Answer:
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴
Explanation:
Alpha beta and gamma radiations are the examples of ionizing radiations. When an atom is an excited state and having high energy, the atom is in unstable state. The excess of energy is released by the atom to get the stability. The released energy is in the form of radiations which may include alpha, beta, gamma, X-ray etc.
Alpha decay:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Properties of alpha radiation:
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴
one side of a cube measures 0.53 cm. the mass of the cube is 0.92 g. what is the density of the cube
To calculate the density of the cube, we first determined the cube's volume by cubing the side's length and then divided the mass by the volume, resulting in a density of 6.179 g/cm³.
To find the density of the cube, we need to use the formula:
Density = mass/volume.
The mass of the cube is given as 0.92 grams. To calculate the volume of the cube, we cube the length of one side:
Volume = side3 = 0.53 cm x 0.53 cm x 0.53 cm.
Volume = 0.148877 cm3 (rounded to six decimal places).
Now, we can calculate the density:
Density = 0.92 g / 0.148877 cm3
Density = 6.179 g/cm3 (rounded to three decimal places).
Therefore, the density of the cube is 6.179 g/cm3.
Consider the nuclear equation below.
Superscript 239 subscript 94 upper P u right arrow variable X plus superscript 4 subscript 2 upper H e.
What is X?
Answer:
X = ²³⁵₉₂U
Explanation:
The isotope of plutonium-239 undergo alpha decay and produced uranium-235.
Nuclear equation:
²³⁹₉₄Pu → ²³⁵₉₂U + ⁴₂He
Alpha decay:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Properties of alpha radiation:
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
Answer:
[tex]235 \atop 92} \right.[/tex] U.
Explanation:
How does the density of protostars compare to other stars?
Protostars are less dense than other stars.
Explanation:
Protostars are very young ‘stars’ made from hydrogen clouds that are beginning to coalesce and collapse under their weight. The hydrogen has not even begun fusing. Therefore, they are mainly made of hydrogen which is the lightest element in the universe.
Stars, however, have begun fusing hydrogen to other heavier elements like helium, carbon, oxygen, and iron. The elements are much heavier than hydrogen making other stars much denser than protostars.
Learn More:
For more on protostars vs stars check out;
https://brainly.com/question/3719157
https://brainly.com/question/2229892
#LearnWithBrainly
A new penny has a mass of 2.49 grams and occupies 0.349 cm cubed. If pure copper has a density of 8.96 g/cm cubed, is the new penny put copper?
Answer: The new penny is not pure copper
Explanation:
Density [tex]\rho[/tex] is defined as a relation between the mass [tex]m[/tex] and the volume [tex]V[/tex]:
[tex]\rho=\frac{m}{V}[/tex]
Now, we are told the density of pure copper is:
[tex]\rho_{copper}=8.96 g/cm^{3}[/tex]
And we are given the mass and volume of the new penny, with which we can calculate its density:
[tex]\rho_{penny}=\frac{m_{penny}}{V_{penny}}=\frac{2.49 g}{0.349 cm^{3}} [/tex]
[tex]\rho_{penny}=7.13 g/cm^{3}[/tex] As we can see the density of this penny is not equal to the density of pure copper, hence the new penny is not pure copper.
What is the heaviest noble gas?
A.Helium
B.Radon
C.Fluorine
D.Astatine
Answer:
Radon is the heaviest Noble Gas
Explanation:
This statement is very easy to be solved. As we know that Noble Gases are group of Elements which have complete valence shell and are stable elements and don't react easily and hence, are found in mono-atomic form in nature. These elements can be found on the extreme right of the periodic table in group 8 or group 18. Following are the Noble elements,
(i) Helium
(ii) Neon
(iii) Argon
(iv) Xenon
(v) Radon
Now,
In statement we are provided with only two noble gases i.e. Helium and Radon. Therefore, it is easy among them to finalize the heaviest one as Radon having atomic mass of 222.02 g/mol and atomic radii of 0.22 nm is much denser/heavier than Helium having atomic mass of 4.0 g/mol and atomic radii of 0.122 nm.
7. Which would feel warmer to the touch - a bucket of water at 50°C or a bathtub filled
with water at 25°C? Which of these contains more energy? Account for any differences in your answers to these questions.
Answer:
The bucket with 50 degrees Celsius because it is more compact energy moving around faster in a smaller space, while the water in the bathtub is colder so it is moving slower but it also has more space so the protons don't bounce off of each other or the walls as much.
Explanation:
The bucket of water at 50°C would feel warmer to the touch. However, the bathtub filled with water at 25°C contains more energy due to its larger mass.
Explanation:To determine which would feel warmer to the touch, we need to consider the temperature difference between the object and our body. The bucket of water at 50°C would feel warmer because it has a higher temperature compared to our body temperature. In terms of energy, the bathtub filled with water at 25°C contains more energy because it has a larger mass.
Heat energy is given by the formula Q = mcΔT, where Q represents heat energy, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Since the bathtub contains more water and has a larger mass than the bucket, it has more energy.
Therefore, while the bucket of water would feel warmer to the touch, the bathtub contains more energy due to its larger mass.
Learn more about Temperature and Energy here:https://brainly.com/question/34014381
#SPJ2
Does sulfured food taste different?
Answer:
Yes
Explanation:
Sulfur in its pure do not have any taste and odor but many foods rich in sulfur can have a distinct odor and taste. The foods contains sulfur in very small amounts but some of the foods which are known for rich in sulfur are onion, garlic, egg, flex seeds, walnuts, meat, red bell pepper, cheese, green vegetables etc.
The foods rich in sulfur helps in fighting skin acne and fights skin infection which makes our skin brighter because of this property of sulfur it is used in skin antiseptic creme and medicines.
The intake of the excess sulfur can cause burning sensation, diarrhea, tonsils and even can cause brain damage if taken in too excess and death of the brain cells. So, the sulfur is good for health and is a remedy for our skin if taken by the natural source of food in a healthy amount.
Answer:
He is right, sulfured food dose taste different
What is the mass of 2.35 x 10^21 moles of sodium
Answer:
5.41 x 10²² g
Explanation:
Data Given:
no. of moles of sodium = 2.35 x 10²¹ moles
mass of sodium = ?
Solution:
Formula used
no. of moles = mass in grams / molar mass
To find mass rearrange the above equation:
mass in grams = no. of moles x molar mass. . . . . . (1)
molar mass of Sodium (Na) = 23 g/molPut values in equation 1
mass in grams = 2.35 x 10²¹ moles x 23 g/mol
mass in grams = 5.41 x 10²² g
So,
mass of Sodium (Na) = 5.41 x 10²² g
How many particles are in 3.55 moles of Aluminum Sulfate
Answer:
21.4 ×10²³ particles
Explanation:
Given data:
Number of moles of aluminium sulfate = 3.55
Number of particles = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 3.55 moles of aluminium sulfate:
3.55 mol × 6.022×10²³ particles / 1 mol
21.4 ×10²³ particles
Based on the electron configuration of the two
atoms, predict the ratio of metal cationic (+) atom
to nonmetal anionic (-) atom in the compound.
Lithium 1s22s1
Nitrogen 1s^22s^22p^3
Help
A. 1:1
B. 1:2
C. 2:1
D. 3:1
Answer: option D. 3:1
Explanation:
the answer to this question is C 2:1
How does a chemical reaction obey the law of conservation of matter?
The law of conservation of matter, a key principle in chemistry, dictates that the total mass of reactants equals the total mass of products in a chemical reaction. It's applied by balancing chemical equations so that the number of atoms of each element remains constant before and after the reaction. Balancing in terms of moles also reflects this law, ensuring the same amount of each element is present throughout the reaction.
The law of conservation of matter is a fundamental principle in chemistry, stating that matter is neither created nor destroyed during a chemical reaction. In other words, the total mass of the reactants must be equal to the total mass of the products. This law is applied when balancing chemical equations, ensuring that there is the same number of each type of atom on both the reactant and product sides of the equation.
To illustrate, consider a simple chemical reaction where hydrogen gas reacts with oxygen gas to form water:
2 H₂ (g) + O₂ (g) -> 2 H₂O (l).
Balancing this equation, we ensure that there are four hydrogen atoms and two oxygen atoms on both sides, reflecting the conservation of matter. No matter is lost or gained in the process; it is simply rearranged into a different form.
When dealing with stoichiometry and balancing chemical equations in terms of moles, the same principle applies. The number of moles of each element must be conserved across the reaction. This means that for a reaction balanced in moles, the total number of moles of each element in the reactants will equal the total number of moles of each element in the products, satisfying the law of conservation of matter.
divide the difference between one thousand three hundred and nine hundred fifty by 4
Answer:
87.5
Explanation:
1300-950=350
350/4 =87.5
The difference between 1300 and 950 is 350. When you divide this difference by 4, you find that the answer is 87.5.
Explanation:In this mathematics problem, you are tasked with finding the difference between two numbers: one thousand three hundred (1300) and nine hundred fifty (950). The difference between these two numbers is 350. The next step as described in the question is to divide this difference by 4. So, 350 divided by 4 equals 87.5. Therefore, the solution to this problem is 87.5.
Learn more about Arithmetic here:https://brainly.com/question/32830972
#SPJ2
At what time would the velocity reach 60.00 km/hr? It will never travel at 60.00 km/hr. It travels at a different constant rate. 10.00 seconds 100.00 seconds... i found the answer its 10.00 seconds.
Answer:
They’re correct it is 10 seconds
Explanation:
Answer: 10 seconds
Explanation:
11. If there are 8.24 x 1022 molecules of NaCl in a salt shaker, what is the mass of the salt?
Answer: 8.00 a Nacl
The mass of the salt is 8.00 grams.
Explanation:To find the mass of the salt, we need to know the molar mass of NaCl. The molar mass of NaCl is calculated by adding the atomic mass of sodium (Na) to the atomic mass of chlorine (Cl). The atomic masses of Na and Cl are 22.99 grams/mole and 35.45 grams/mole, respectively. Adding these two values, we get a molar mass of 58.44 grams/mole for NaCl.
Now, we can use the given number of molecules (8.24 x 10^22) to calculate the mass of the salt. To do this, we first need to convert the number of molecules to moles by dividing it by Avogadro's number (6.02 x 10^23 molecules/mole). So, the number of moles of NaCl is 8.24 x 10^22 / 6.02 x 10^23 = 0.1368 moles.
Finally, we can calculate the mass of the salt by multiplying the number of moles (0.1368) by the molar mass of NaCl (58.44 grams/mole). The mass of the salt is therefore 0.1368 moles x 58.44 grams/mole = 8.00 grams.
Learn more about mass here:https://brainly.com/question/35704156
#SPJ3
1. Zinc reacts with steam according to the equation:
Zn) + H2O → ZnO + H2
What mass of zinc oxide is formed from 41.6g of zinc?
+ H2(g)
2. Sulfur burns in air to form sulfur dioxide according to the equation:
S(s) +
O2(g)
→ SO2(g)
What volume of sulfur dioxide is produced (at room temperature
24 of sulfur?
Answer:
1) mass ZnO = 55.155 g
2) V SO2(g) = 18.289 L
Explanation:
1) Zn + H2O → ZnO + H2
∴ mass Zn = 41.6 g
∴ mm Zn = 65.38 g/mol
⇒ mol Zn = (41.6 g)(mol/61.38 g) = 0.678 mol Zn
⇒ mol ZnO = (0.678 mol Zn)(mol ZnO/mol Zn) = 0.678 mol ZnO
∴ mm ZnO = 81.38 g/mol
⇒ mass ZnO = (0.678 mol ZnO)(81.38 g/mol) = 55.155 g ZnO
2) S(s) + O2(g) → SO2(g)
∴ mass S(s) = 24 g
∴ T = 25°C ≅ 298 K
∴ P = 1 atm
∴ mm S(s) = 32.065 g/mol
⇒ mol S(s) = (24 g)(mol/32.065 g) = 0.7485 mol S(s)
⇒ mol SO2(g) = (0.7485 mol S(s))(mol SO2(g)/mol S(s)) = 0.7485 mol SO2(g)
ideal gas:
PV = RTn⇒ V SO2(g) = ((0.082 atm.L/K.mol)(298 K)(0.7485 mol))/(1 atm)
⇒ V SO2(g) = 18.289 L SO2(g)
Which information must be known about a compound to find the
cular formula from the empirical formula?
Answer: the relative molecular mass of the compound
Explanation:
What is not a factor in soil type?
A. Mineral Content
B. Pollution
C. Climate
D. Microorganism Content
Answer:
its b
Explanation:
Question 2 (1 point)
Al + S8 = Al2S3
When balanced, what is the coefficient of Al?
Answer:
16
Explanation:
FIRST AND FOREMOST, BALANCE YOUR EQUATION.
Al + S8 ➡️ Al2S3
Numbers of Al=1. ➡️ Numbers of Al = 2
Numbers of S =8. ➡️ Numbers of S. = 3
USE COEFFICIENT TO BALANCE THE EQUATION.
16Al + 3S8 ➡️ 8Al2S3
Now the Numbers of Al and S in both sides of eqn. is balanced
The Answer Is 16
Answer: 16 Al
Explanation: If we balance the chemical equation the result is this:
16 Al + 3 S8 => 8Al2S3
Sulfur both have 24 electrons in the reactant and product side
While for Al contains 16 on both sides.
TIME REMAINING
19:20
The absolute temperature of a gas is increased four times while maintaining a constant volume. What happens to the pressure
of the gas?
It decreases by a factor of four.
It increases by a factor of four.
It decreases by a factor of eight.
It increases by a factor of eight.
Save and Exit
NE
Submit
Mark this and return
Answer:
The pressure of the gas will "increases by a factor of four."
Explanation:
The absolute zero in other words called as the absolute temperature. Whereas the absolute zero is the least possible temperature. In which nothing will remain cold and no heat can be released or present in the substance. When it is described in the figure it will be, –273.15 degrees Celsius on the Celsius scale. and 0 K on the Kelvin scale. This absolute temperature concept has been raised from the third law of the thermodynamics.
How much neutrons, protons and electrons does Al3+ have?
Answer: Protons = 13
Electrons= 10
Neutrons = 14
Explanation: This problem is an ion of Al which has a charge of +3
For this ion the atomic number for Al is 13 and its mass number is 27.
The atomic number indicates the number of protons which is 13. The number of electrons is changed due to loss of electrons since it was ionized. It loses 3 electrons so the total number of electrons is 13-3 = 10.
The number of neutrons can be calculated using
Atomic mass - atomic number
27- 13 = 14 neutrons
Aluminum ion (Al³⁺) has thirteen protons, thirteen protons, and ten electrons.
How is the Aluminum ion (Al³⁺) formed?Aluminum ion (Al³⁺) is formed by the loss of three electrons from the neutral aluminum atom.
The neutral aluminum atom has thirteen protons, thirteen electrons, and thirteen protons.
During the formation of the Aluminum ion (Al³⁺), three electrons are removed from the valence shell of the neutral aluminum atom, leaving it with only ten electrons.
Learn more about Aluminum ion (Al³⁺) at: https://brainly.com/question/1542439
#SPJ6
Which of these foods is produced using bacteria?
A.mashed potatoes
B.fresh apples
C.cheddar cheese
D.fried chicken
Answer:
C
Explanation:
Cheese is rotten milk
Answer:
The answer is C, Cheddar Cheese
Ww is an example of .
WW is an example of .
ww is an example of .
Answer:
the answer to this question if dealing with biology should be;
Ww is an example of a Heterozygous allele
WW is an example of a Homozygous Dominant allele
ww is an example of a Homozygous recessive allele
Explanation:
this is due to the way scientists tend to write traits. this is the likely result of the box method of doing so
Ww is an example of a Heterozygous allele
WW is an example of a Homozygous Dominant allele
ww is an example of a Homozygous recessive allele
Explanation: This is due to the way scientists tend to write traits. this is the likely result of the box method.
The gas in a closed container has a pressure of 3.00 x 10² kPa 30 ° C. What will the pressure be if the temperature is lowered to -172 ° C?
Answer: 100kPa
Explanation:
P1 = 3.00 x 10² kPa , P2 =?
T1 = 30°C = 30 +273 = 303k
T2 = —172°C = —172 + 273 = 101k
P1/T1 = P2/T2
3 x 10² / 303 = P2 / 101
P2 = (3 x 10² / 303) x 101
P2 = 100kPa
Final answer:
The final pressure in the container when the temperature is lowered to -172°C is calculated using Gay-Lussac's Law. By converting temperatures to kelvin and applying the formula P2 = (P1 x T2) / T1, we find the final pressure to be approximately 99.5 kPa.
Explanation:
The question is related to the behavior of gases under changes in temperature, which can be described by the Gas Laws, specifically the Gay-Lussac's Law. According to Gay-Lussac's Law, the pressure of a gas is directly proportional to its temperature in kelvins, provided that the volume and amount of gas remain constant. The law can be expressed as P1/T1 = P2/T2, where P1 and T1 are the initial pressure and temperature, and P2 and T2 are the final pressure and temperature.
To solve the problem, first convert the initial and final temperatures from Celsius to Kelvin:
T1 = 30°C + 273.15 = 303.15 KT2 = -172°C + 273.15 = 101.15 KNow using Gay-Lussac's Law:
P1 = 3.00 x 10² kPaT1 = 303.15 KT2 = 101.15 KThe formula P2 = (P1 x T2) / T1 will give us the final pressure P2.
Substituting the known values:
P2 = (3.00 x 10² kPa x 101.15 K) / 303.15 K =approx 99.5 kPa
Therefore, the final pressure in the container will be approximately 99.5 kPa when the temperature is lowered to -172°C.
Based on the visible light spectrum, which of the following has the longest wavelength?
A.
a ray of orange light
B.
a ray of green light
C.
a ray of blue light
D.
a ray of violet light
HELP PLEASEEEE
Answer:
I think the answer is D a ray of violet light
Hope it helps!
How much potential energy does a 15kg branch have if it 4.5 m above the ground?
Answer:
675 joule
Explanation:
mass of the branch=15 kg
gravity=9. 8 m/s^2
height=4. 5 m
now,
potential energy=mass×gravity×height
=15kg ×9. 8 m/s^2 ×4. 5 m
=675 j
Answer: PE = 662 J
Explanation: Potential Energy is the product of mass, gravity and height.
PE = mgh
= 15 kg x 9.8 m/s² x 4.5 m
= 662 J
Write a complete electron configuration for borin
The electron configuration for Boron (B) is given as [tex]1s^2 2s^2 2p^1[/tex] or [tex][He] 2s^2 2p^1[/tex]
Answer:
Boron (B) has an atomic number equal to 5 and is an element from Group 13 of the periodic table. It has a total of 5 electrons of which 3 are valence electrons.
The electron configuration for Boron can be written with the first two electrons in the 1s orbital. Since 1s orbital can hold only two electrons, out of the remaining three electrons; two electrons will go in the 2s orbital. The remaining one electron in the 2p orbital. Therefore the Boron electron configuration will be [tex]1s^2 2s^2 2p^1[/tex]
Since [tex]1s^2[/tex] is the electron configuration for Helium, Electron configuration for Boron can also be written as [tex][He] 2s^2 2p^1[/tex]
(Refer attached figure)
What is the role if mutations in genetic variation and the diversity of living things? Use human inheritance examples as evidence.
Explanation:
Mutations on DNA create genetic variation and diversity on which natural selection acts upon. Mutation can be advantageous, disadvantageous or neutral. Those mutations that confer advantage are preserved in the population while those that are DISadvantageous are weeded out. This occurs because advantageous traits that give a particular advantage to individuals in the environment, however slightest, give them an increased chance of survival and passing their genes to subsequent generations.
An example is mutation that causes sickle cell-shaped blood cells. Individuals with sickle cell blood are less likely to contract malaria. Therefore in an environment where malaria is endemic, the population will have a higher allele frequency for sickle cell alleles that populations in non-endemic areas.
Learn More:
For more on mutations check out;
https://brainly.com/question/11938701
https://brainly.com/question/13612138
#LearnWithBrainly
which of the following is not a state of matter?
a. gas
b. plasma
c. solid
d. round
Answer:
Round
Explanation:
A 14.630 g milk chocolate bar is found to contain 9.315 g of sugar.
Question: A 14.630 g milk chocolate bar is found to contain 9.315 g of sugar
How many milligrams of sugar does the milk chocolate bar contain
Answer:
"9315 mg" of sugar has the milk chocolate bar
Explanation:
Given that the 14.630 g milk chocolate has 9.315 g of sugar
We have to convert 9.315 grams to milligrams
We know that 1 gram = 1000 mg
So
9.315 gram = [tex]9.315 \times 1000[/tex]
9.315 gram = 9315 mg
Therefore, the milk chocolate bar has 9315 mg of sugar.
Dihydrogen dioxide decomposes into water and oxygen gas. Calculate the amounts requested if 1.34 moles of dihydrogen dioxide react according to the equation.
You must show all units.
a. Moles of oxygen formed
b. Moles of water formed
c. Mass of water formed
d. Mass of oxygen formed
Answers:
a. Moles of oxygen formed: 0.670 mol
b. Moles of water formed: 1.34 mol
c. Mass of water formed: 24.1 g
d. Mass of oxygen formed: 21.4 g
Explanation:
Dihdyrogen dioxide is the chemical name for a compound made of two hydrogen atoms and two oxide atoms, i.e. H₂O₂, which is also known as hydrogen peroxide or oxygenated water.
The decomposition reaction of dihydrogen dioxide into water and oxygen gas is represented by the balanced chemical equation:
[tex]2H_2O_2(l)\rightarrow 2H_2O(l)+O_2(g)[/tex]
The mole ratios derived from that balanced chemical equation are:
2 mol H₂O₂ : 2 mol H₂O : 1 mol O₂a. Moles of oxygen formed
Set the proportion using the theoretical mole ratio of H₂O₂ to O₂ and the amount of moles of dyhydrogen dioxide that react:[tex]2\text{ mol }H_2O_2/1\text{ mol }O_2=1.34\text{ mol }H_2O_2/x[/tex]
When you solve for x, you get:
x = 1.34 mol H₂O₂ × 1 mol O₂ / 2 mol H₂O₂ = 0.670 mol O₂b. Moles of water formed
Set the proportion using the theoretical mole ratio of H₂O₂ to H₂O and the amount of moles of dyhydrogen dioxide that react:[tex]2\text{ mol }H_2O_2/2\text{ mol }H_2O=1.34\text{ mol }H_2O_2/x[/tex]
When you solve for x, you get:
x = 1.34 mol H₂O₂ × 2 mol H₂O / 2 mol H₂O₂ = 1.34 mol H₂Oc. Mass of water formed
Using the number of moles of water calculated in the part b., you calculate the mass of water formed, in grams, using the molar mass of water:
Molar mass of water = 18.015 g/molNumber of moles = mass in grams / molar mass⇒ mass in grams = number of moles × molar mass
⇒ mass in grams = 1.34 mol × 18.015 g/mol = 24.1 g
d. Mass of oxygen formed
Using the number of moles of oxygen determined in the part a., you calculate the mass in grams using the molar mass of O₂.
Molar mass of O₂ = 32.00 g/molmass = molar mass × number of moles mass = 32.00 g/mol × 0.670 mol = 21.4 g.