In a certain organic compound, one of the carbon atoms is bonded to three atoms. One of these is a carbon atom and the other two are hydrogen atoms. What type of bond exists between the two carbon atoms?

Double Covalent

Ionic

Ion Dipole

Answers

Answer 1

Since the C is bonded to 2 H atoms,

it needs two more bonds to complete the octet of C(as C forms four bonds in total),hence C-C bond is double covalent bond

The bonded C atom is shown as bold C here:

-C=CH2

The  bond between the two C atoms is Double Covalent.



Answer 2

The type of bond that exists between the two carbon atoms in this organic compound is a double covalent bond.

In a double covalent bond, two pairs of electrons are shared between the two carbon atoms. Each carbon atom contributes one electron from its outermost electron shell to form a strong and stable bond. This sharing of electrons allows both carbon atoms to satisfy the octet rule, which states that atoms tend to gain, lose, or share electrons to achieve a stable configuration with a full outer electron shell, typically containing eight electrons.

Covalent bonds occur when atoms share electrons to achieve a stable electron configuration. In the case of a double covalent bond, there are two pairs of shared electrons between the two carbon atoms. This bond is strong and requires a significant amount of energy to break, making it a key characteristic of many organic compounds with double bonds, such as alkenes and some functional groups in organic chemistry.

To learn more about electrons, click here.

https://brainly.com/question/12001116

#SPJ3


Related Questions

The two balanced equations (1) and (2) are for reactions in which gaseous carbon dioxide is produced from the combustion of (1) solid carbon and (2) gaseous carbon monoxide.
1. C(s) + O2(g) CO2(g) + 94.0 kcal
2. CO(g) + ½ O2(g) CO2(g) + 67.6 kcal
When 112 grams of carbon monoxide are consumed according to equation 2, which of the following occurs? (atomic weights: C = 12.0 g/mol, O = 16.0 g/mol)
1.0 mole of carbon dioxide is produced.
67.6 kcal of heat are generated.
2.0 moles of oxygen are consumed.
0.25 mole of carbon dioxide is produced.
0.50 mole of oxygen is consumed.

Answers

Answer:

2.0 mol of oxygen are consumed.

Step-by-step explanation:

You know that you will need a balanced equation with masses, moles, and molar masses, so gather all the information in one place.

M_r:   28.0                 44.0

          CO  + ½O₂ ⟶ CO₂ + 67.6 kcal

m/g:   112

Step 1. Convert grams of CO to moles of CO

1 mol CO = 28.0 g CO

Moles of CO = 112 × 1/28.0

Step 2. Convert moles of CO to moles of CO₂.

The molar ratio is 1 mol CO₂ to 1 mol CO

Moles of CO₂ = 4.000 × 1/1

Moles of CO₂ = 4.00 mol CO₂

Option A is wrong.

Step 3. Calculate the amount of heat generated.

q = ΔH

The conversion factor is 67.6 kcal/1 mol CO₂

q = 4.00 × 67.6

q = 270 kJ

Option B is wrong, because it gives the heat generated by 1 mol of CO.

Step 4. Calculate the moles of O₂ consumed

Moles of O₂ = 2.00 mol O₂

Option C is correct.

Step 5. Calculate the moles of CO₂ formed

Already done in Step 2.

Moles of CO₂ = 4.00 mol CO₂

Option D is wrong.

Step 6. Calculate the moles of O₂ produced

Already done in Step 4.

Moles of O₂ = 2.00 mol O₂

Option E is wrong.

HELP PLS !!!! :))Formula unit of Sr and CI

Formula unit of AI and S

Answers

Answer : The formula unit of Sr & Cl is [tex]SrCl_2[/tex] and the formula unit of Al & S is [tex]Al_2S_3[/tex]

Explanation :

Formula unit : it is defined as the lowest number ratio of ions of an elements in an ionic compound or covalent compound.

For the formula unit of Sr & Cl, two chloride ions[tex](Cl^-)[/tex] are needed to neutralize the one strontium ion[tex](Sr^{2+})[/tex].

For the formula unit of Al & S, three sulfide ions[tex](S^{2-})[/tex] are needed to neutralize the two aluminium ion[tex](Al^{3+})[/tex].

The formula unit of [tex]SrCl_2[/tex] and [tex]Al_2S_3[/tex] are shown below.

A gas at constant volume has a pressure of 3.20 atm at 300. K. What will be the pressure of the gas at 290. K?

Answers

From the general law of gases: PV = nRT,

where P is the pressure (atm),

V is the volume (L),

n is the number of moles,

R is the general gas constant (8.314 L.atm/mol.K),

T is the temperature in Kelvin

at constant volume of the gas: P1T2 = P2T1

P1 = 3.20 atm, T1 = 300 K, T2 = 290 K, P2 = ??

(3.20 atm)(290 K) = P2(300 K)

P2 = (3.20 atm)(290 K)/ (300 K) = 3.093 atm

Answer: 3.093 atm

I got it right on my quiz

Explanation:

V is the volume (L),

n is the number of moles,

R is the general gas constant (8.314 L.atm/mol.K),

T is the temperature in Kelvin

at constant volume of the gas: P1T2 = P2T1

P1 = 3.20 atm, T1 = 300 K, T2 = 290 K, P2 = ??

(3.20 atm)(290 K) = P2(300 K)

P2 = (3.20 atm)(290 K)/ (300 K) = 3.093 atm

1.) Which of the following is an example of using creativity while doing background research?

A. Organizing data in tables
B. Validating results by repetition
C. Drawing a conclusion
D. Writing a hypothesis

2.) The gas carbon dioxide is a pure substance. Which of the following is true about carbon dioxide?

A. Carbon and oxygen are chemically bonded in it.
B. Carbon and oxygen retain their original identity in it.
C. It can be separated into carbon and oxygen using physical methods.
D. The proportion of carbon and oxygen is different in different samples of the gas.

3.) Which of the following is a property of a mixture?

A. It consists of a single element or compound.
B. Components that are mixed can be in different states of matter.
C. It is very difficult to separate the components.
D. The proportion of the particles that make it up cannot be altered.

Answers

1) Answer is: D. Writing a hypothesis.

The scientific method is a process for experimentation that is used to explore observations.

Steps of the scientific method:

1) ask a question about something that is observed.

2) do background research.

3) construct a hypothesis, an attempt to answer questions with an explanation that can be tested.

4) test of hypothesis.

5) analyze collected data and draw a conclusion.

2) Answer is: A. Carbon and oxygen are chemically bonded in it.

A compound (in this example carbon dioxide CO₂) is a pure substance because its molecule cannot be broken down into simpler particles by physical means.

A chemical compound is a chemical substance composed of many identical molecules composed of atoms held together by chemical bonds.

Carbon dioxide (CO₂) are inorganic compounds with covalent bonds between carbon and oxygen.

3) Answer is: B. Components that are mixed can be in different states of matter.

A single substance can be used to make a mixture if the substance is composed of more than one element is not correct, because mixture is composed of at least two substances. For example mixture of water and alcohol ethanol.

There is a definite recipe to make each mixture, so the composition of a mixture is set is not correct, because composition of mixture can vary.

Components that are mixed can be in different states of matter is correct, for example mixture of salt (solid) and water (liquid).

Please help!!
1. What are the characteristics of all chemical reactions? 2. Why does temperature affect how fast a chemical reaction occurs? (Use kinetic energy in your answer.) 3. What is stored in chemical bonds? 4. What is wrong with this chemical equation? (Hint: Think about the Law of Conservation of Mass.) Balance it. H2 + O2 ----> H2O 5. Why do certain chemical reactions require a catalyst? 6. How does energy get stored in chemical bonds? Use a different example than what was mentioned in the article to explain your answer. 7. How does pressure affect the rate of a reaction? 8. Why does adding more or less of a substance change the rate the reaction occurs? 9. What is the difference between a compound and a molecule? ***Click the molecule link in the article to find the answer. 10. What would be an example of a catalyst from a lab you did in class this year?

Answers

Im answering question 2
Because it increases the kinetic energy of reactants and so the frequency of collision between reactants. Thus, provided the temperature is not too high to lead to denaturation of reactants, increase in temperature increases the rate of reaction

And for ques. 7:
It gets affected when gaseous reactants in which products formed have less volume than reactants, so increase in pressure increases the rate of reaction

Which statement correctly relates two substances from this reaction?


H2CO3 + H2O ⇌ H3O+ + HCO3−


A.

HCO3− is the conjugate acid of H2CO3.

B.

H2O is the conjugate base of H2CO3.

C.

H3O+ is the conjugate acid of H2O.

D.

H2CO3 is the conjugate base of H3O+

Answers

We have to know which two substances are related correctly.

The correct answer is: (C) H₃O⁺ is the conjugate acid of H₂O.

In an acid-base reaction, an acid reacts with a base and gives a conjugate base and conjugate acid. The reaction is shown below:

Acid₁ + Base₂ ⇄ Conjugate Base₁ + Conjugate Acid₂

In the reaction H₂CO₃ + H₂O ⇌ H₃O⁺ + HCO₃⁻, H₂CO₃  is an acid because it releases H⁺ ion and converts to HCO₃⁻. Here HCO₃⁻ is the conjugate base of H₂CO₃ ( according Arrhenius theory).

H₂O accepts H⁺ ion and is converted to H₃O⁺ , thus H₂O behaves as Bronsted base. So, H₃O⁺ is the conjugate acid of Bronsted base H₂O.

Hence, the correct answer is: (C) H₃O⁺ is the conjugate acid of H₂O.

Answer:

The correct answer is C.) H30+ is the conjugate acid of H20

Explanation:

Which of the following statements is true about isotopes of the same element? Click on all that apply (1 point)

Isotopes have the same number of protons
Isotopes have the same number of electrons
Isotopes have the same number of neutrons
Isotopes have the same atomic mass
Isotopes have the same atomic number


Answers

Isotopes of the same element have identical numbers of protons and electrons (in a neutral state), and thus they share the same atomic number. They differ in the number of neutrons they possess, which leads to different atomic masses.

The question concerns isotopes of the same element. Two key characteristics of isotopes are their atomic number, which remains constant because isotopes have the same number of protons, and their varied atomic mass due to a different number of neutrons.

Isotopes have the same number of protons.

Isotopes have the same number of electrons (if the atom is in a neutral state).

Isotopes have the same atomic number.

Statements about isotopes having the same number of neutrons or the same atomic mass are incorrect; these are the properties that distinguish one isotope of an element from another.

The true statements are:

a) Isotopes have the same number of protons.

b) Isotopes have the same number of electrons.

e) Isotopes have the same atomic number.

Isotopes are variations of the same element that have the same number of protons, but different numbers of neutrons. This means they have different mass numbers, which is the sum of protons and neutrons in the nucleus. Here are the true statements about isotopes of the same element:

Isotopes have the same number of protons: The number of protons (atomic number) defines the element. All isotopes of an element have this same atomic number.

Isotopes have the same number of electrons: In a neutral atom, the number of electrons is equal to the number of protons. Therefore, isotopes of the same element have the same number of electrons.

Isotopes have the same atomic number: Because the atomic number is defined by the number of protons, which is consistent across isotopes of an element, the atomic number remains the same.

A plane traveling at 80m/s lands on a runway and comes to rest after 10 seconds. What was the planes deceleration?

Answers

THE PLANES DECELERATION IS:

400

Carbon tetrachloride has been widely used in the cleaning industry, in fire extinguishers, and as a refrigerant. Construct an explanation of how carbon and chlorine combine to form carbon tetrachloride. A) Nonmetal carbon shares valence electrons with each nonmetal chlorine forming four covalent bonds. B) Nonmetal carbon loses a valence electron and chlorine metal gains a valence electron to form an ionic bond. C) Carbon and chlorine are nonmetals and they shares their valence electrons to become ions and form ionic bonds. D) Chlorine metal loses a valence electron to become a cation and nonmetal carbon gains a valence electron to become an anion forming a covalent bond.

Answers

Answer: A) Nonmetal carbon shares valence electrons with each nonmetal chlorine forming four covalent bonds.

Explanation: Covalent bond is formed by sharing of electrons between atoms.

Ionic bond is formed by transfer of electrons between atoms.

Carbon with atomic no 6 and has configuration of [tex]1s^22s^22p^2[/tex]. Carbon has 4 valence electrons. It can only share electrons as it is difficult to gain or lose 4 electrons to complete it's octet.

Chlorine with atomic no 17 has configuration of [tex]1s^22s^22p^3s^23p^5[/tex]. It has 7 valence electrons and need one electron to complete its octet.

Thus carbon will share 4 electrons, one each with four chlorine atoms to form carbon tetra chloride.

Answer:

A

Explanation:

Draw the structure of cis−jasmone, a natural product isolated from jasmine flowers, formed by treatment of alkyne a with h2 in the presence of the lindlar catalyst. click the "draw structure" button to launch the drawing utility. 1252a

Answers

Answer:

See below.  

Step-by-step explanation:

Hydrogenation of an alkyne in the presence of a Lindlar catalyst produces a cis-alkene.

Thus,treatment of the acetylenic cyclopentenone with hydrogen and Lindlar catalyst gives 3-methyl-2-[(Z)-pent-2-enyl]cyclopent-2-en-1-one

(cis-jasmone).

Cis-jasmone's formation from an alkyne using H2 and the Lindlar catalyst results in a molecule with a double bond due to the catalyst's selective reduction, and the cis configuration indicating the two added hydrogen atoms are on the same side of the molecule. This structure can be drawn using a molecular drawing utility.

The structure of cis−jasmone can be determined based on its formation from an alkyne using H2 and the Lindlar catalyst. The Lindlar catalyst is a hydrogenation catalyst used to selectively hydrogenate alkynes to alkenes without further reduction to alkanes. Therefore, the operation converts a triple bond into a double bond.

Along with the cis-configuration specification, the product has the double bond on the same side.

However, you can easily draw it out using a molecular drawing utility. Start with the carbon backbone of the alkyne, and replace one of the triple bonds with a double bond. Make sure the cis configuration is represented, meaning the additional hydrogen atoms added to the carbon atoms are on the same side.

For more such questions on Cis-jasmone, click on:

https://brainly.com/question/30720470

#SPJ3

Sulfuric acid is essential to dozens of important industries from steelmaking to plastics and pharmaceuticals. More sulfuric acid is made than any other industrial chemical, and world production exceeds 2.0 x 10 kg per year. The first step in the synthesis of sulfuric acid is usually burning solid sulfur to make sulfur dioxide gas. Suppose an engineer studying this reaction introduces 4.4 kg of solid sulfur and 6.90 atm of oxygen gas at 950. °C into an evacuated 50.0 L tank. The engineer believes K-0.71 for the reaction at this temperature. Calculate the mass of solid sulfur he expects to be consumed when the reaction reaches equilibrium. Round your answer to 2 significant digits. Note for advanced students: the engineer may be mistaken in his belief about the value of Kp, and the consumption of sulfur you calculate may not be what he actually observes.

Answers

Given:

K = 0.71 = Kp

The reaction of sulphur with oxygen is

                            S(s)   + O2(g)  ---> SO2(g)

initial Pressure                   6.90         0

Change                                -x            +x

Equilibrium                     6.90-x          x

Kp = pSO2 / pO2 = 0.71 = x / (6.90-x)

4.899 - 0.71x  = x

4.899 = 1.71x

x = 2.86 atm = pressure of SO2 formed

temperature = 950 C = 950 + 273.15 K = 1223.15 K

Volume = 50 L

Let us calculate moles of SO2 formed using ideal gas equation as

PV = nRT

R = gas constant = 0.0821 L atm / mol K

putting other values

n = PV / RT = 2.86 X 50 / 1223.15 X 0.0821 = 1.42 moles

Moles of Sulphur required = 1.42 moles

Mass of sulphur required or consumed = moles X atomic mass of sulphur

mass of S = 1.42 X 32 = 45.57 grams or 0.04557 Kg  of sulphur



 


Move the arrows up and down to arrange the following types of attractions between molecules in order from strongest (on top) to weakest (bottom): (2 points)

Move down Hydrogen forces
Move down Move up Ionic forces
Move down Move up Van der Waals forces
Move up Covalent forces

Answers

Answer is: from strongest to weakest attractions: ionic forces, covalent forces, hydrogen forces, Van der Waals forces.

Ionic bond is the electrostatic attraction between oppositely charged ions; ionic bond is very strong.

For example, sodium chloride (NaCl) has ionic bond between sodim cation and chlorine anion.

Covalent bond is bond between nonmetals. Hydrogen and oxygen are nonmetals.

For example, in water, atoms of hydrogen (H) and oxygen (O) are connected by polar covalent bonds.

Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.

For example, because of hydrogen bonds, water has higher melting and boiling temperatures than H₂S.

There are two kinds of Van der Waals forces: weak London dispersion forces and stronger dipole-dipole forces.

How are natural polymers and synthetic polymers similar?

A) Both are made up of phosphates and organic bases

B) Both serve important roles in producing amino acids

C) Both are made up of monomers that are linked by covalent bonds

Answers

Answer: C) Both are made up of monomers that are linked by covalent bonds

Explanation: Polymers are large molecules which are formed by combination of small repeating units called as monomers.

Natural polymers are found in nature such as cellulose whereas synthetic polymers are synthesized in laboratories such as Nylon 6,6.

All the polymers, whether natural or synthetic are made up of monomers and are joined by covalent bonds.


Both natural and synthetic polymers consist of monomers that are linked together by covalent bonds, with natural polymers having a wider variety of monomers like amino acids, and synthetic polymers often containing fewer types of monomers. Option C is correct .

Natural polymers and synthetic polymers are similar in that they are both made up of monomers linked together by covalent bonds. Examples of natural polymers include proteins and DNA, which are fundamental to biological structure and function. Synthetic polymers, on the other hand, include plastics like polystyrene. Option C is correct .

The monomers in natural polymers can vary greatly; there are 20 different amino acids that can combine in a multitude of sequences to form different proteins. Synthetic polymers typically feature fewer types of monomers, but the process of polymerization, which results in the formation of large molecules through the joining of these monomers, is a common characteristic shared by both natural and synthetic polymers.

Proteins are significant examples of natural polymers, functioning as enzymes that catalyze biological reactions. While synthetic polymers do not serve in biological catalysis, their repeating monomer units confer them with unique physical properties making them valuable in a variety of applications.

The normal boiling point of 2-propanol, (CH3)2CHOH, is 83 ºC, while that of acetone, (CH3)2C=O, is 56 ºC. What is the principal reason for the greater boiling point of 2- propanol?

(A) The O–H bond in 2-propanol is stronger than the C–H bonds in acetone.

(B) 2-Propanol experiences greater London dispersion forces than acetone.

(C) 2-Propanol experiences stronger dipole-dipole interactions than acetone.

(D) 2-Propanol experiences stronger hydrogen bonding than acetone.

Answers

The answer is: (D) 2-Propanol experiences stronger hydrogen bonding than acetone.

2- propanol has greater boiling point, because hydrogen bonds between 2-propanol molecules, more energy is required to breake those bonds.

Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.

In molecule of 2-propanol there are hydrogen forces between negatively charged oxygen from one molecule of 2-propanol and positively charger hydrogen of another molecule of 2-propanol.

2-propanol is alcohol and acetone is ketone, both are organic compounds.

Four galaxies are gravitationally bound, with each maintaining its own shape. What is this structure called?

Answers

D.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Answer:

A galaxy cluster.

Explanation:

A galaxy cluster is a structure consisting in many galaxies bounded by gravitational forces maintaining their form, many clusters form superclusters galaxies. One of the notable clusters is Virgo cluster on the constellation of Virgo.

When an object such as a rock is dropped into water it disturbs the surface of the water waves form at the surface of the water and travel outward from the point of the disturberance

Answers

So this isn't a question but thanks for telling me...? Next time ask a question pleaseeeee.

What volume of a 9.00 M NaOH stock solution would you need to make 800. ML of a 0.750 M NaOH solution

Answers

Answer: 66.66 ml

Explanation: Using Molarity equation:

[tex]M_1V_1[/tex] (stock solution)=[tex]M_2V_2[/tex](solution to be prepared)

given: [tex]M_2=0.750M[/tex]

[tex]V_2=800ml[/tex]

[tex]M_1=9.00M[/tex]

[tex]V_1=?[/tex]

[tex]9.00M\times V_1[/tex] (stock solution)=[tex]0.750M\times 800ml[/tex] (solution)

[tex]V_1= 66.66ml[/tex]

Gold has a specific heat of 126 J/(kg ! K). A sculptor increased the
temperature of a 0.5 kg block of gold by 10°C. How much energy did
the sculptor add to the gold?

Answers

Energy Change= Mass X Specific Heat X Temperature Change

126 times .5 = 63.

63 times 10= 630

630 joules

Answer:

630 J

Explanation :

The formula for the heat required is

q = mCΔT

q = 0.5 × 126 × 10

q = 630 J


HURRY! 10 POINTS!!

Identify the correct statement regarding the strength of chemical bonds.

A. Strong bonds form with large atoms and weak bonds with small atoms.
B. Weak bonds require less energy to form than strong bonds.
C. Strong bonds occur with high temperature and weak bonds with low temperature.
D. Weak bonds require more energy to form than strong bonds.

Answers

Answer:

The answer is D, weak bonds require more energy to form than strong bonds.

Explanation:

Final answer:

The correct answer is option B: Weak bonds require less energy to form than strong bonds. This is because the strength of a chemical bond is related to the energy required to break it, not the energy required to form it.

Explanation:

The correct statement regarding the strength of chemical bonds is option B: Weak bonds require less energy to form than strong bonds. The strength of a chemical bond is related to the energy required to break it, not the size of the atoms, temperature, or energy required to form it. A strong bond has a high bond energy because it requires a great deal of energy to break. Conversely, a weak bond, which requires relatively little energy to break, has a low bond energy. This suggests that strong bonds do indeed require more energy to form than weak bonds.

Learn more about Strength of Chemical Bonds here:

https://brainly.com/question/32509578

#SPJ3

Substances have more kinetic energy in the _______ state than in the _______ state. A. Gas; solid B. Solid; gas C. Solid; liquid D. Liquid; gas

Answers

Substances have more kinetic energy in the gas state than in the solid state

Answer: gas and then solid.

Explanation: Just trust me ok.

Which metal will form a compound with the general formula m2co3 when it combines with a carbonate ion

Answers

the answer is Lithium.

The question is incomplete, here is the complete question.

Which metal will form a compound with the general formula [tex]M_2CO_3[/tex] when it combines with a carbonate ion

A. Beryllium  

B. Aluminum

C. Calcium

D. Lithium

Answer: The metal that will form the given compound is lithium.

Explanation:

We are given:

A general chemical formula of carbonate, which is [tex]M_2CO_3[/tex]

The given compound is an ionic compound.

Carbonate is a polyatomic ion having chemical formula [tex]CO_3^{2-}[/tex]

Metal ion has a charge of +1.

For the given options:

Option A: Beryllium is the 4th element of the periodic table having electronic configuration of [tex]1s^22s^2[/tex]

This element will loose 2 electrons to form [tex]Be^{2+}[/tex] ion.

Option B: Aluminium is the 13th element of the periodic table having electronic configuration of [tex]1s^22s^22p^63s^23p^1[/tex]

This element will loose 3 electrons to form [tex]Al^{3+}[/tex] ion.

Option C: Calcium is the 20th element of the periodic table having electronic configuration of [tex]1s^22s^22p^63s^23p^64s^2[/tex]

This element will loose 2 electrons to form [tex]Ca^{2+}[/tex] ion.

Option D: Lithium is the 3rd element of the periodic table having electronic configuration of [tex]1s^22s^1[/tex]

This element will loose 1 electron to form [tex]Li^{+}[/tex] ion.

Hence, the metal that will form the given compound is lithium.

Which Of The Following Would Represent An Increase In Entropy

A. Precipitating
B. Condensing
C. Thawing
D. Freezing

Answers



I would say C. Since the material is getting warmer, the atoms and molecules will start to move fasten and then also create more "messiness" (which is entropy with a less-nice word)

Answer:

C. Thawing - APEX

Explanation:

Which of the following statements is true?

A. The melting and freezing points of a substance are the same.

B. The melting and boiling points of a substance are the same.

C. The freezing and boiling points of a substance are the same.

D. The heat of fusion and the heat of vaporization for a substance are the same.

Answers

The answer is A. The melting and freezing points of a substance are the same. The only difference between melting and freezing is the order in which they occur. Melting starts with a solid and changes into a liquid. Freezing starts with a liquid and changes into a solid. Think of water. At 0 degrees celsius and if the temperature was decreasing before, it would freeze. At 0 degrees celsius and the temperature was increasing before, it would melt. Look at a heating/cooling curve, the straight lines are the transition points. On a heating curve, the first straight line is for melting. On a cooling curve, the last straight line is for freezing. They both occur at the same temperature.

Hope this helped!

The melting and freezing points of a substance are the same (A), which is shown by water's equilibrium at 0°C, where ice melts and liquid water freezes at the same temperature. The heat of fusion and heat of vaporization are unique and differ for each substance. Option A is correct .

The correct statement regarding the phase transitions of a substance is option  A. The melting and freezing points of a substance are the same. This fact can be exemplified with water (H₂O), which has the same melting point and freezing point at 0°C. This temperature represents the equilibrium in which solid water is in equilibrium with its liquid state, as represented by the following equilibrium equation:

H₂O (s) ⇔ H₂O (l)

At this temperature, adding heat will cause the solid to melt and become liquid, while removing heat will result in the liquid freezing and becoming solid. In contrast, the boiling point of water is 100°C, which is where liquid water comes into equilibrium with water vapor, its gaseous state.

Moreover, the heat of fusion and heat of vaporization are unique to each substance and refer to the amount of energy needed to change a substance from solid to liquid and liquid to gas, respectively. These values are not typically the same for a given substance.

The molarity (M) of an aqueous solution containing 29.8 g of sucrose, C12H22O11, in 120 mL of solution is:

2.58 x 10–2 M.

7.26 x 10–4 M.

1.38 M.

0.726 M.

Answers

Answer:

0.726 mol·L⁻¹

Step-by-step explanation:

c = moles/litres

=====

Moles = 29.8 × 1/342.30

Moles = 0.087 06 mol

=====

Litres = 120 × 1/1000

Litres = 0.120 L

=====

c = 0.087 06/0.120

c = 0.725 mol·L⁻¹


*explain answer for brainliest
Which of the following is a valid mole ratio from the balanced equation 2Fe2O3 + 3C → 4Fe + 3CO2?
two moles of F e two O three over four moles of F e
four moles of C over three moles of F e
two moles of F e two O three over four moles of C
three moles of C over four moles of C O two

Answers

Answer:

2 mol Fe₂O₃/ 4 mol Fe  

Step-by-step explanation:

The balanced equation is

2Fe₂O₃ + 3C → 4Fe + 3CO₂

The molar ratio uses the coefficients of the formulas in the balanced equation.

Those in front of Fe₂O₃  and Fe are 2 and 4, respectively.

B is wrong. the correct ratio is 3 mol C/4 mol Fe.

C is wrong. The correct ratio is 2 mol Fe₂O₃/3 mol C.

D is wrong. The correct ratio is 3 mol C/3 mol CO₂.

what type of molecule is shown below

A aromatic

B alkene

C alkane

D alkyne

Answers

Answer is: C alkane.

Name of this molecule is n-hexane.

Hexane is alkane (acyclic saturated hydrocarbon, carbon-carbon bonds are single) of six carbon atoms.

Carbon atoms in hexane have sp3 hybridization.

In sp3 hybridization hybridize one s-orbital and three p-orbitals of carbon atom.

Alkene has one double bond and alkyne has one triple bond.

Answer:

cthx guy from 2 yrs ago

Explanation:

You're conducting an experiment to determine the effect of different wavelengths of light on the absorption of carbon dioxide as an indicator of the rate of photosynthesis in aquatic ecosystems. If the rate of photosynthesis increases, the amount of carbon dioxide in the environment will decrease, and vice versa. Small aquatic plants are placed into three containers of water mixed with carbon dioxide. Container A is placed under normal sunlight, B under green light, and C under red light. The containers are observed for a 24-hour period. Carbon dioxide absorption is an appropriate indicator of photosynthesis because

Answers

The process of formation of sugar or carbohydrate by plants is known as photosynthesis.

It occurs in presence of light so the term "photo"

Here the plant uses carbon dioxide and it reacts with water to given glucose

The general reaction will be

6CO2(g)  + 6H2O(g)  + sunlight ---> C6H12O6  + 6O2

Thus the carbon dioxide is being converted to glucose

Higher the rate of absorption of carbon dioxide by plant more the rate of formation of glucose or more the rate of photosynthesis by the plant

The formation of glucose from carbon dioxide is a metabolic pathway which is a cycle known as Calvin cycle. Here actually the carbon is fixed into useful carbohydrates and this pathway is light independent.

Hence

Carbon dioxide absorption is an appropriate indicator of photosynthesis because  the main part of photosynthesis if fixation of carbon dioxide into useful carbohydrates by Calvin cycle (occurs in chloroplast of plant cells)



The modern atomic model is sometimes called the ________, or quantum mechanics model.

Answers

The modern atomic model is sometimes called the electron cloud , or quantum mechanics model.

So the answer is electron cloud

The answer to this question should be electron cloud.


According to Newton's First Law of Motion, what does it take to move an object at rest?


A.a force greater than the force keeping the object at rest


B.a force equal to the force keeping the object at rest, but in the opposite direction


C.a frictionless surface and a net force of 100N


D.the force of inertia cannot be overcome without changing gravity

Answers

It will be B.) A force equal to the force keeping the object at rest, but in the opposite direction.


which of the following is not true about limiting and excess reagents?
a. the amount of product obtained is determined by the limiting reagent.
b. a balanced equation is necessary to determine which reactant is limiting reagent.
c. some of the excess reagent is left over after the reaction is complete.
d. the reactant that was the smallest given mass is the limiting reagent.

Answers

Answer : The incorrect option is, (d) The reactant that was the smallest given mass is the limiting reagent.

Explanation :

Limiting reagent : It is the reagent that is completely consumed in the chemical reaction when the chemical reaction is complete. No amount is left after the reaction is complete. The amount of product obtained is determined by the limiting reagent. A balanced equation is necessary to determine which reactant is limiting reagent.

Excess reagent : It is the reagent that are not completely consumed in the chemical reaction. That means the reagent is in excess amount. Some amount of the excess reagent is left over after the reaction is complete.

From this we conclude that the options, A, B and C are correct. While the option D is incorrect.

Option D is incorrect because it is not necessary the reactant that was the smallest given mass is the limiting reagent but it is judge by the number of moles present in the reaction.

Hence, the incorrect option is, (d)

Answer: d. the reactant that was the smallest given mass is the limiting reagent.

Other Questions
Choose all of the true statements regarding the relationship between voltage, resistance, and current. Current is measured in amps and is represented by the symbol "" The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. Current is the flow of electrons through a circuit. Ohm's Law is mathematically represented by the equation V=I/R When solving for Resistance in a current and both voltage and current are known values, the equation to solve reads I =V*R If the voltage in a circuit is increased, the current will also increase. What was the main result of the Arab-Israeli conflict in 1948? I NEED HELP You are given the system of equations to solve by the elimination method, which is an INCORRECT step that will NOT produce a system with the same solution?5x + 3y = 58x + 2y = 6A)subtract 3 times the second equation from 2 times the first equationB)add 4 times the first equation and 6 times the second equationC)multiply the first equation by 23 and subtract the second equationD)multiply 3y by 23 in the first equation and subtract the second equation the function c=1.50(n-2)+5.50 How can a mutation in a somatic cell cause a cancer? In your answer, name a cause that can increase the risk of cancer-causing mutations. For my Canadian History AssignmentWhy did groups such as Pollution Probe and Greenpeace form? What are their main objectives? A porcupine pokes it predators with the help of its quills. What type of defense is this? A.) camouflageB.) mimicryC.) social defenseD.) physical defenseE.) chemical defense As a result of Gandhis leadership, in 1935, the British government agreed to _____.A. boycott Indian cottonB. stop the sale of British cloth in IndiaC. partition India into two countriesD. allow Indians some self-government(Gradpoint) For the figures below, assume they are made of semicircles, quarter circles and squares. For each shape, find the area and perimeter. Give your answer as a completely simplified exact value in terms of (no approximations). Which two physical physical quantities should be known to calculate density of an object A: mass and volumeB: weight and volumeC: weight and length D: mass and weight Write as a fraction in lowest terms: 0.126126125= a/b A 70-year-old patient with chronic obstructive asthma is brought to the urgent care center with increased wheezing and coughing. The provider initiated an albuterol inhalation treatment, one dose, delivered by nebulizer. After treatment, the patient's exacerbation was somewhat improved but the provider determined a second treatment was necessary. What codes are reported Which layer would a person drilling a well most likely reach after drilling through the unsaturated zone?a springan aquiferthe water tablean impermeable layer A chloroplast is an organelle inside of cells. True or False Los testimonios de Bartolom de las Casas, donde l escribi un testimonio contra los abusos de los indios caribeos, fueron ________ por pocas personas en su tiempo. ledo leda ledos ledas Katrina wanted to find out more about Wegeners hypothesis because it didnt explain how continental drift took place. Explain how scientists discovered the mechanism for the continents moving. For every pound a company spends on advertising, it spends ?0.37 on its website. Express the amount spent on advertising to its website as a ratio in its simplest form. what happen to the water when it condenses?A. it forms cloudsB. it falls back to earth C. it disappears Which freedom was most important to the british settalers who origanally settles pennsylvania Why were many American surprise from President Johnson support civil rights? Steam Workshop Downloader