac{0.482(1-0.482)}{850}}=0.454[/tex]  

[tex]0.482 + 1.64 \sqrt{\frac{0.482(1-0.482)}{850}}=0.510[/tex]  

And the 90% confidence interval would be given (0.454;0.510).  

B. 0.4542 to 0.5105.

Step-by-step explanation:

Previous concepts  

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

Solution to the problem

The estimated proportion of residents in the community that support the property tax levis is given by:

[tex] \hat p =\frac{x}{n}= \frac{410}{850}= 0.482[/tex]

The confidence interval for a proportion is given by this formula  

[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]  

For the 90% confidence interval the value of [tex]\alpha=1-0.9=0.1[/tex] and [tex]\alpha/2=0.05[/tex], with that value we can find the quantile required for the interval in the normal standard distribution.  

[tex]z_{\alpha/2}=1.64[/tex]  

And replacing into the confidence interval formula we got:  

[tex]0.482 - 1.64 \sqrt{\frac{0.482(1-0.482)}{850}}=0.4542[/tex]  

[tex]0.482 + 1.64 \sqrt{\frac{0.482(1-0.482)}{850}}=0.5105[/tex]  

And the 90% confidence interval would be given (0.4542;0.5105)

B. 0.4542 to 0.5105.

Answer:

90% confidence interval for p is [0.4542 , 0.5105] .

Step-by-step explanation:

We are given that a local board of education conducted a survey of residents in the community concerning a property tax levy on the coming local ballot. Of the 850 residents surveyed, 410 supported the property tax levy.

Let p = proportion of residents in the community that support the property tax levy

[tex]\hat p[/tex] = proportion of residents in the community that support the property tax levy in a survey of 850 residents = [tex]\frac{410}{850}[/tex] = [tex]\frac{41}{85}[/tex]

The pivotal quantity that will be used here population proportion p is;

         P.Q. = [tex]\frac{\hat p - p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)

So, 90% confidence interval for p is given by;

P(-1.6449 < N(0,1) < 1.6449) = 0.90 {At 10% significance level the z table give

                                                            critical value of 1.6449)

P(-1.6449 < [tex]\frac{\hat p - p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.6449) = 0.90

P( [tex]-1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] < [tex]{\hat p - p}[/tex] < [tex]1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ) = 0.90

P( [tex]\hat p -1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] < p < [tex]\hat p +1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ) = 0.90

90% confidence interval for p = [ [tex]\hat p -1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] , [tex]\hat p +1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ]

                                       = [ [tex]\frac{41}{85} -1.6449 \times {\sqrt{\frac{\frac{41}{85} (1-\frac{41}{85} )}{850} }[/tex] , [tex]\frac{41}{85} +1.6449 \times {\sqrt{\frac{\frac{41}{85} (1-\frac{41}{85} )}{850} }[/tex] ]

                                       = [ 0.4542 , 0.5105 ]

Therefore, 90% confidence interval for p is [0.4542 , 0.5105] .

A local bank has determined that on average a teller can process 5 transactions per 15 minutes. What is the new mean of processed transactions if the time is changed to a 25 minute interval?

Answers

Answer:

The new mean of processed transactions is 8

Step-by-step explanation:

The teller averages 5 transactions every 15 minutes.

Taking this to a single transaction basis gives; The teller averages one transaction every 3 minutes.

So, when the time changes to 25 minutes, there is the need to find the number of 3-minutes obtainable from a 25-minute interval

New mean of processed transaction = [tex]\frac{25 minutes}{3 minutes}[/tex] = 8.333

The new mean of transaction every 25 minutes is about 8 transactions

Answer: 8.33/ 8 transactions on the average

Step-by-step explanation:

Since the teller is capable of processing five (5) different transactions on the average every fifteen minutes (15).

This means that he is capable of processing a transaction in three minutes:

15minutes/3transactions

= 3 minutes per transaction.

Judging by this speed ( 3 minutes per transaction); we can deduce the number of transactions the teller is capable of processing on the average in 25 minutes.

Since 3 minutes --------- 1 transaction, in 25 minutes the teller will process :

(25/3) × (1/1)

= 8.333 transactions

approximately 8 transactions.

A sample of 140 Vopstra customers have had their annual phone charge recorded for the previous calendar year. The data were used to calculate a 92% confidence interval for the mean annual phone charge of all Vopstra customers. The confidence interval was calculated as $470 + $65. According to this confidence interval, it is most reasonable to conclude that:a.you are 92% confident the interval between $405 and $535 contains the mean phone charge of all Vopstra customers b.you are 92% confident the mean phone charge of all Vopstra customers is approximately $470 c.you are 92% confident the mean phone charge of all mobile phone customers is approximately $470 d.you are 92% confident the interval between $405 and $535 contains the mean phone charge of all mobile phone customers

Answers

Answer:

Correct option: (a)

Step-by-step explanation:

A confidence interval is an interval estimate of the parameter value.

A (1 - α)% confidence interval implies that the confidence interval has a (1 - α)% probability of consisting the true parameter value.

OR

If 100 such confidence intervals are made then (1 - α) of these intervals would consist the true parameter value.

The 92% confidence interval for the mean annual phone charge of all Vopstra customers is:

[tex]\$470\pm \$65=(\$405, \$535)[/tex]

This confidence interval implies that true mean annual phone charge of all Vopstra customers is contained in the interval ($405, $535) with 0.92 probability.

Thus, the correct option is (a).

The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 415 grams and a standard deviation of 23 grams. Find the weight that corresponds to each event.

Answers

Answer:

(a) The highest 20% weight correspond to the weight 434.32 grams.

(b) The middle 60% weight correspond to the weights 434.32 grams and 395.68 grams.

(c) The highest 80% weight correspond to the weight 395.68 grams.

(d) The highest 80% weight correspond to the weight 391.08 grams.

Step-by-step explanation:

Let X = weight of a small Starbucks coffee.

It is provided: [tex]X\sim N(\mu = 415\ grams, \sigma=23\ grams)[/tex]

(a)

Compute the value of x fro P (X > x) = 0.20 as follows:

[tex]P (X>x)=0.20\\P(\frac{X-\mu}{\sigma}>\frac{x-415}{23} )=0.20\\P (Z>z)=0.20\\1-P(Z<z)=0.20\\P(Z<z)=0.80[/tex]

Use a standard normal table.

The value of z is 0.84.

The value of x is:

[tex]0.84=\frac{x-415}{23}\\0.84\times23=x-415\\x=415+19.32\\=434.32[/tex]

Thus, the highest 20% weight correspond to the weight 434.32 grams.

(b)

Compute the value of x fro P (x₁ < X < x₂) = 0.60 as follows:

[tex]P(x_{1}<X<x_{2})=0.60\\P(\frac{x_{1}-415}{23}<\frac{X-\mu}{\sigma}< \frac{x_{2}-415}{23})=0.60\\P(-z<Z<z)=0.60\\P(Z<z)-P(Z<-z)=0.60\\P(Z<z)-[1-P(Z<z)]=0.60\\2P(Z<z)=1.60\\P(Z<z)=0.80[/tex]

Use a standard normal table.

The value of z is 0.84.

The value of x₁ and x₂ are:

[tex]z=\frac{x_{1}-415}{23}\\0.84=\frac{x_{1}-415}{23}\\x_{1}=415+(0.84\times23)\\=434.32[/tex]

[tex]-z=\frac{x_{2}-415}{23}\\0.84=\frac{x_{2}-415}{23}\\x_{1}=415-(0.84\times23)\\=395.68[/tex]

Thus, the middle 60% weight correspond to the weights 434.32 grams and 395.68 grams.

(c)

Compute the value of x fro P (X > x) = 0.80 as follows:

[tex]P (X>x)=0.80\\P(\frac{X-\mu}{\sigma}>\frac{x-415}{23} )=0.80\\P (Z>z)=0.80\\1-P(Z<z)=0.80\\P(Z<z)=0.20[/tex]

Use a standard normal table.

The value of z is -0.84.

The value of x is:

[tex]-0.84=\frac{x-415}{23}\\-0.84\times23=x-415\\x=415-19.32\\=395.68[/tex]

Thus, the highest 80% weight correspond to the weight 395.68 grams.

(d)

Compute the value of x fro P (X < x) = 0.15 as follows:

[tex]P (X<x)=0.15\\P(\frac{X-\mu}{\sigma}<\frac{x-415}{23} )=0.15\\P (Z<z)=0.15[/tex]

Use a standard normal table.

The value of z is -1.04.

The value of x is:

[tex]-1.04=\frac{x-415}{23}\\-1.04\times23=x-415\\x=415-23.92\\=391.08[/tex]

Thus, the highest 80% weight correspond to the weight 391.08 grams.

Final answer:

The question pertains to finding the weight that corresponds to a specific event for a normally distributed random variable, using the mean and standard deviation provided for small Starbucks coffee weights.

Explanation:

The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 415 grams and a standard deviation of 23 grams. To find the weight that corresponds to a specific event, you need to use the formula for the z-score: Z = (X - μ) / σ, where Z is the z-score, X is the weight in grams, μ is the mean weight, and σ is the standard deviation.

Given that the mean (μ) is 415 grams and the standard deviation (σ) is 23 grams, you can calculate the z-score for any specific weight (X) to see how it relates to the distribution. Without a specific event or weight provided in this instance, we can discuss the process rather than a specific outcome. To calculate the percentile or probability for a given weight, the found z-score can then be used with a standard normal distribution table.

When testing for current in a cable with eight ​color-coded wires, the author used a meter to test five wires at a time. How many different tests are required for every possible pairing of five ​wires?

Answers

Answer:

56 different tests

Step-by-step explanation:

Given:

Number of wires available (n) = 8

Number of wires taken at a time for testing (r) = 5

In order to find the number of different tests required for every possible pairing of five wires, we need to find the combination rather than their permutation as order of wires doesn't disturb the testing.

So, finding the combination of 5 pairs of wires from a total of 8 wires is given as:

[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

Plug in the given values and solve. This gives,

[tex]^8C_5=\frac{8!}{5!(8-5)!}\\\\^8C_5=\frac{8\times 7\times 6\times 5!}{5!\times 3\times2\times1}\\\\^8C_5=56[/tex]

Therefore, 56 different tests are required for every possible pairing of five ​wires.

Final answer:

A total of 56 different tests are needed to check every possible combination of five wires out of eight in the cable.

Explanation:

The question is asking for the number of different tests required to test every possible pairing of five wires in an eight-wire cable. This is a combination problem, where we're looking for how many different ways we can combine five items from a group of eight. The formula for combinations is C(n, k) = n! / [k!(n - k)!], where n is the total number of items, k is the number of items to choose, and ! represents factorial. Plugging into this formula, we get C(8, 5) = 8! / [5!(8 - 5)!] = 56. Therefore, a total of 56 different tests are needed to check every possible combination of five wires out of eight.

Learn more about Combinations here:

https://brainly.com/question/30646507

#SPJ11

Other Questions
how are the al quedo, the talibian and the isis alike? The heat required to raise the temperature of m (kg) of a liquid from T1 to T2 at constant pressure is Z T2CpT dT (1) In high school and in first-year college physics courses, the formula is usually given asQ H m Q mCp T mCpT2 T1 (2)T1(a) What assumption about Cp is required to go from Equation 1 to Equation 2? (b) The heat capacity (Cp) of liquid n-hexane is measured in a bomb calorimeter. A small reaction flask (the bomb) is placed in a well-insulated vessel containing 2.00L of liquid nC6H14 at T 300 K. A combustion reaction known to release 16.73 kJ of heat takes place in the bomb, and the subsequent temperature rise of the system contents is measured and found to be 3.10 K. In a separate experiment, it is found that 6.14kJ of heat is required to raise the temperature of everything in the system except the hexane by 3.10 K. Use these data to estimate Cp[kJ/(mol K)] for liquid n-hexane at T 300 K, assuming that the condition required for the validity ofEquation 2 is satisfied. Compare your result with a tabulated value. There are many applications of exponentials and logarithms, including exponential growth and decay, half life, doubling time, Carbon dating, compound interest. Here are a couple of examples.You find out that in the year 1800 an ancestor of yours invested 100 dollars at 6 percent annual interest, compounded yearly. You happen to be her sole known descendant and in the year 2005 you collect the accumulated tidy sum of _______________ dollars. You retire and devote the next 10 years of your life to writing a detailed biography of your remarkable ancestor.Strontium-90 is a biologically important radioactive isotope that is created in nuclear explosions. It has a half life of 28 years. To reduce the amount created in a particular explosion by a factor 1,000 you would have to wait______________ years. Round your answer to the nearest integer.Seeds found in a grave in Egypt proved to have only 53% of the Carbon-14 of living tissue. Those seeds were harvested ________________ years ago. The half life of Carbon-14 is 5,730 years. Give the stoichiometric coefficient for oxygen when the following equation is balanced using the lowest, whole-number coefficients: ___CH4O(l) ___O2(g) -> ___CO2(g) ____H2O(l) erin is taking part in a play at the community theater the cast and crew ordered T-shirts for all the volunteers the cost of a t-shirt is $8 and the total delivery charges $45 for order if the center has no more than $325 to buy T-shirts how many t-shirts can they buy Which statement best describes how an investor makes money off debt? On January 1, 2020, Gottlieb Corporation issued $4,000,000 of 10-year, 8% convertible debentures at 102. Interest is to be paid semiannually on June 30 and December 31. Each $1,000 debenture can be converted into 8 shares of Gottlieb Corporation $100 par value common stock after December 31, 2021. On January 1, 2022, $400,000 of debentures are converted into common stock, which is then selling at $110. An additional $400,000 of debentures are converted on March 31, 2022. The market price of the common stock is then $115. Accrued interest at March 31 will be paid on the next interest date. Bond premium is amortized on a straight-line basis. Make the necessary journal entries for: (a) December 31, 2021. (c) March 31, 2022. (b) January 1, 2022. (d) June 30, 2022 who were the mojicans (a) How would you characterize the relationship between money spent on advertising and items sold?Explain.(b) Sally uses the function y= 1.6x+ 21.5 to model the situation. What score does the model predictshould be spent in advertising to sell 30 items?(c) What does the number 21.5 in Part (b) mean in the context of the situation?Answer: Metropolitan Water Utility is planning to upgrade its SCADA system for controlling well pumps,booster pumps, and disinfection equipment so that everything can be controlled from one site. Thefirst phase will reduce labor and travel costs by an estimated $31,000 per year. The second phase will reduce costs by an estimated $20,000 per year. If phase I will occur in years 1 through 3 and phase II in years 4 through 8, what is (a) the present worth of the savings, and (b) the equivalent annual worth for years 1 through 8 of the savings? Use an interest rate of 8% per year. Why did Mendel use pea plants in his experiments?OA. They are haploid organisms.OB. They have no dominant traits.OC. They produce many offspring.OD. They are all male. A coil with 150 turns and a cross-sectional area of 1.00 m2 experiences a magnetic field whose strength increases by 0.65T in 1.80 s. The plane of the coil is perpendicular to the plane of the applied magnetic field. What is the induced emf in the coil Read this quote from stalin's speech:as to part of our territory having nevertheless been seized by german fascist troops, this is chiefly due to the fact that the war of fascist germany against the ussr began under conditions that were favorable for the german forces and unfavorable for the soviet forces.what rhetorical tactic is stalin most clearly using? Determine whether the following statement is true or false. Explain.All spheres are similar How does this quotation express the idea of a"Lost Generation"?It expresses hope that life will get better.It expresses a hopelessness about life.It expresses a relief in hard work. Frank is an inmate at Greensburg State Prison, and he has just had a contact visit with an old friend. Before Frank returns to his cell, prison guards subject Frank to a strip search. Such a search is: Although Progressive Era reformers held different opinions about many issues of the day, they shared a belief in If a line has a slope of 3/4, what is theslope of the line perpendicular to theline? What is the slope of the line that passes through point (3,2)(3,2) and point (6,11)(6,11)? can 3,4,7 make a possible right triangle?