To find the area of circle
formula
[tex]a = \pi \: r {}^{2} \\ [/tex]
So,
Diameter is 26
to make radius
26÷2=13
Now we got the radius 13
Apply in the formula
[tex]a = \pi \: (13) {}^{2} \\ a =530.92 [/tex]
The answer is 530.92
if you wana Round it 530.93
Hope this Help:))
Are the following statements equivalent?
b<0 and “the numbers a and b are of a different sign.”
Answer:
Yes different signs leads to a negative product.
Step-by-step explanation:
So I don't know if this was helpful, but I hope you find it very helpful!
Six students all took the same test. Their scores were 70,71,75,75,88, and 89. What is the mean absolute deviation for the test scores?
A)7
B)7.5
C)75
D)78
Answer:D)78
Step-by-step explanation:70+71+75+75+88+89/6
What is the volume of this rectangular prism?
A) 20 in^3
B) 50 in^3
C)220 in^3
D)250 in^3
9(6-2v)= -12(v-8)
step-by-step explanation please!
Enter only the value of the variable
Answer:
v = -2.5
Step-by-step explanation:
9(9-2v) = -12(v-8)
81−18v= −12v+96
So move -18v to the other side and change the sign. Same to 96.
81-96 = -12v + 18v
-15 = 6v
v = -2.5
The circle below is centered at the point (1,2) and has a radius of length 3 .what is its equation?
Answer:
Step-by-step explanation:
The general equation for a circle of radius r with center at (h, k) is
(x - h)² + (y - k)² = r²
Here, this equation becomes:
(x - 1)² + (y - 2)² = 3²
Equation of the circle way to represent the circle in the coordinate plane using its center points and the radius. The equation of the circle centered at the point (1,2) and has a radius of length 3 can be given as,
[tex]x^2+y^2-2x-4y-4=0[/tex]
Given-The center point of the given circle is (1,2).
The length of the radius of the circle is 3 units.
What is the equation of the circle?Equation of the circle way to represent the circle in the coordinate plane using its center points and the radius.
The standard form of the equation of the circle is,
[tex](x-h)^2+(y-k)^2=r^2[/tex]
Here,
(h,k) is the center of the circle.
[tex]r[/tex] is the radius of the circle.
Put the values given in the problem in the standard form of the equation of the circle. Thus,
[tex](x-1)^2+(y-2)^2=3^2[/tex]
[tex]x^2+1-2x+y^2+4-4y=9[/tex]
[tex]x^2+y^2-2x-4y+5-9=0[/tex]
[tex]x^2+y^2-2x-4y-4=0[/tex]
Thus the equation of the circle centered at the point (1,2) and has a radius of length 3 can be given as,
[tex]x^2+y^2-2x-4y-4=0[/tex]
Learn more about the equation of the circle here;
https://brainly.com/question/10165274
need help asap!! plzz
Find 60% of 520 using mental math.
(A)286
(B)312
(C)302
(D)274
Answer: B 312
Step-by-step explanation:i did this before in k12 yep its 312
hope this helps
How many yards are in 4 miles
There are 7040 yards in 4 miles
Answer:
there is 7040 yards in 4 miles
Step-by-step explanation:
1) 1 Miles = 1760 yards
2) just multiply 1760 times 4 because one Miles is 1760 yards
1760 x 4 = 7040 yards
4 represents miles
Hopes this helps!
a triangle garden is being formed with stones. the three sides measure 4 meters by 6 meters by 7 meters. which of the following is a true statement about the side of the triangle?
The true statement is the side lengths will form a triangle because 6+7>4. So option (d) is correct.
To determine if the given side lengths can form a triangle, we need to apply the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
Let's denote the side lengths as follows:
a = 4 meters
b = 6 meters
c = 7 meters
We'll check each possible combination:
1. \( a + b > c \): \( 4 + 6 > 7 \) (True)
2. \( a + c > b \): \( 4 + 7 > 6 \) (True)
3. \( b + c > a \): \( 6 + 7 > 4 \) (True)
Since all three conditions are true, the given side lengths (4, 6, 7 meters) can indeed form a triangle.
Thus, the correct option is D. The side lengths will form a triangle because 6 + 7 > 4.
Complete Question:
A triangular garden is being formed with stones. The three sides measure 4 meters by 6 meters by 7 meters. Which of the following is a true statement about the side lengths of the triangle?
A. The side lengths will not form a triangle because 6+4>7.
B. The side lengths will form a triangle because 4+6<7.
C. The side lengths will not form a triangle because 7+4<6.
D. The side lengths will form a triangle because 6+7>4.
simplify the expression -2(p+4)^2-3+5p.What is the simplified expression in standard form?
Answer: -2x²-11x-35
Step-by-step explanation:
-2(p+4)²-3+5p
-2(x²+8x+16)-3+5x
-2x²-11x-35
To simplify the expression -2(p+4)^2-3+5p, it's important to distribute, multiply, and combine like terms. The simplified expression is -2p^2 -11p -35.
Explanation:To simplify the expression -2(p+4)^2-3+5p, it's easier to break it down step by step:
First, distribute (p+4)^2 to get p^2 + 8p + 16.Multiply -2 to each term to get -2p^2 -16p - 32.Next, combine terms with the rest of the expression to get -2p^2 -16p - 35 + 5p.Finally, combine like terms to arrive at the simplified expression: -2p^2 -11p -35.This is the simplest form of the original expression.
Learn more about Simplify Expression here:https://brainly.com/question/29003427
#SPJ6
(?,3) is on the line y=2x+5 what is the other coordinate
➷ Substitute it into the equation:
3 = 2x + 5
Subtract 5 from both sides:
-2 = 2x
Divide both sides by 2:
x = -1
The other coordinate is -1
✽➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Answer:
-1
Step-by-step explanation:
1.We know that the equation of the line is y=2x+5 ( with a gradient of 2 and a
y-intercept of 5) and the y coordinate is 3 so we must work out x (x,3).
2.We know y=3 so
3 = 2x+5
3. Solve the equation
3=2x+5
(-5 from both sides)
-2=2x
(Divide both sides by 2 to isolate x)
-1 = x so x = 1
Hope this helps:)
5INGH
what is the algebraic expression of 24 decreased by q
Answer:
24-q
Step by Step Explanation :
24 decreased by q is basically saying 24 minus q which is 24-q
If a+b+c=8 and x+y=7 what is -8y-2c-2b-8x-2a
Answer:
-40
Step-by-step explanation:
Try rearranging and factoring -8y-2c-2b-8x-2a:
This is equal to -8(x + y) -2(a + b + c).
Since x + y = 7, we have:
-8(7) -2(a + b + c)
and since a + b + c = 8, we end up with:
-56 - 2(8), or
-56 - 16 = -40
Barry wants to make a drawing that is 1/4 the size of the original. If a tree in the original drawing is 14 inches tall and 5 inches wide, what will be the length and width of the tree in Barry's drawing?
Answer:
I think the answer would be to divide the inches by 4. So Length would be 3.5 inches and width would be 1.25 inches . I might be wrong but if you have no hope I would go with my answer.
Step-by-step explanation:
Answer:
lenght: 3.5 inches.
width: 1.25 inches.
Step-by-step explanation:
You have the following information:
- The drawing must be 1/4 the size of the original drawing.
- The tree in the original drawing is 14 inches tall and 5 inches wide.
Therefore, keeping the above on mind, you can find the length and width of the tree in Barry's drawing by multiplying the original dimensions by 1/4.
Then, you obtain the result shown below:
[tex]lenght=\frac{1}{4}*14in=3.5in\\\\width=\frac{1}{4}*5in=1.25in[/tex]
Please answer fast!
A cubed-shape container has an edge length of 8 cm. The container is filled with decorative crystal cubes. Each cube has an edge of 1 cm and costs 5¢. What is the total cost of the crystal cubes in the container?
Answer:
[tex]\$25.60[/tex]
Step-by-step explanation:
step 1
Find the volume of the container
The volume is equal to
[tex]V=8^{3}=512\ cm^{3}[/tex]
step 2
Find the volume of the crystal cube
The volume is equal to
[tex]V=1^{3}=1\ cm^{3}[/tex]
step 3
Find the total number of crystal cubes in the container
Divide the volume of the container by the volume of the crystal cube
so
[tex]512/1=512\ crystal\ cubes[/tex]
step 4
Find the cost
Multiply the number of crystal cubes by $0.05
[tex]512*0.05=\$25.60[/tex]
Complete the transformation on the vector shown and choose the resulting vector
Answer:
The answer is A. [-4/3]
For the second part the answer is a rotation 90 CCW about origin
Hope this helped!
Answer:
The correct option is B.
Step-by-step explanation:
From the given graph it is clear the x-coordinate of the vector is 3 and y-coordinate of the vector is 4 in the coordinate plane.
The given vector can be defined as
[tex]A=\begin{bmatrix}3 & 4\end{bmatrix}[/tex]
Translation vector is
[tex]B=\begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}[/tex]
We need to find the resulting vector,
[tex]AB=\begin{bmatrix}3 & 4\end{bmatrix}\cdot \begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}[/tex]
[tex]AB=\begin{bmatrix}3(0)+4(1) & 3(-1)+4(0)\end{bmatrix}[/tex]
[tex]AB=\begin{bmatrix}4& -3\end{bmatrix}[/tex]
Therefore the correct option is B.
solve the hypotenuse
Answer:
11.7
Step-by-step explanation:
Using the cosine ratio, then
cos40° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{9}{h}[/tex]
Multiply both sides by h , the hypotenuse
h × cos40° = 9 ( divide both sides by cos40° )
h = [tex]\frac{9}{cos40}[/tex] ≈ 11.7 ( to the nearest tenth )
A rectangular prism has a length of 4 1/4 in a width of 3 in, and a height of 1 1/4 in.
Vhich expressions can be used to find the volume of the prism? Send Help!!
Answer:
4 1/4 × 3 × 1 1/4
Step-by-step explanation:
To find volume you need to do length×width×height
The expression which can be used to find the volume of the rectangular prism is, Volume = l × w × h
What is rectangular prism ?
If a three dimensional prism has 6 rectangular faces such that all 3 pair of opposite faces are congruent.
The three dimensions of a rectangular prism are length, width and height.
What is the formula of volume of a rectangular prism ?Let, length of rectangular prism = l unit
Width of rectangular prism = w unit
And the height of rectangular prism = h unit
Then, Volume of rectangular prism = Length × Width × Height
= l × w × h cubic unit
Learn more about rectangular prism here :
https://brainly.com/question/24284033
#SPJ2
in the diagram below angles J K L and L km are supplementary measure angle jkl equals 2x + 4 degrees and measure angle L km equals x + 26 degrees what is M angle jkl
Answer: 104°
Step-by-step explanation:
Since ∠JKL and ∠LKM are supplementary, then their sum is 180°.
∠JKL + ∠LKM = 180
2x + 4 + x + 26 = 180
3x + 30 = 180
3x = 150
x = 50
∠JKL = 2x + 4
= 2(50) + 4
= 100 + 4
= 104
What is the solution to the equation 4x + 2(x – 3) = 3x + x – 12? (1 point)
–3
–1
1
3
I got -1 but im not sure
heres my work
4x + 2(x – 3) = 3x + x – 12
4x + 2x - 6 = 3x + x - 12
6x -6 = 3x = 3x + x - 12
6x = 3x = 4x - 18
9x = 4x - 18
13x = -18
18 ÷ 13
make it negative
The answer is -3, let me know if you want me to give you the steps
The answer would be -3
Suppose f(x)=x^2 find the graph of f(x)+1
Answer:
f(x)+1 = x^2 + 1
Step-by-step explanation:
The graph of f(x)+1 will be given by adding 1 to the initial function f(x)
f(x)+1 = x^2 + 1
See the attachment for the graph;
the height of a triangle is twice the length of its base. The area of the triangle is 50 m^2. Find the height and base to the nearest tenth of a meter
Answer:
base = 7.1 m and height = 14.2 mStep-by-step explanation:
The formual fo ana area of a triangle:
[tex]A=\dfrac{bh}{2}[/tex]
b - base
h - height
We have A = 50 cm² and h = 2b. Substitute:
[tex]\dfrac{(b)(2b)}{2}=50\\\\b^2=50\to b=\sqrt{50}\ m\to b\approx7.1\ m\\\\h=2b\to h=2(7.1)=14.2\ m[/tex]
To find the height and base of the triangle with an area of [tex]50 m^2[/tex]and the height being twice the base, we use the area formula[tex]A = (base imes height) / 2,[/tex] solve for the base, and double it to find the height. The base is approximately 7.1 m, and the height is approximately 14.1 m.
The question seeks the height and base of a triangle whose area is 50 [tex]m^{2}[/tex] and the height is twice the length of its base. The area of a triangle can be calculated using the formula A = [tex](base imes height) / 2.[/tex] Since the height is twice the base, we can say the height is 2b, where b is the base.
Plugging into the formula for the area of a triangle, we get:
Area, A = 50 m2
[tex]A = (b imes 2b) / 2[/tex]
50 = b2
b = \/50
b \/= 7.1 m (to the nearest tenth)
[tex]Height (h) = 2 imes b = 2 imes 7.1 m[/tex]
h = 14.1 m (to the nearest tenth)
Therefore, the base of the triangle is approximately 7.1 m and the height is approximately 14.1 m.
How many ways can a committee of 6 be selected from a club with 10 members
Answer:
210
Step-by-step explanation:
The general formula for picking k items from a total of n is
[tex]_{n}C_{k} = \frac{n! }{(n-k)!k! }[/tex]
Thus, if we want to select a committee of six people from a club with 10 members, the number of combinations is
[tex]_{10}C_{6} = \frac{10! }{(10-6)!6! }[/tex]
[tex]= \frac{10! }{4!6! }[/tex]
[tex]= \frac{10\times9\times8\times7}{4\times3\times2\times1 }[/tex]
[tex]= \frac{5040 }{24 }[/tex]
= 210
The committee can be selected in 210 separate ways.
Three solid shapes A, B and C are similar.
The surface area of shape A is 4 cm^2
The surface area of shape B is 25 cm^2
The ratio of the volume of shape B to the volume of shape C is 27 : 64
Work out the ratio of the height of shape A to the height of shape C.
Give you answer in its simplest form.
Answer:
[tex]\frac{3}{10}[/tex]
Step-by-step explanation:
step 1
Find the ratio of the height of shape A to the height of shape B
we know that
If two figures are similar, then the ratio of its surface areas is equal to the scale factor squared
Let
z-----> the scale factor
x----> surface area shape A
y----> surface area shape B
so
[tex]z^{2} =\frac{x}{y}[/tex]
substitute
[tex]z^{2} =\frac{4}{25}[/tex]
[tex]z =\frac{2}{5}[/tex]
therefore
the ratio of the height of shape A to the height of shape B is equal to
[tex]\frac{hA}{hB}=\frac{2}{5}[/tex]
step 2
Find the ratio of the height of shape B to the height of shape C
we know that
If two figures are similar, then the ratio of its volumes is equal to the scale factor elevated to the cube
Let
z-----> the scale factor
x----> volume shape B
y----> volume shape C
so
[tex]z^{3} =\frac{x}{y}[/tex]
substitute
[tex]z^{3} =\frac{27}{64}[/tex]
[tex]z =\frac{3}{4}[/tex]
therefore
the ratio of the height of shape B to the height of shape C is equal to
[tex]\frac{hB}{hC}=\frac{3}{4}[/tex]
step 3
Find the ratio of the height of shape A to the height of shape C
we have
[tex]\frac{hA}{hB}=\frac{2}{5}[/tex]
[tex]\frac{hB}{hC}=\frac{3}{4}[/tex]
Multiply
[tex](\frac{hA}{hB})(\frac{hB}{hC})=\frac{hA}{hC}[/tex]
so
[tex](\frac{2}{5})(\frac{3}{4})=\frac{6}{20}=\frac{3}{10}[/tex]
In this problem, we're working with the geometric property of similarity to compare the heights and volumes of different shapes. Using the ratios of their surface areas and volumes, we found that the ratio of the height of Shape A to Shape C is 15:8.
Explanation:In order to solve this problem, it is necessary to first know that, for similar shapes, the ratio of the areas is actually the square of the ratio of the corresponding length measurements (this includes dimensions such as the height). In this particular case, since shapes A and B are similar, the ratio of their surface areas will give the square of the ratio of the heights:
√(25/4) : 1 => 5 : 2
Now, for shapes B and C, we have the volume ratio given as 27 : 64. Since, for similar shapes, the ratio of the volumes is the cube of the ratio of the corresponding length measurements, the cube root of the volume ratio will give the ratio of the heights:
∛(27/64 : 1) => 3 : 4
Using these two ratios, we can find the ratio of height from shape A to shape C by multiplying together the heights of shape A to B and shape B to C: (5/2) * (3/4) => 15 : 8.
Learn more about Similar Shapes here:https://brainly.com/question/24601545
#SPJ3
8.......................
Answer:
b
Step-by-step explanation:
Answer:
a. [tex]8^{8}\sqrt{8}[/tex]
Step-by-step explanation:
The given expression is
[tex]\sqrt{8^{17}}[/tex]
We rewrite the radicand to obtain;
[tex]\sqrt{8^{16}\times 8}[/tex]
Split the radicand;
[tex]\sqrt{8^{16}}\times \sqrt{8}[/tex]
[tex]\sqrt{(8^{8})^2}\times \sqrt{8}[/tex]
[tex]8^{8}\sqrt{8}[/tex]
Your food bill was $80 at a restaurant.
You left a tip of $16.
What percentage of the food bill did you leave for the tip?
$16 / $80 * 100% = 20%.
$16/$80 *100= 20%
answer is 20%
What side lengths form a right triangle
Answer:
B and C
Step-by-step explanation:
Use the Pythagorean Theorem a^2+b^2=c^2.
We can see in B that 8^2 is 64 and 15^2 is 225 which adds to 17^2 which is 289.
In C, the sqrt of 2 squared is just 2 and adding that by another sqrt 2^2 results in 4 which is also the value of 2^2.
Answer:(use the Pythagorean formula)
Step-by-step explanation:
Find the two smaller sides. Square each one them add them together. Then square the third side (the biggest side). If your two answers match, it's a right triangle!
Make sure that you don't make the mistake of adding the two smaller sides together before squaring.
Which expression is equivalent to (3x^2-7)?
Answer:
The correct answer is third option
(10x² - 4) - (7x² + 3)
Step-by-step explanation:
From the given option we get the correct answer is third option.
(10x² - 4) - (7x² + 3)
Check the correct answer
(10x² - 4) - (7x² + 3) = 10x² - 4 - 7x² - 3)
= 10x² - 7x² - 4 - 3 = 3x² - 7
Therefore the correct answer is third option
(10x² - 4) - (7x² + 3)
The correct answer is C on edg
:)
factor -7v^2-25v-12 show steps
[tex] - 7 {v}^{2} - 25v - 12 \\ = - 7 {v}^{2} - 21v - 4v - 12 \\ = - 7 v (v + 3) - 4(v + 3) \\ = ( - 7v - 4)(v + 3) \\ = - (7v + 4)(v + 3)[/tex]
Please explain this to me and give me an answer x
Answer:
[tex]6^{\frac{7}{3} }[/tex]
Step-by-step explanation:
Using the rules of exponents
• [tex]\sqrt[n]{a^{m} }[/tex] ⇔ [tex]a^{\frac{m}{n} }[/tex]
• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]
Hence
[tex]\sqrt[3]{6}[/tex] = [tex]6^{\frac{1}{3} }[/tex] and
6² × [tex]6^{\frac{1}{3} }[/tex] = [tex]6^{\frac{7}{3} }[/tex]
Please help me with this one please ( up there )
Answer:
the blue one is 1/2 and the red one is 1/4
Step-by-step explanation:
count the bricks and put a "1/" in front of the number of bricks and... BOOM you have your answer