In a study of feeding behavior, zoologists recorded the number of grunts of a warthog feeding by a lake in a 15 minute time period following the addition of food. The data showing the weekly number of grunts and the age of the warthog (in days) are listed below. Compute the sum of the squared residuals of the least squared line for the given data Week 1 Number of Grunts 90 age(days) 125 Week 2 Number of Grunts 68 age(days) 141 Week 3 Number of Grunts 39 age(days)155 Week 4 Number of Grunts 44 age(days)160 Week 5 Number of Grunts 63 age(days) 167 Week 6 Number of Grunts 40 Age(days) 174 Week 7 Number of Grunts 62 Age(days) 183 Week 8 Number of Grunts 17 Age(days) 189 Week 9 Number of Grunts 20 Age(days) 195 Can you please show me how to do this by hand I am not allowed to use a scientific calculator?

Answers

Answer 1

The sum of the squared residuals of the least squares line for the given data is 8691.90.

To compute the sum of the squared residuals for the given data, we will perform the steps of calculating the least squares line manually. The least squares line represents the linear regression line that minimizes the sum of the squared differences between the observed data points and the predicted values.

Week 1: Number of Grunts = 90, Age (days) = 125

Week 2: Number of Grunts = 68, Age (days) = 141

Week 3: Number of Grunts = 39, Age (days) = 155

Week 4: Number of Grunts = 44, Age (days) = 160

Week 5: Number of Grunts = 63, Age (days) = 167

Week 6: Number of Grunts = 40, Age (days) = 174

Week 7: Number of Grunts = 62, Age (days) = 183

Week 8: Number of Grunts = 17, Age (days) = 189

Week 9: Number of Grunts = 20, Age (days) = 195

Calculate the means of the Number of Grunts (Y) and Age (X) variables:

Mean of Y (Number of Grunts) = (90 + 68 + 39 + 44 + 63 + 40 + 62 + 17 + 20) / 9 = 48.78

Mean of X (Age) = (125 + 141 + 155 + 160 + 167 + 174 + 183 + 189 + 195) / 9 = 165

Calculate the deviations from the means for each data point:

For each data point, subtract the mean of X (Age) from the specific X value and the mean of Y (Number of Grunts) from the specific Y value.

Deviation from mean for each X value:

125 - 165.67 = -40.67

141 - 165.67 = -24.67

155 - 165.67 = -10.67

160 - 165.67 = -5.67

167 - 165.67 = 1.33

174 - 165.67 = 8.33

183 - 165.67 = 17.33

189 - 165.67 = 23.33

195 - 165.67 = 29

Deviation from mean for each Y value:

90 - 48.78 = 41.22

68 - 48.78 = 19.22

39 - 48.78 = -9.78

44 - 48.78 = -4.78

63 - 48.78 = 14.22

40 - 48.78 = -8.78

62 - 48.78 = 13.22

17 - 48.78 = -31.78

20 - 48.78 = -28.78

Calculate the sum of the products of the deviations:

Sum of (Deviation from mean for X * Deviation from mean for Y)

= (-40.67 * 41.22) + (-24.67 * 19.22) + (-10.67 * -9.78) + (-5.67 * -4.78) + (1.33 * 14.22) + (8.33 * -8.78) + (17.33 * 13.22) + (23.33 * -31.78) + (29.33 * -28.78)

= -5.02 + -0.90 + 1.04 + 0.27 + 18.95 + -73.14 + 228.44 + -739.97 + -845.44

= -1407.77

Calculate the sum of the squared deviations for X:

Sum of (Deviation from mean for X)^2

= (-40.67)^2 + (-24.67)^2 + (-10.67)^2 + (-5.67)^2 + (1.33)^2 + (8.33)^2 + (17.33)^2 + (23.33)^2 + (29.33)^2

= 16572.86

Calculate the sum of the squared residuals:

Sum of squared residuals = Sum of (Deviation from mean for Y)^2

= (41.22)^2 + (19.22)^2 + (-9.78)^2 + (-4.78)^2 + (14.22)^2 + (-8.78)^2 + (13.22)^2 + (-31.78)^2 + (-28.78)^2

= 8691.90

for such more question on least squares line

https://brainly.com/question/18913831

#SPJ8

Answer 2

The sum of the squared residuals of the least squared line for the given data is 8399.

To compute the sum of the squared residuals of the least squared line by hand, you will need to follow these steps:

1. Start by organizing the given data into two columns: one for the number of grunts and one for the age of the warthog.

Week 1: Number of Grunts = 90, Age (days) = 125

Week 2: Number of Grunts = 68, Age (days) = 141

Week 3: Number of Grunts = 39, Age (days) = 155

Week 4: Number of Grunts = 44, Age (days) = 160

Week 5: Number of Grunts = 63, Age (days) = 167

Week 6: Number of Grunts = 40, Age (days) = 174

Week 7: Number of Grunts = 62, Age (days) = 183

Week 8: Number of Grunts = 17, Age (days) = 189

Week 9: Number of Grunts = 20, Age (days) = 195

2. Calculate the mean (average) of the age and the number of grunts. To do this, add up all the values in each column and divide by the total number of data points.

Mean of the age (days):

(125 + 141 + 155 + 160 + 167 + 174 + 183 + 189 + 195) / 9 = 165

Mean of the number of grunts:

(90 + 68 + 39 + 44 + 63 + 40 + 62 + 17 + 20) / 9 = 52

3. Subtract the mean of the age from each age value to get the deviation of each data point from the mean. Similarly, subtract the mean of the number of grunts from each number of grunts value.

Deviation of the age:

125 - 165 = -40

141 - 165 = -24

155 - 165 = -10

160 - 165 = -5

167 - 165 = 2

174 - 165 = 9

183 - 165 = 18

189 - 165 = 24

195 - 165 = 30

Deviation of the number of grunts:

90 - 52 = 38

68 - 52 = 16

39 - 52 = -13

44 - 52 = -8

63 - 52 = 11

40 - 52 = -12

62 - 52 = 10

17 - 52 = -35

20 - 52 = -32

4. Square each deviation value obtained in step 3.

Squared deviation of the age:

[tex](-40)^2 = 1600[/tex]

[tex](-24)^2 = 576[/tex]

[tex](-10)^2 = 100[/tex]

[tex](-5)^2 = 25[/tex]

[tex]2^2 = 4[/tex]

[tex]9^2 = 81[/tex]

[tex]18^2 = 324[/tex]

[tex]24^2 = 576[/tex]

[tex]30^2 = 900[/tex]

Squared deviation of the number of grunts:

[tex]38^2 = 1444[/tex]

[tex]16^2 = 256[/tex]

[tex](-13)^2 = 169[/tex]

[tex](-8)^2 = 64[/tex]

[tex]11^2 = 121[/tex]

[tex](-12)^2 = 144[/tex]

[tex]10^2 = 100[/tex]

[tex](-35)^2 = 1225[/tex]

[tex](-32)^2 = 1024[/tex]

5. Sum up all the squared deviation values obtained in step 4.

Sum of squared residuals:

1600 + 576 + 100 + 25 + 4 + 81 + 324 + 576 + 900 + 1444 + 256 + 169 + 64 + 121 + 144 + 100 + 1225 + 1024 = 8399

Therefore, the sum of the squared residuals of the least squared line for the given data is 8399.

To Learn more about mean here:

https://brainly.com/question/1136789

#SPJ6

In A Study Of Feeding Behavior, Zoologists Recorded The Number Of Grunts Of A Warthog Feeding By A Lake

Related Questions

The role of probability in inferential statistics How is probability used in inferential statistics?A researcher uses probability to decide whether the sample she obtained is likely to be a sample from a particular population.A researcher uses probability to decide whether to draw a sample from a population.A researcher uses probability to decide whether to use inferential or descriptive statistics.

Answers

Answer:A researcher uses probability to decide whether the sample she obtained is likely to be a sample from a particular population.

Step-by-step explanation: Inferential statistics is a Statistical process used to compare two or more samples or treatments.

Probability helps in inferential statistics to decide whether the sample obtained is likely from the population of interest.

Inferential statistics use data obtained from the sample of interest in a research to compare the treatment or samples.Through Inferential statistics researchers make conclusions about the entire population.

Probability in inferential statistics is used to make inferences about a population based on sample data. It provides the foundation for statistical methods such as confidence intervals and hypothesis testing to evaluate the accuracy of the sample in representing the population.

Probability in inferential statistics is critical in helping researchers make inferences about a population from a sample. When researchers collect data from a sample, they use probability theory to deduce how likely it is that their observations are reflective of the entire population or occured by chance. Inferential statistical methods, such as confidence intervals and hypothesis testing, leverage probability to make these determinations.

Probability enables statisticians to evaluate the accuracy of the sample data in representing the population, decide how confident they can be about their inferences, and test the validity of existing hypotheses about the population parameters based on sample data.

For instance, if an inferential statistical test indicates that the likelihood of obtaining the observed sample results by chance is only 5%, researchers can infer there is a 95% probability that the sample accurately reflects the population, supporting the hypothesis being tested. Therefore, probability is used to determine how much confidence researchers can have in their sample data when making generalizations about a larger group.

You estimate that you can save $3,800 by selling your home yourself rather than using a real estate agent. What would be the future value of that amount if invested for five years at 5 percent? Use Exhibit_1-A. (Round time value factor to 3 decimal places and final answer to 2 decimal places.)

Answers

Answer:

$4848.8

Step-by-step explanation:

(1 + 0.05)⁵ = 1.276

FV = 3800 × 1.276

= 4848.8

Final answer:

The future value of $3,800 invested for five years at a 5% interest rate, using the formula [tex]FV = PV[/tex] x [tex](1 + r)^t[/tex], is approximately $4,849.07.

Explanation:

You are asking how to calculate the future value of an amount of money when invested at a certain interest rate over a set period of time. Specifically, you want to know the future value of $3,800 invested for five years at a 5% interest rate.

To calculate the future value (FV) of money we use the formula:
[tex]FV = PV X (1 + r)^t[/tex]

Where:

PV is the present value or initial amount ($3,800)

r is the annual interest rate (5%, or as a decimal, 0.05)

t is the time in years the money is invested (5 years)

Using the formula, we get:
FV = $3,800 x (1 + 0.05)5

FV = $3,800 x (1.276281)

FV = $3,800 x 1.276 (rounded to three decimal places)

FV = $4,849.07 (rounded to two decimal places)

Hence, the future value of $3,800 invested for five years at a 5% interest rate would be approximately $4,849.07.

Suppose that 20% of the adult women in the United States dye or highlight their hair. We would like to know the probability that a SRS of size 200 would come within plus or minus 3 percentage points of this true value. In other words, find probability that pˆ takes a value between 0.17 and 0.23.

Answers

Answer:

71.08% probability that pˆ takes a value between 0.17 and 0.23.

Step-by-step explanation:

We use the binomial approxiation to the normal to solve this question.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].

In this problem, we have that:

[tex]p = 0.2, n = 200[/tex]. So

[tex]\mu = E(X) = np = 200*0.2 = 40[/tex]

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{200*0.2*0.8} = 5.66[/tex]

In other words, find probability that pˆ takes a value between 0.17 and 0.23.

This probability is the pvalue of Z when X = 200*0.23 = 46 subtracted by the pvalue of Z when X = 200*0.17 = 34. So

X = 46

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{46 - 40}{5.66}[/tex]

[tex]Z = 1.06[/tex]

[tex]Z = 1.06[/tex] has a pvalue of 0.8554

X = 34

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{34 - 40}{5.66}[/tex]

[tex]Z = -1.06[/tex]

[tex]Z = -1.06[/tex] has a pvalue of 0.1446

0.8554 - 0.1446 = 0.7108

71.08% probability that pˆ takes a value between 0.17 and 0.23.

The probability that [tex]\( \hat{p} \)[/tex] takes a value between 0.17 and 0.23 is approximately 0.7108.

1. Given that 20% of adult women dye or highlight their hair, the true population proportion [tex]\( p \)[/tex] is 0.20.

2. We want to find the probability that a sample proportion [tex]\( \hat{p} \)[/tex] from a simple random sample (SRS) of size 200 falls within plus or minus 3 percentage points of this true value. In other words, we want to find [tex]\( P(0.17 < \hat{p} < 0.23) \)[/tex].

3. The standard error of [tex]\( \hat{p} \)[/tex] is given by:

[tex]\[ SE = \sqrt{\frac{p(1-p)}{n}} \][/tex]

where [tex]\( p = 0.20 \)[/tex] (the true population proportion) and [tex]\( n = 200 \)[/tex]  (the sample size).

4. Calculate the standard error:

[tex]\[ SE = \sqrt{\frac{0.20 \times (1-0.20)}{200}} = \sqrt{\frac{0.20 \times 0.80}{200}} \][/tex]

[tex]\[ SE = \sqrt{\frac{0.16}{200}} = \sqrt{0.0008} \approx 0.0283 \][/tex]

5. Next, we find the z-scores corresponding to the values 0.17 and 0.23 using the standard normal distribution table:

[tex]\[ z_{0.17} = \frac{0.17 - 0.20}{0.0283} \approx -1.0601 \][/tex]

[tex]\[ z_{0.23} = \frac{0.23 - 0.20}{0.0283} \approx 1.0601 \][/tex]

6. Using the z-scores, we find the corresponding probabilities from the standard normal distribution table:

[tex]\[ P(\hat{p} < 0.17) \approx P(Z < -1.0601) \approx 0.1446 \][/tex]

[tex]\[ P(\hat{p} < 0.23) \approx P(Z < 1.0601) \approx 0.8554 \][/tex]

7. Therefore, the probability that [tex]\( \hat{p} \)[/tex] takes a value between 0.17 and 0.23 is approximately:

[tex]\[ P(0.17 < \hat{p} < 0.23) = P(\hat{p} < 0.23) - P(\hat{p} < 0.17) \][/tex]

[tex]\[ \approx 0.8554 - 0.1446 = 0.7108 \][/tex]

8. Alternatively, we can find this probability directly using the cumulative distribution function (CDF) of the standard normal distribution:

[tex]\[ P(0.17 < \hat{p} < 0.23) = P(-1.0601 < Z < 1.0601) \][/tex]

[tex]\[ \approx \Phi(1.0601) - \Phi(-1.0601) \][/tex]

[tex]\[ \approx 0.8554 - 0.1446 = 0.7108 \][/tex]

9. Therefore, the probability that[tex]\( \hat{p} \)[/tex] takes a value between 0.17 and 0.23 is approximately 0.7108.

The dimensions of a closed rectangular box are measured x, y and z as 100 cm, 70 cm, and 30 cm, respectively, with a possible error of 0.2 cm in each dimension. The surface area and the volume of the box is given by the equations S(x, y, z) = 2xy + 2xz + 2yz, V(x, y, z) = xyz Find the linear approximation of S at the point (96, 69, 29). b. Suppose the box has been measured with a ruler that has one centimeter gradation, find the actual maximum error in measuring the surface of the box. c. Find L(101,71,31) -L(100,70,30) d. Use differentials to estimate the error in the measurement of the surface area of the box. e. Compare the answers of parts c to d and the d to b. What do you conclude? f. A coat of paint of thickness 0.0002 cm is applied to the exterior surface of the box. Use differentials to estimate the amount of the paint needed.

Answers

Answer:see the pictures attached

Step-by-step explanation:

In a certain very large city, the Department of Transportation (D.O.T.) has organized a complex system of bus transportation. In an advertising campaign, citizens are encouraged to use the new "GO-D.O.T!" system and head for the nearest bus stop to be transported to and from the central city. Suppose that at one of the bus stops the amount of time (in minutes) that a commuter must wait for a bus is a uniformly distributed random variable, T.

The possible values of T run from 0 minutes to 20 minutes.

(a) What is the probability that a randomly selected commuter will spend more than 7 minutes waiting for GO-D.O.T?

(b) What is the standard deviation?

(c) What is the probability that a randomly selected commuter will spend longer than 10 minutes but no more than 17 minutes waiting for the GO-D.O.T?

(d) What is the average waiting time?

Answers

Answer:

a) Probability that a randomly selected commuter will spend more than 7 minutes waiting for GO-D.O.T = P(7 < x ≤ 20) = 0.65

b) Standard deviation of the uniform distribution = 5.77 minutes

c) Probability that a randomly selected commuter will spend longer than 10 minutes but no more than 17 minutes waiting for the GO-D.O.T = P(10 < x < 17) = 0.35

d) average waiting time for the uniform distribution = 10 minutes.

Step-by-step explanation:

This is a uniform distribution problem with lower limit of 0 minute and upper limit of 20 minutes.

a = 0, b = 20

Probability = f(x) = [1/(b-a)] ∫ dx (with the definite integral evaluated between the two intervals whose probability is required.

a) Probability that a randomly selected commuter will spend more than 7 minutes waiting for GO-D.O.T

P(7 < x ≤ 20) = f(x) = [1/(b-a)] ∫²⁰₇ dx

P(7 < x ≤ 20) = (20-7)/(20-0) = (13/20) = 0.65

b) Standard deviation of the uniform distribution

Standard deviation of a uniform distribution is given as

σ = √[(b-a)²/12]

σ = √[(20-0)²/12]

σ = √[20²/12]

σ = 5.77 minutes

c) Probability that a randomly selected commuter will spend longer than 10 minutes but no more than 17 minutes waiting for the GO-D.O.T = P(10 < x < 17)

P(10 < x < 17) = (17-10)/(20-0)

P(10 < x < 17) = (7/20) = 0.35

d) The average waiting time.

The average of a uniform distribution = (b+a)/2

Average waiting time = (20+0)/2

Average waiting time = 10 minutes

Hope this Helps!!!

Determine if the described set is a subspace. The subset of Rn (n even) consisting of vectors of the form v = v1 vn , such that v1 − v2 + v3 − v4 + v5 − − vn = 0. The set is a subspace. The set is not a subspace.

Answers

Answer:

The set is a subspace

Step-by-step explanation:

We need to check 3 things: whether the 0 vector is in the set, whether the sum of 2 elements of the set is an element of the set and whether the product of an element of the set for a real scalar is an element of the set.

0 is in the set

Yes: the 0 vector (0, 0, ..., 0) satysfies the set property: 0-0+0-0........-0 = 0.

Given 2 elements v = (v1, ..., vn), w = (w1, ..., wn), is the sum v+2 = (v1+w1, v2+w2, ..., vn+wn) an element of the set?

Yes: Note that (v1+w1)-(v2+w2)+(v3+w3)- ..... - (vn+wn) = v1-v1+v3 - ... - vn + w1 - w2 + w3 - ... - wn = 0+0 = 0.

Given an element of the set v = (v1, ... ,vn), and a real number r, is rv = (rv1, ..., rvn) an element of the set?

Yes: By taking r as common factor, we have rv1 - rv2 + rv3 - ... - rvn = r * (v1-v2+v3 - ... - vn) = r*0 = 0.

Thus, the described set is effectively a subspace.

Final answer:

The described set is a subspace of Rn (n even). It satisfies all three conditions of a subspace: containing the zero vector, closed under addition, and closed under scalar multiplication.

Explanation:

The set described is a subspace of ℝn (where n is even).

To determine if the set is a subspace, we need to check if it satisfies three conditions:


It contains the zero vector: The zero vector satisfies v1 - v2 + v3 - v4 + v5 - ... - vn = 0, so it is in the set.

It is closed under addition: Let v and w be vectors in the set. Then (v + w)1 - (v + w)2 + (v + w)3 - (v + w)4 + (v + w)5 - ... - (v + w)n = v1 - v2 + v3 - v4 + v5 - ... - vn + w1 - w2 + w3 - w4 + w5 - ... - wn = 0. Therefore, v + w is in the set.It is closed under scalar multiplication: Let v be a vector in the set and k be a scalar. Then (k * v)1 - (k * v)2 + (k * v)3 - (k * v)4 + (k * v)5 - ... - (k * v)n = k * (v1 - v2 + v3 - v4 + v5 - ... - vn) = k * 0 = 0. Therefore, k * v is in the set.

Since the set satisfies all three conditions, it is a subspace of ℝn (where n is even).

Learn more about Subspaces in Rn here:

https://brainly.com/question/32087742

#SPJ3

Seventy percent of light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 60% have an emergency locator, whereas 90% of the aircraft not discovered do not have an emergency locator. Suppose that a light aircraft has disappeared.a) If it has an emergency locator, what is the probability that it will not be discovered?b) If it does not have an emergency locator, what is the probability that it will be discovered?c) If we consider 10 light aircraft that disappeared in flight with an emergency recorder, what is the probability that 7 of them are discovered?

Answers

Answer:

Figure out the various probabilities first, that will make the rest of the questions easier:

P(discovered) = .7

P(not discovered) = 1 - .7 = .3

P(locator|discovered) = .6

P(no locator|discovered) = 1 - .6 = .4

P(locator|not discovered) = 1 - .9 = .1

P(no locator|not discovered) = .9

P(discovered and locator) = .7 * .6 = .42

P(discovered and no locator) = .7 * .4 = .28

P(not discovered and locator) = .3 * .1 = .03

P(not discovered and no locator) = .3 * .9 = .27

a) The total probability that an aircraft has a locator is .42 + .03 = .45. So the probability it will not be discovered, given it has a locator, is .03/.45 = .067

b) The total probability that an aircraft does not have a locator is .28 + .27 = .55. So the probability it will be discovered, given it does not have a locator, is .28/.55 = .509

c) Probability that 7 are discovered = C(10,7) * P(discovered|locator)^7 * P(not discovered|locator)^3

We already figured out P(not discovered|locator) = .067, so P(discovered|locator) = 1-.067 = .933. C(10,7) = 10*9*8, so we can compute total probability: 10*9*8 * .933^7 * .067^3 = .133

Step-by-step explanation:

based on the graph below, what is yhe total number of solutions to the equation f(x)= g(x)?
1
2
3
4​

Answers

Answer:

Based on the graph below, what is the total number of solutions to the equation f(x)= g(x) will be 3.

Step-by-step explanation:

The intersection points of both graphs would be the total number of solutions to the equation f(x)= g(x).

From the given diagram, it is clear that both the graphs intersect at three locations points or intersection points. The approximations locations of The intersection points of  both graphs are

(1.5, 4.125)(-1, 0), and (-2.5, -3.5)

Therefore, based on the graph below, what is the total number of solutions to the equation f(x)= g(x) will be 3.

A company has learned that the relationship between its advertising and sales shows diminishing marginal returns. That​ is, as it saturates consumers with​ ads, the benefits of increased advertising diminish. The company should expect to find linear association between its advertising and sales.

Answers

Answer:

A company has learned that the relationship between its advertising and sales shows diminishing marginal returns. That​ is, as it saturates consumers with​ ads, the benefits of increased advertising diminish. The company should expect to find a linear association between its advertising and sales - This statement is false

Step-by-step explanation:

According to the scenario given for the company, it was said that the marginal return diminished after a saturation point, therefore, the company should rather expect a non-linear pattern and not a linear pattern.

Therefore, the statement expressed in the question is false.

4.47 Consider an experiment, the events A and B, and probabilities P(A) 5 0.55, P(B) 5 0.45, and P(A d B) 5 0.15. Find the probability of: a. A or B occurring. b. A and B occurring. c. Just A occurring. d. Just A or just B occurring.

Answers

Answer:

a) 0.85

b) 0.15

c) 0.40

d) 0.70

Step-by-step explanation:

P(A) = 0.55

P(B) = 0.45

P(A n B) = 0.15

a) Probability of A or B occurring = P(A u B) = P(A) + P(B) - P(A n B) = 0.55 + 0.45 - 0.15 = 0.85

b) Probability of A and B occurring = P(A n B) = 0.15

c) Probability of just A occurring = P(A n B') = P(A) - P(A n B) = 0.55 - 0.15 = 0.40

d) Probability of just A or just B occurring = P(A n B') + P(A' n B) = 0.4 + (0.45 - 0.15) = 0.4 + 0.3 = 0.70

A humanities professor assigns letter grades on a test according to the following scheme. A: Top 7% of scores B: Scores below the top 7% and above the bottom 56% C: Scores below the top 44% and above the bottom 19% D: Scores below the top 81% and above the bottom 6% F: Bottom 6% of scores Scores on the test are normally distributed with a mean of 72.1 and a standard deviation of 9.5. Find the minimum score required for an A grade. Round your answer to the nearest whole number, if necessary.

Answers

Answer:

The minimum score required for an A grade is 86.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 72.1, \sigma = 9.5[/tex]

Find the minimum score required for an A grade.

Top 7%, which is the value of X when Z has a pvalue of 1-0.07 = 0.93. So it is X when Z = 1.475. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.475 = \frac{X - 72.1}{9.5}[/tex]

[tex]X - 72.1 = 1.475*9.5[/tex]

[tex]X = 86[/tex]

The minimum score required for an A grade is 86.

Jack inherited a perpetuity-due, with annual payments of 15,000. He immediately exchanged the perpetuity for a 25-year annuity-due having the same present value. The annuity-due has annual payments of X. All the present values are based on an annual effective interest rate of 10% for the first 10 years and 8% thereafter. Calculate X.

Answers

Final answer:

Jack inherited a perpetuity-due, which he exchanged for a 25-year annuity-due. The present value of both are equal and based on different interest rates over the 25 years. The annual payment X of the annuity can be calculated using the formula for the present value of an annuity and the present value of the inherited perpetuity-due.

Explanation:

This problem is about financial mathematics, specifically involving perpetuities and annuities. In a perpetuity-due, the payments are made at the beginning of each period indefinitely. An annuity-due is similar, but the payments only last a specified number of years.

The present value (PV) of a perpetuity-due with annual payments P and annual interest rate r is calculated by PV = P / r. Given that P is $15,000 and r is 10%, the present value of the perpetuity-due that Jack inherits is $150,000.

When Jack swaps this for a 25-year annuity-due, with the first 10 years at 10% interest and the next 15 years at 8% interest, we calculate the annual payment X using the formula for the present value of an annuity. This formula involves dividing the total present value by the sum of the present value factors for each year at the respective interest rates.

Consequently, X can be calculated as follows: X = (PV of perpetuity-due) / ∑ (discount factors for each year). A detailed calculation will give the exact value of X.

Learn more about Financial Mathematics here:

https://brainly.com/question/31955701

#SPJ3

If one wanted to find the probability of 10 customer arrivals in an hour at a service station, one would generally use the _____. a. hypergeometric probability distribution b. Poisson probability distribution c. exponential probability distribution d. binomial probability distribution

Answers

Answer:

b. Poisson probability distribution

Step-by-step explanation:

The Poisson distribution is the discrete probability distribution of the number of events occurring in a given time period. The poisson distribution is also use when few large demand is expected.

In this question; poisson distribution is use to find the probability of 10 customers arrivals in an hour at a service station.

Final answer:

To find the probability of 10 customer arrivals in an hour at a service station, one would use the Poisson probability distribution, which calculates the probability of a certain number of events happening in a set period of time.

Explanation:

The correct answer is b. Poisson probability distribution. This type of distribution is often used to calculate the probability of a certain number of events happening in a set period of time. In this case, the 'events' are the arrivals of customers at a service center within an hour.

Here's a very simplified version of the steps to calculate a Poisson probability:
Step 1: Identify the average rate (λ) - this is the average number of times the event is happening per unit of measure (in your case, customer arrivals per hour).
Step 2: Use the formula for Poisson probability, which is P(x; λ) = e^-λ * λ^x / x! Where 'x' is the actual number of successes that result from the experiment, 'e' is approx 2.71828 and '!' denotes a factorial.

So, if we knew the average rate of customer arrivals, we could easily apply it to this formula to get the probability of 10 customer arrivals in an hour.

Learn more about Poisson Distribution here:

https://brainly.com/question/33722848

#SPJ3

Write the composite function in the form f(g(x)).[Identify the inner function u = g(x)and the outer function

y = f(u).]
$ y = e^{{\color{red}7}\sqrt{x}} $
(g(x), f(u)) = ??
and find the derivative

For what values of x does the graph of f have a horizontal tangent? (Use n as your integer variable. Enter your answers as a comma-separated list.)
f(x) = x ? 2 sin x
x=??

Answers

Answer:

a) (g(x), f(u)) = ( 7*√x , e^u )

b)   y ' = 3.5 * e^(7*√x) / √x

Step-by-step explanation:

Given:

- The given function:

                                       y = e^(7*√x)

Find:

- Express the given function as a composite of f(g(x)). Where, u = g(x) and y = f(u).

- Express the derivative of y, y'?

Solution:

- We will assume the exponent of  the natural log to be the u. So u is:

                                     u = g(x) = 7*√x

- Then y is a function of u as follows:

                                     y = f(u) = e^u

- The composite function is as follows:

                                    (g(x), f(u)) = ( 7*√x , e^u )

- The derivative of y is such that:

                                    y = f(g(x))

                                    y' = f' (g(x) ) * g'(x)

                                    y' = f'(u) * g'(x)

                                    y' = e^u* 3.5 / √x

- Hence,

                                   y ' = 3.5 * e^(7*√x) / √x

                               

A retail store stocks windbreaker jackets in small, medium, large, and extra large and all are available in blue or red. What are the combined choices and how many combined choices are there?

Answers

Answer:

Choices={SB,SR,MB,MR,LS,LM,XLB,XLR}

8 combined choices

Step-by-step explanation:

Combinations

We'll define two sets of options for the windbreaker jackets, one for the sizes and another for the colors. Being S=small, M=medium, L=large, and XL=extra large, then

Z={S,M,L,XL}

is the set of possible sizes for the windbreaker jackets. Now, being B=blue and R=red, the set of colors is

C={B,R}

The combined choices are found by the cartesian product of ZxC:

Choices={SB,SR,MB,MR,LS,LM,XLB,XLR}

Where MB, for example, is Medium-Blue

That is the sample space for all the possible combinations, there are 8 in total

Final answer:

According to the Counting Principle in Mathematics, there are 8 different combinations of sizes and colors for the windbreaker jackets available at the retail store.

Explanation:

The retail store offers windbreaker jackets in four different sizes: small, medium, large, and extra large. Each of these sizes is available in two colors: blue and red. Therefore, using a concept in mathematics known as the Counting Principle, we can ascertain the number of combinations. The Counting Principle states that if one event can occur in m ways and another can occur in n ways, then the number of ways that both events can occur is m*n.

So in this scenario, we have 4 sizes (small, medium, large, extra-large) and 2 colors (blue, red). Applying the Counting Principle, there are a total of 4 * 2 = 8 different combinations of jackets that can be purchased from the store.

Learn more about Counting Principle here:

https://brainly.com/question/33601419

#SPJ3

Birth weights of full-term babies in a certain area are normally distributed with mean 7.13 pounds and standard deviation 1.29 pounds. A newborn weighing 5.5 pounds or less is a low-weight baby. What is the probability that a randomly selected newborn is low-weight? Use the appropriate applet. Enter a number in decimal form, e.g. 0.68, not 68 or 68%.

Answers

Answer: probability that a randomly selected newborn is low-weight is 0.1038

Step-by-step explanation:

Since Birth weights of full-term babies in a certain area are normally distributed m, we would apply the formula for normal distribution which is expressed as

z = (x - µ)/σ

Where

x = birth weights of full-term babies.

µ = mean weight

σ = standard deviation

From the information given,

µ = 7.13 pounds

σ = 1.29 pounds

The probability that a randomly selected newborn is low-weight is expressed as

P(x ≤ 5.5)

For x = 5.5

z = (5.5 - 7.13)/1.29 = - 1.26

Looking at the normal distribution table, the probability corresponding to the z score is 0.1038

P(x ≤ 5.5) = 0.1038

Find the area of a regular octagon with side length 8 cm. Round your answer to the nearest square centimeter.

A. 53 cm
B. 106 cm
C. 155 cm
D. 309 cm

Answers

Answer:

A≈309.02cm² Step by step

Here is your solution

A=2(1+2)a2=2·(1+2)·82≈309.01934cm²

So the answer to this problem is D

A thin sheet of ice is in the form of a circle. If the ice is melting in such a way that the area of the sheet is decreasing at a rate of 0.5 m2/sec at what rate is the radius decreasing when the area of the sheet is 12 m2

Answers

Answer:

dx/dt  =  0,04 m/sec

Step-by-step explanation:

Area of the circle is:

A(c) =π*x²      where   x is a radius of the circle

Applying differentiation in relation to time we get:

dA(c)/dt   =  π*2*x* dx/dt    

In this equation we know:

dA(c)/dt  = 0,5 m²/sec

And are looking for dx/dt then

0,5  = 2*π*x*dx/dt    when the area of the sheet is 12 m²  (1)

When  A(c) = 12 m²      x = ??

A(c)  =  12  =  π*x²      ⇒    12  =  3.14* x²    ⇒  12/3.14  =  x²

x²  = 3,82     ⇒   x  = √3,82    ⇒  x = 1,954 m

Finally plugging ths value in equation (1)

0,5  = 6,28*1,954*dx/dt

dx/dt  =  0,5 /12.28

dx/dt  =  0,04 m/sec

The rate at which the radius is decreasing when the area of the sheet is 12 m² is; dr/dt = 0.041 m/s

We are given;

Area of sheet; A = 12 m²

Rate of change of area; dA/dt = 0.5 m²/s

Now, formula for area of the circular sheet is given as;

A = πr²

Thus; 12 = πr²

r = √(12/π)

r = 1.9554 m

Now, we want to find the rate at which the radius is decreasing and so we differentiate both sides of the area formula with respect to t;

dA/dt = 2πr(dr/dt)

Thus;

0.5 = 2π × 1.9554(dr/dt)

dr/dt = 0.5/(2π × 1.9554)

dr/dt = 0.041 m/s

Read more at; https://brainly.in/question/42255951

Which polynomials are in standard form?
Choose all answers that apply:
5-2x
x^4-8x^2 -16
5x^3 + 4x^4 — 3x + 1
None of the above​

Answers

Answer: The second option, x^4 - 8x^2 - 16.

Step-by-step explanation:

Polynomials in standard form start with the highest degree, from greatest to least exponent. After all terms with exponents are in order, alphabetical variables are next. In this case there's only x. Last are constant terms, which are by itself, with no variable next to it/an exponent to the right of it.

x^4 - 8x^2 - 16 is in standard form because it follows the criteria above. 4 is the highest degree since it's the highest exponent in the polynomial expression, which is why it starts off with x^4. Other terms with lesser exponents are next. In this case, it's 8x^2 with the less exponent of 2. Finally, it ends with your constant term, -16.

The standard form of the polynomial is,

⇒ x⁴ - 8x² - 16

Given that,

All the polynomials are,

⇒ 5 - 2x

⇒ x⁴ - 8x² - 16

⇒ 5x³ + 4x⁴ - 3x + 1

Since we know that,

In standard form, a polynomial is arranged in descending order of the exponents of its terms.

This means that the term with the highest degree is listed first, followed by the terms with lower degrees.

Hence, Based on this definition, the polynomial in standard form among the options is,

⇒ x⁴ - 8x² - 16

To learn more about the equation visit:

brainly.com/question/28871326

#SPJ6

A student takes an exam containing 1414 multiple choice questions. The probability of choosing a correct answer by knowledgeable guessing is 0.30.3. At least 99 correct answers are required to pass. If the student makes knowledgeable guesses, what is the probability that he will pass? Round your answer to four decimal places.

Answers

Answer:

0.0082 = 0.82% probability that he will pass

Step-by-step explanation:

For each question, there are only two possible outcomes. Either the students guesses the correct answer, or he guesses the wrong answer. The probability of guessing the correct answer for a question is independent of other questions. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

In this problem we have that:

[tex]n = 14, p = 0.3[/tex].

If the student makes knowledgeable guesses, what is the probability that he will pass?

He needs to guess at least 9 answers correctly. So

[tex]P(X \geq 9) = P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 9) = C_{14,9}.(0.3)^{9}.(0.7)^{5} = 0.0066[/tex]

[tex]P(X = 10) = C_{14,10}.(0.3)^{10}.(0.7)^{4} = 0.0014[/tex]

[tex]P(X = 11) = C_{14,11}.(0.3)^{11}.(0.7)^{3} = 0.0002[/tex]

[tex]P(X = 12) = C_{14,12}.(0.3)^{12}.(0.7)^{2} = 0.000024[/tex]

[tex]P(X = 13) = C_{14,13}.(0.3)^{13}.(0.7)^{1} = 0.000002[/tex]

[tex]P(X = 14) = C_{14,14}.(0.3)^{14}.(0.7)^{0} \cong 0 [/tex]

[tex]P(X \geq 9) = P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14) = 0.0066 + 0.0014 + 0.0002 + 0.000024 + 0.000002 = 0.0082[/tex]

0.0082 = 0.82% probability that he will pass

Find the length of arc. DB. Leave your answer in terms of pi

Answers

Answer: Length of arc DB is 14π feet.

Step-by-step explanation:

The sum of the angles on a straight line is 180 degrees. This means that

m∠DAB + m∠CAB = 180

m∠DAB + 40 = 180

m∠DAB = 180 - 40

m∠DAB = 140°

The formula for determining the length of an arc is expressed as

Length of arc = θ/360 × 2πr

Where

θ represents the central angle.

r represents the radius of the circle.

π is a constant whose value is 3.14

From the information given,

r = 18 feet

θ = 140°

Therefore,

Length of arc DB = 140/360 × 2 × π × 18

Length of arc DB = 14π feet

If a procedure meets all of the conditions of a binomial distribution except the number of trials is not​ fixed, then the geometric distribution can be used. The probability of getting the first success on the xth trial is given by ​P(x)equalsp (1 minus p )Superscript x minus 1​, where p is the probability of success on any one trial. Subjects are randomly selected for a health survey. The probability that someone is a universal donor​ (with group O and type Rh negative​ blood) is 0.07. Find the probability that the first subject to be a universal blood donor is the seventh person selected. The probability is nothing. ​(Round to four decimal places as​ needed.)

Answers

Answer:

Given p = 0.07 as the probability that someone is a universal donor

In case of Geometric Distribution, Probability of  getting the first success on nth trial is given by

[tex]P (X=n) = p (1-p) ^ {n-1}[/tex]

where p is the probability of success on any one trial and (1-p) shows the probability of failure.

So the probability of the first subject to be a universal blood donor will be the seventh person is

[tex]P (X=7) = 0.07 (1-0.07) ^ {7-1} = 0.07 (0.93) ^ 6 = 0.07*0.647 = 0.0453[/tex]

So the final probability is 0.0453

Multiply.
(x - 6)(x - 4)

Answers

Answer:

[tex]x^{2} -10x+24[/tex]

Step-by-step explanation:

A 15-inch candle is lit and burns at a constant rate of 1.1 inches per hour. Let t represent the number of hours since the candle was lit, and suppose f is a function such that f ( t ) represents the remaining length of the candle (in inches) t hours after it was lit. Write a function formula for f . f ( t )

Answers

Answer: f(t) = 15 - 1.1t

Step-by-step explanation:

Let t represent the number of hours since the candle was lit.

A 15-inch candle is lit and burns at a constant rate of 1.1 inches per hour. This means that in t hours, the candle that would have burnt is 1.1t

The length of the candle that would be left after t hours is expressed as

15 - 1.1t

suppose f is a function such that f(t) represents the remaining length of the candle (in inches) t hours after it was lit, then

f(t) = 15 - 1.1t

Speeding on the I-5, Part I. The distribution of passenger vehicle speeds traveling on the Interstate 5 Freeway (I-5) in California is nearly normal with a mean of 72.6 miles/hour and a standard deviation of 4.78 miles/hour.47 (a) What percent of passenger vehicles travel slower than 80 miles/hour?(b) What percent of passenger vehicles travel between 60 and 80 miles/hour?(c) How fast to do the fastest 5% of passenger vehicles travel?(d) The speed limit on this stretch of the I-5 is 70 miles/hour. Approximate what percentage of the passenger vehicles travel above the speed limit on this stretch of the I-5.

Answers

Answer:

a) [tex]P(X<80)=P(\frac{X-\mu}{\sigma}<\frac{80-\mu}{\sigma})=P(Z<\frac{80-72.6}{4.78})=P(z<1.548)[/tex]

And we can find this probability using the normal standard distirbution or excel and we got:

[tex]P(z<1.548)=0.939[/tex]

And that correspond to 93.9 %

b) [tex]P(60<X<80)=P(\frac{60-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{80-\mu}{\sigma})=P(\frac{60-72.6}{4.78}<Z<\frac{80-72.6}{4.78})=P(-2.636<z<1.548)[/tex]

And we can find this probability with this difference:

[tex]P(-2.636<z<1.548)=P(z<1.548)-P(z<-2.636)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-2.636<z<1.548)=P(z<1.548)-P(z<-2.636)=0.939-0.0042=0.935 [/tex]

So we have approximately 93.5%

c) [tex]z=1.64<\frac{a-72.6}{4.78}[/tex]

And if we solve for a we got

[tex]a=72.6 +1.64*4.78=80.439[/tex]

So the value of velocity that separates the bottom 95% of data from the top 5% is 80.439.  

d) [tex]P(X>70)=P(\frac{X-\mu}{\sigma}>\frac{70-\mu}{\sigma})=P(Z>\frac{70-72.6}{4.78})=P(z>-0.544)[/tex]

And we can find this probability using the complement rule, normal standard distirbution or excel and we got:

[tex]P(z>-0.544)=1-P(z<-0.544) = 1-0.293=0.707 [/tex]

And that correspond to 70.7 %

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Part a

Let X the random variable that represent the vehicles speeds of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(72.6,4.78)[/tex]  

Where [tex]\mu=72.6[/tex] and [tex]\sigma=4.78[/tex]

We are interested on this probability

[tex]P(X<80)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<80)=P(\frac{X-\mu}{\sigma}<\frac{80-\mu}{\sigma})=P(Z<\frac{80-72.6}{4.78})=P(z<1.548)[/tex]

And we can find this probability using the normal standard distirbution or excel and we got:

[tex]P(z<1.548)=0.939[/tex]

And that correspond to 93.9 %

Part b

We want this probability

[tex]P(60<X<80)=P(\frac{60-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{80-\mu}{\sigma})=P(\frac{60-72.6}{4.78}<Z<\frac{80-72.6}{4.78})=P(-2.636<z<1.548)[/tex]

And we can find this probability with this difference:

[tex]P(-2.636<z<1.548)=P(z<1.548)-P(z<-2.636)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-2.636<z<1.548)=P(z<1.548)-P(z<-2.636)=0.939-0.0042=0.935 [/tex]

So we have approximately 93.5%

Part c

For this part we want to find a value a, such that we satisfy this condition:

[tex]P(X>a)=0.05[/tex]   (a)

[tex]P(X<a)=0.95[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.95 of the area on the left and 0.05 of the area on the right it's z=1.64. On this case P(Z<1.64)=0.95 and P(z>1.64)=0.05

If we use condition (b) from previous we have this:

[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.95[/tex]  

[tex]P(z<\frac{a-\mu}{\sigma})=0.95[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=1.64<\frac{a-72.6}{4.78}[/tex]

And if we solve for a we got

[tex]a=72.6 +1.64*4.78=80.439[/tex]

So the value of velocity that separates the bottom 95% of data from the top 5% is 80.439.  

Part d

[tex]P(X>70)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X>70)=P(\frac{X-\mu}{\sigma}>\frac{70-\mu}{\sigma})=P(Z>\frac{70-72.6}{4.78})=P(z>-0.544)[/tex]

And we can find this probability using the complement rule, normal standard distirbution or excel and we got:

[tex]P(z>-0.544)=1-P(z<-0.544) = 1-0.293=0.707 [/tex]

And that correspond to 70.7 %

The equation r(t)= (3t+9)i+(sqrt(2)t)j+(t^2)k is the position of a particle in space at time t. Find the angle between the velocity and acceleration vectors at time t=0
What is the angle? ______radians

Answers

Answer:

[tex]\theta= \frac{\pi}{2} +\pi \cdot i[/tex], for all [tex]i = \mathbb{Z} \cup\{0\}[/tex]

Step-by-step explanation:

The velocity vector is found by deriving the position vector depending on the time:

[tex]\dot r(t)= v (t) = 3 \cdot i +\sqrt{2} \cdot j + 2\cdot t \cdot k[/tex]

In turn, acceleration vector is found by deriving the velocity vector depending on time:

[tex]\ddot r(t) = \dot v(t) = a(t) = 2 \cdot k[/tex]

Velocity and acceleration vectors at [tex]t = 0[/tex] are:

[tex]v(0) = 3\cdot i + \sqrt{2} \cdot j\\a(0) = 2 \cdot k\\[/tex]

Norms of both vectors are, respectively:

[tex]||v(0)||\approx 3.317\\||a(0)|| \approx 2[/tex]

The angle between both vectors is determined by using the following characteristic of a Dot Product:

[tex]\theta = \cos^{-1}(\frac{v(0) \bullet a(0)}{||v(0)||\cdot ||a(0)||})[/tex]

Given that cosine has a periodicity of [tex]\pi[/tex]. There is a family of solutions with the form:

[tex]\theta= \frac{\pi}{2} +\pi \cdot i[/tex], for all [tex]i = \mathbb{Z} \cup\{0\}[/tex]

Final answer:

π/2 radians, indicating the vectors are perpendicular at that instant.

Explanation:

The angle between the velocity and acceleration vectors at a given time can be found by first determining the velocity (νt) and acceleration (ν2t) vectors as the first and second derivatives of the position vector r(t). At time t=0, these derivatives can be calculated and then used to find the angle through the dot product and magnitude of these vectors.

For the given position vector

r(t) = (3t+9)i + (√2t)j + (t2)k,

the velocity vector v(t) is obtained by differentiating each component of r(t) with respect to time t, which gives

v(t) = (3)i + (√2)j + (2t)k.

Similarly, acceleration a(t) is the derivative of velocity v(t), which results in a(t) = (0)i + (0)j + (2)k.

At t=0, v(0) = (3)i + (√2)j and a(0) = (2)k. The angle θ between v(0) and a(0) is given by the cosine of the angle between the two vectors, which is calculated using the dot product formula:

θ = cos-1((v ⋅ a) / (|v||a|)).

Here, (v ⋅ a) is the dot product of v(0) and a(0), and |v| and |a| are the magnitudes of v(0) and a(0), respectively.

Since v(0) and a(0) are perpendicular at t=0, their dot product is 0, and the magnitudes of v(0) and a(0) do not affect the angle. Therefore, the angle θ is simply cos-1(0), which is π/2 radians, indicating the vectors are perpendicular.

Elana owns a consulting business that helps software companies market their services to school districts. She earns an average of $5687.1 for every contract one of her client companies signs with her help. In order to be able to run her business, she needs to cover $7,000/month (rent, licenses, etc.). The average costs associated with each contract are $1260.7. How many contracts must she facilitate each month in order to break even

Answers

Answer:

2 contracts

Step-by-step explanation:

Break even point refers to the number of units or sales that needs to be generated for the company to make neither a profit nor a loss.

This means that at the break even point, sales is equivalent to the cost incurred (both fixed and variable).

Let the number of contracts that must be signed to break even be s

The rent is a fixed cost while the cost associated with each contract is variable.

5687.1s = 7000 + 1260.7s

5687.1s - 1260.7s = 7000

4426.4 s = 7000

s = 1.58

≈ 2

She must facilitate 2 contracts each month to break even.

Given that (-4,9) is on the graph of f(x), find the corresponding point for the function. f(4x).

Answers

Answer:

(-1,9)

Step-by-step explanation:

The table in the shape of a circle has a diameter of 6 feet. How much fabric is needed to make a table cloth if it hangs 1 foot off the table all the way around?jdjdkndjcjjfnnfm

Answers

Answer: area of fabric needed is 50.24 ft²

Step-by-step explanation:

The table in the shape of a circle has a diameter of 6 feet. This means that the diameter of the fabric that would just fit the table is 6 feet. Therefore, the diameter of the fabric needed to make a table cloth if it hangs 1 foot off the table would be 6 + 1 + 1 = 8 feet

The formula for determining the area of a circle is expressed as

Area = πr²

Where

r represents radius of the circle.

π is a constant whose value is 3.14

Radius = diameter/2. Therefore

r = 8/2 = 4

Area of fabric = 3.14 × 4²

= 50.24 ft²

Final answer:

To make a tablecloth for a circular table with a diameter of 6 feet, and an overhang of 1 foot, the student would need approximately 50.27 square feet of fabric.

Explanation:

The student is asking about finding the amount of fabric needed to create a tablecloth for a circular table with specific dimensions. Given that the table has a diameter of 6 feet, and the tablecloth needs to hang 1 foot off the table all the way around, we need to calculate the diameter of the fabric required.

To solve this, we need to add the overhang to the diameter of the table, considering that the overhang occurs on both sides:

Diameter of the table: 6 feetOverhang on one side: 1 footOverhang on the other side: 1 footTotal diameter needed: 6 feet + 1 foot + 1 foot = 8 feet

Now, to find the area of fabric needed, we apply the formula for the area of a circle which is π × radius². First, we find the radius by halving the diameter:

Radius of the fabric: 8 feet / 2 = 4 feet

Then, we calculate the area:

Area of fabric: π × (4 feet)² = π × 16 feet²

Finally, we can approximate π as 3.1416 to get an approximate area of:

Area of fabric ≈ 3.1416 × 16 feet² ≈ 50.2656 square feet

Therefore, the student would need approximately 50.27 square feet of fabric to make the tablecloth.

a) What percentage of the area under the normal curve lies to the left of μ? % (b) What percentage of the area under the normal curve lies between μ − σ and μ + σ? % (c) What percentage of the area under the normal curve lies between μ − 3σ and μ + 3σ? %

Answers

Answer:

a) 50%

b) 68%

c) 99%

Step-by-step explanation:

for a standard normal curve ,

a) since the standard normal curve is symmetric and centred around μ , 50% of the curve lies at the left of μ and 50% lies to the right

b) according to the 68-95-99 rule,  68% of the standard normal curve lies from μ − σ and μ + σ

c) from the same rule , 99% of the standard normal curve lies from μ − 3σ and μ + 3σ

Answer:

a) 50%

b) 68%

c) 99.7%

Step-by-step explanation:

The Empirical Rule states that, for a normally distributed random variable:

68% of the measures are within 1 standard deviation of the mean.

95% of the measures are within 2 standard deviation of the mean.

99.7% of the measures are within 3 standard deviations of the mean.

The normal distribution is also symmetric, which means that 50% of the measures are below the mean and 50% are above.

In this problem, we have that:

Mean μ

Standard deviation σ

Area under the normal curve = percentage

a) What percentage of the area under the normal curve lies to the left of μ?

Normal distribution is symmetric, so the answer is 50%.

(b) What percentage of the area under the normal curve lies between μ − σ and μ + σ?  

Within 1 standard deviation of the mean, so 68%.

(c) What percentage of the area under the normal curve lies between μ − 3σ and μ + 3σ?

Within 3 standard deviation of the mean, so 99.7%.

Other Questions
You are buying a home for $360,000. If you make a down payment of $60,000 and take out a mortgage on the rest at 8.5% compounded monthly, what will be your monthly payment if the mortgage is to be paid off in 15 years Bernie just started a business and is trying to raise capital. He has both accredited and non-accredited investors investing in the company. What constraints on investments for new businesses apply here? Write down the square number between 26 and 63 that is odd? Type the correct answer in each box. Use numerals instead of words.An Investment worth $50,000 has these expectations of returns: 3096 chance of ending up worth $40,000 50% chance of ending up worth $50,100 20% chance of ending up worth $65,000Determine the expected value and risk.. The investment is risky because it has only a% chance of making a significantThe expected value of the investment is $return. 8 yo the power of 2 4(2+3)-9 Which U.S. president's assassination was influential in the creation of the creation of a federal law agency?LincolnKennedyMcKinleyHarrison Which word means to see over others,or be in charge Let's use the results of the 2012 presidential election as our x0. Looking up the popular vote totals, we find that our initial distribution vector should be (0.5106, 0.4720, 0.0075, 0.0099)T. Enter the matrix P and this vector x0 in MATLAB: Hamburger Co has determined that their lowest total cost production technology is $460. If machines cost $100 and workers cost $40 what number of workers produces this cost of production, assuming Hamburger Co has already determined it will purchase 3 machines? Brainliest!!Drag each tile to the correct box.Match the entrepreneurs with their achievements.Henry FordDebbie FieldsOprah Winfreyexpanded cookie business overseas hosted a popular talk show introduced assembly line production of cars Select the TRUE statements. For the function 48(1.25)x, the parameter for the growth factor is 1.25. For the function f(x) = 75x + 250, the parameter for the beginning value is 75. For the function 28(0.5)x, the parameter for the decay factor is 50%. For the function y = 18x + 72, the parameter for the average rate of change is 18. isco Fever is randomly found in one half of one percent of the general population. Testing a swatch of clothing for the presence of polyester is 99% effective in detecting the presence of this disease. The test also yields a false-positive in 4% of the cases where the disease is not present. What is the probability that the test result comes back negative if the disease is present At a waterpark, sleds with riders are sent along a slippery, horizontal surface by the release of a large, compressed spring. The spring with a force constant 37.0 N/cm and negligible mass rests on the frictionless horizontal surface. One end is in contact with a stationary wall. A sled and rider with total mass 66.0 kg are pushed against the other end, compressing the spring 0.370 m. The sled is then released with zero initial velocity. What is the sled's speed when the spring is still compressed 0.180 m? Which matrix multiplication is possible? 5. Why could the Revolution not have started in France? 1. Fill in the blanks in the following sentences with the ePay attention to when the action is performed and provide the appropriate tense.ne following sentences with the appropriate forms of the verbs In parentheses.1. Perdone seor, ccundo ____ (salir) el tren a Barcelona?2. Lo siento, pero el tren ya _____ (salir)3. Laura _____ (perder) el tren ayer4. Juan ______ (recoger) ayer las entradas para el concierto de Manu Chao.5. A dnde _______ (ir) t y tu familia durante las vacaciones pasadas?6. Nosotros ______ (ir) a Per por 2 semanas el ao pasado7. Qu ______ (hacer) esta tarde? Vas al cine con Juan?8. Esta tarde descanso, porque ayer ______ (hacer) alpinismo con mis amigos.9. Pablo Casals ______ (ser) un gran violonchelista Muri en 1973.10. Ayer, nosotros ______ (tener) un examen muy difcil.11. Los estudiantes ______ (estar) en la biblioteca toda la noche el lunes pasado.12 Anoche, yo ______ (estar) despierta hasta las tres de la maana. No poda dormir.13. Ayer Paula me _____ (decir) que el ao pasado ella _______ (estar) estudiando enMxico. Ella tambin me ______ (decir) que ______ (ser) una experiencia maravillosa.14. Qu _____ (hacer) t ayer?15. La verdad, no mucho. Yo _____ (tener) que quedarme en casa, porque mi hermanoestaba enfermo Read the excerpt from My Story. Here it was, half a century after the first segregation law, and there were 50,000 African Americans in Montgomery. More of us rode the buses than Caucasians did, because more whites could afford cars. It was very humiliating having to suffer the indignity of riding segregated buses twice a day, five days a week, to go downtown and work for white people. The first-person narration in this excerpt best helps readers understand Storms that form in or travel to the Caribbean Sea or Gulf of Mexico are virtually certain to impact land areas. There were multiple examples of these tracks in 2018. ________ is one particular example. 17. (-3, y) and (1, -7); m = -4 (5.2x10^-1)(1.5x10^-5)