Answer: Second option.
Step-by-step explanation:
Let be "e" the number of easy puzzles Tina solved and "h" the number of hard puzzles Tina solved.
Set up a system of equations:
[tex]\left \{ {{e+h=50} \atop {30e+60h=1,950 }} \right.[/tex]
You can use the Eliminationn Method to solve this system of equations:
Multiply the first equation by -30.Add the equations.Solve for "h".Therefore, through this proccedure, you get:
[tex]\left \{ {-30e-30h=-1,500} \atop {30e+60h=1,950 }} \right.\\.........................\\30h=450\\\\h=\frac{450}{30} \\\\h=15[/tex]
Tina solved 15 hard puzzles.
Explanation:Let's assume Tina solved x easy puzzles and y hard puzzles.
Since a player earns 30 points for solving an easy puzzle and 60 points for solving a hard puzzle, the total points Tina earned can be expressed as:
30x + 60y = 1950 (equation 1)
The second piece of information given is that Tina solved a total of 50 puzzles. So, the total number of puzzles can be expressed as:
x + y = 50 (equation 2)
To solve this system of equations, we can use the substitution method. Solve equation 2 for x:
x = 50 - y
Substitute this expression for x in equation 1:
30(50 - y) + 60y = 1950
1500 - 30y + 60y = 1950
30y = 450
y = 15
Therefore, Tina solved 15 hard puzzles.
Learn more about Solving a system of equations here:https://brainly.com/question/29050831
#SPJ3
Use the formula to evaluate the infinite series. Round to the nearest hundreth if necessary.
Answer:
4
Step-by-step explanation:
The first term is the value of the term when n=1. It is 3. The common ratio is is the value being raised to the power of (n-1). It is 1/4. Put these numbers into the formula and do the arithmetic
S = 3/(1 -1/4) = 3/(3/4) = 3·4/3 = 4
The sum is 4.
George is reading a book that is 420 pages long. He reads 45 pages on the first day. He will read the remaining pages in the book 15 more days. During that time he will read an equal number of pages each day. How many pages will he read each day.
Answer:
25
Step-by-step explanation:
The book is 420 pages long and he reads 45 pages so he has 375 pages left.
The will read equal amounts during the next 15 days so 375 ÷ 15 = 25
George reads 45 pages each day
How to find out how many pages will he read each day ?According to the problem,
George is reading a book that is 420 pages long.He reads 45 pages on the first day.He will read the remaining pages in the book 15 more days.Number of pages left after reading 45 pages = (420 - 45) = 375
Now, George completes the remaining pages in 15 days reading equal number of pages everyday.So number of pages he read per day = 375/15 = 25
Find more about "Division problems" here: https://brainly.com/question/25289437
#SPJ2
Please help me if possible
Answer:
14√2
Step-by-step explanation:
Using 45 45 90 triangle properties,
b = 28/√2 = 14√2
Answer:
14√2
Step-by-step explanation:
The current flowing through an electric circuit is the derivative of the charge as a function of time. If the charge q is given by the equation q(t)=3t^2+2t-5 what is the current at t = 0?
Answer:
The current at t = 0 is
[tex]I (0) = 2[/tex] units of current
Step-by-step explanation:
If the current flowing through an electric circuit is defined as the derivative of the charge as a function of time and we have the equation of the charge as a function of time, then, to find the equation of the current, we derive the equation of the charge.
[tex]q (t) = 3t ^ 2 + 2t-5[/tex]
[tex]\frac{dq(t)}{dt} = 3 (2) t ^ {2-1} +2t ^ {1-1} -0[/tex]
Simplifying the expression we have:
[tex]\frac{dq(t)}{dt} = 6t + 2t ^0\\\\\frac{dq(t)}{dt} = 6t + 2 = I (t)[/tex]
Finally, the equation that defines the current of this circuit as a function of time is:
[tex]I (t) = 6t +2[/tex]
Now to find the current at t = 0 we make [tex]I (t = 0)[/tex]
[tex]I (0) = 6 * 0 +2[/tex]
[tex]I (0) = 2[/tex] units of current
Please please help me
Answer:
[tex]\large\boxed{\dfrac{\boxed{8}}{81}}[/tex]
Step-by-step explanation:
[tex]\text{If}\ a_1,\ a_2,\ a_3,\ a_4,\ ...,\ a_n\ \text{is the geometric sequence, then}\\\\\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}=\dfrac{a_4}{a_3}=...=\dfrac{a_n}{a_{n-1}}=constant=r-\text{common ration}.\\\\\text{We have}\ \dfrac{1}{2},\ \dfrac{1}{3},\ \dfrac{2}{9},\ \dfrac{4}{27},\ ...\\\\\dfrac{\frac{1}{3}}{\frac{1}{2}}=\dfrac{1}{3}\cdot\dfrac{2}{1}=\dfrac{2}{3}\\\\\dfrac{\frac{2}{9}}{\frac{1}{3}}=\dfrac{2}{9}\cdot\dfrac{3}{1}=\dfrac{2}{3}\\\\\dfrac{\frac{4}{27}}{\frac{2}{9}}=\dfrac{4}{27}\cdot\dfrac{9}{2}=\dfrac{2}{3}[/tex]
[tex]\bold{CORRECT}\\\\\dfrac{x}{\frac{4}{27}}=\dfrac{2}{3}\qquad\text{multiply both sides by}\ \dfrac{4}{27}\\\\x=\dfrac{2}{3}\cdot\dfrac{4}{27}\\\\x=\dfrac{8}{81}[/tex]
Please help me out with this please
The area of a circle is
[tex]a = r {}^{2} \pi[/tex]
So we get
[tex]a = 2.5 {}^{2} \pi[/tex]
so we get 19.6 rounded to the nearest tenth
Now we subtract that from the area of the square which is 25
We get 5.4
So the answer shoild be 5.4ft
Hopefully this is correct and helps you!
Answer:
5.4 ft²
Step-by-step explanation:
The area of the yellow region = area of square - area of circle
area of square = 5² = 25
note that the diameter of the circle = 5, thus radius = 2.5
area of circle = π × 2.5² = 6.25π
yellow region = 25 - 6.25π ≈ 5.4 ft²
Jamie tried to solve an equation step by step.
2/5n+7=12
2/5n=5 (Step 1)
n=2 (Step 2)
Find Jamie's Mistake
A: Step 1
B:Step 2
C: Jamie did not make a mistake
THIS IS FOR 10 POINTS AND I WILL BE GIVING OUT THANK YOUS AND BRAINLY CROWNS!!!!
Answer:
Step 2
Step-by-step explanation:
Jaime did not multiply by the reciprocal of 2/5 which is 5/2 on both sides.
5*5/2=25/2
The solution to the equation 2/5n+7=12 is n = 25/2
The mistake in Jamie's simplification of the equation is in Step 2.
What is an Equation?
Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as A
Now , the value of A is 2/5n + 7 = 12
On simplifying the equation , we get
2/5n + 7 = 12
Subtracting by 7 on both sides of the equation , we get
2/5n = 12 - 7
2/5n = 5
Now , Multiplying by 5/2 on both sides of the equation , we get
n = ( 5/2 ) x 5
The value of n = 25/2
Therefore , the value of n is 25/2
Jamie made a mistake in step 2 while simplifying the equation by cross multiplying
Hence , The solution to the equation 2/5n+7=12 is n = 25/2
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ5
Select all the lines that represent functions
Answer:
B, C, D are functions
Step-by-step explanation:
Functions are those that do not share an x value. Look at A. x-values are used twice everywhere except the vertex. This is not a function, it is just a relation. B does not at any time share x-values, so this is a function. C is also a function, and so is D. F is a vertical line that shares the same x value throughout the whole line, so this is definitely not a function.
Answer:
bcd
Step-by-step explanation:
i got it right
The shape of the binomial distribution is always symmetric. True or False
Answer:
Binomial Distribution. ... The mean of a binomial distribution is p and its standard deviation is sqr(p(1-p)/n). The shape of a binomial distribution is symmetrical when p=0.5 or when n is large.
Step-by-step explanation:
This is about understanding binomial distribution curve.
Statement is false.
Binomial distribution is said to occur when there are only two possible outcomes that are mutually exclusive.These 2 outcomes are usually termed success and failure.
For example when a coin is tossed, chance of success of getting a head is p = ½ while failure to get a head is q = 1 - p = ½
Now, the shape of the binomial distribution is symmetrical when p = 0.5 but skewed when p ≠ 0.5.Thus, we can say that the shape of the binomial distribution is not always symmetrical since it can also be skewed at different values.Read more at; https://brainly.com/question/13005788
Please help me. I really need help with this proof.
Usually you prove the medians are concurrent way before you get the Ceva's Theorem. But we do the problem as given. Next time try to include the whole problem in the photo.
FA=FB, BE=EC, CG=GA
Answer: C. Definition of median
The medians go to the midpoints of the sides, so we have congruent segments from the foot.
FA/FB=1, BE/EC=1, CG/GA=1
Answer: A. Division of equal segment lengths yields 1
This one is cut off so we can't read the full justification, but we have equal segments so their ratio is 1.
(FA/FB)(BE/EC)(CG/GA)=1
Answer: E. Substitution property
Again the justification is cut off, but we have three things equal to 1, when we multiply them together we still get 1.
Medians are Concurrent
Answer: B. Ceva's Theorem
This is really the converse of Ceva's Theorem; we have the required ratio product equal to 1, so we know the medians are concurrent. Technically they might be parallel (which is concurrent in the projective sense, meeting at infinity). So we really need to show they're not parallel as well, which they can't be, but they left that part out.
I don't like this proof very much.
100 POINTS AND BRAINLIEST ANSWER
What is the instantaneous rate of change of the function f(x) = 6x^2 - x at the point (-1,7)
a. -13
b. -5
c. 7
d. 11
What is the equation of the line tangent to the function f(x) = -x^2 + 5 at the point (1,4)
a. y = -x + 5
b. y = -x + 9
c. y = -2x + 6
d. y = -2x + 9
Answer:
Instantaneous rate of change = -13
Equation of tangent line : y= -2x +6
Step-by-step explanation:
the instantaneous rate of change of the function [tex]f(x) = 6x^2 - x[/tex] at the point (-1,7)
To find instantaneous rate of change we take derivative
[tex]f(x) = 6x^2 - x[/tex]
[tex]f'(x) = 12x-1[/tex]
Now we plug in -1 for x
[tex]f'(-1) = 12(-1)-1=-13[/tex]
Instantaneous rate of change = -13
the equation of the line tangent to the function f(x) at the point (1,4)
[tex]f(x) = -x^2 + 5[/tex]
To find slope of tangent line take derivative
[tex]f'(x) = -2x[/tex]
Plug in 1 for x . given point is (1,4)
[tex]f'(1) = -2(1)=-2[/tex]
so slope = -2
use equation [tex]y-y1=m(x-x1)[/tex]
[tex]y-4=-2(x-1)[/tex]
[tex]y-4=-2x+2[/tex]
Add 4 on both sides
y= -2x +6
WILL MARK BRAINLIEST!
find the solution of this system of equations.
2x+6y=4
8x-5y=45
Answer:
x= -1, y= 1
Step-by-step explanation:
2x + 6y = 4.........(1)
8x - 5y = 45........(2)
multiply equation (1) by 4
8x + 24y = 16......(3)
subtract equation (3) by (2)
29y = 29
y = 1
then substitute y=1 in equation (1)
2x + 6(1) = 4
solving for x
x = -2/2 = -1
The solution to the system of equations 2x + 6y = 4 and 8x - 5y = 45 is x = 5 and y = -1, found by using the method of elimination.
To find the solution of the system of equations containing 2x + 6y = 4 and 8x - 5y = 45, we will use the method of elimination.
First, we will manipulate the first equation to line up with the second equation regarding the x coefficient. We do this by multiplying the entire first equation by 4, giving us 8x + 24y = 16 which we will call equation (3).
Next, we subtract equation (2) from equation (3) to eliminate the x variable: (8x + 24y) - (8x - 5y) = 16 - 45, leading to 29y = -29.
Dividing both sides by 29 gives us the value of y: y = -1.
To find x, substitute y = -1 back into the original equation (1): 2x + 6(-1) = 4. Solving for x we get 2x - 6 = 4, therefore 2x = 10 and x = 5.
We can conclude that the solution to the system of equations is x = 5 and y = -1.
The length of a rectangular garden is 3 times the width, . The perimeter of the garden is 100 feet. Which of the following equations can be used to find the width of the garden, in feet?
6w = 100
8w = 100
3w = 100
4w = 100
ANSWER
6w = 100
EXPLANATION
The formula for calculating the perimeter of a rectangular building is P=2l +2w.
From the question, the perimeter of the garden is 100 feet.
It was given that, the length of a rectangular garden is 3 times the width.
This implies that,
[tex]l = 3w[/tex]
We substitute into the formula to get:
[tex]2(3w)+2w = 100[/tex]
[tex]6w+2w = 100[/tex]
This simplifies to:
[tex]8w = 100[/tex]
The equation that can be used to find the width of the rectangular garden is 8w = 100.
Explanation:To find the width of the rectangular garden, we can set up an equation based on the given information. Let's say the width of the garden is w. If the length is 3 times the width, then the length would be 3w. The perimeter of a rectangle is calculated by adding up all the sides, so in this case, it would be 2w + 2(3w) = 100 feet. Simplifying this equation gives us 8w = 100 feet. Therefore, the equation that can be used to find the width of the garden is 8w = 100.
Learn more about Equation to find the width of a rectangular garden here:
https://brainly.com/question/29033685
#SPJ12
Choose all correct statements concerning roots of unity.
Answer:
all but the second statement are correct
Step-by-step explanation:
The n roots of unity are evenly spaced around a circle of radius 1 in the complex plane. One of the roots is always 1. If n is even, -1 will also be a root.
What segment is the projection of QT on RT?
A) RS
B) ST
C) UT
Answer:
The correct answer option is ST.
Step-by-step explanation:
We are given a figure of a right angled triangle and we are to determine whether which of the given segments is the projection of QT on RT.
We know that:
QT = QS + ST
Therefore, on RT, ST is the projection of QT since it comes mid way from Q to T.
So the correct answer option is ST.
Answer:
ST is the projection of QT on RT
Step-by-step explanation:
To Find : What segment is the projection of QT on RT?
Solution:
We are supposed to find the projection of QT
In the projection
We draw a perpendicular on RT with point Q
So, Perpendicular on RT is QS
So, ST is the projection of QT on RT
So, Option B is true
Hence ST is the projection of QT on RT
Given the equation p=s1t-s2t, which equation is solved for t?
A. t=p(s1-s2)
B. t=p-s1+s2
C. t=p/s1-s2
D. t=p/s1+s2
Answer:it’s b
Step-by-step explanation:
Answer:
[tex]t=\frac{p}{(s_1-s_2)}[/tex]
Therefore, C is the correct option.
Step-by-step explanation:
We have been given the equation [tex]p=s_1t-s_2t[/tex]
The GCF of the right hand side of the equation is t. Hence, factored out the GCF.
[tex]p=(s_1-s_2)t[/tex]
Now, [tex](s_1-s_2[/tex] is in multiplication with 't'. So in order to isolate t, we can divide both sides by [tex](s_1-s_2)[/tex]
[tex]t=\frac{p}{(s_1-s_2)}[/tex]
Therefore, C is the correct option.
Sophie was mixing her favorite shade of purple paint. The paint requires 1/3 cup of blue for every 1/2 cup of red paint
Please help me out if possible:)
Answer:
False
Step-by-step explanation:
The angle between a tangent and radius is right.
Use the converse theorem of Pythagoras to determine.
If the square on the longest side is equal to the sum of the squares on the other two sides then the triangle is right and the segment is a tangent.
longest side = 13.1 ⇒ 13.1² = 171.61
11.3² + 6.65² = 127.69 + 44.2225 = 171.9125
Since 171.61 ≠ 171.9125 the line is not a tangent
*20 POINTS PLEASE HELP*
The Venn diagram represents the results of a survey that asked participants whether they would want a dog or a cat as a pet.
Enter your answers in the boxes to complete the two-way table based on the given data.
Answer:
upper right 31 middle right 24, bottom right 55
upper middle 10, center box 7, lower middle 17
upper left 41, middle left 31, bottom left 72
Step-by-step explanation:
cat and dog is the overlapping part of th diagram, 31 people like both.
dog and not cat is the left side of the
diagram, 24 people only like dogs
the total of people who like dogs is adding the left number with the the center number and 55 people all like dogs
dislikes dogs likes cats is the right side of the diagram, 10 people
not dog not cat, those who want neither are outside both bubbles, 7
the total of people who would not get a dog is 17
the total of people who like cats is the middle of the chart and the right added together 31+10 is 41
the total of people who dont like cats is the left side and the number of people who dont like anything 24+7 is 31
the total number of all the people could be gotten by adding all the number on the display together 24+31+10+7=72
or by adding the other bottom totals 55+17= 72, or by adding the other left totals together 41+31=72
Ricardo is factoring the polynomial, which has four terms.
5x3 + 20x2 + 2x + 8
5x2(x + 4) + 2(x + 4)
Which is the completely factored form of his polynomial?
The first step of factorization is done for you. All that is needed to be done is a simplification of the factored polynomial.
5x^2(x+4)+2(x+4)
*Factor out an (x+4)*
(x+4)(5x^2+2)
Hope this helps!!
SOMEONE PLS HELP PLS PLS PLS PLS I DONT UNDERSTAND ANYTHING AND I WANT TO SCREAM THIS IS SO DIFFICULT ILL GIVE BRAINLIEST AND ALL THAT STUFF PLS HELP.
Answer:
[tex]\sqrt{5}[/tex]
Step-by-step explanation:
in this exercise, when asking you to simplify the fraction, you are actually asking to rationalize the denominator, that is, you operate the fraction until any square root of the denominator disappears
In order to do that, the first thing to do is multiply both the denominator and the numerator by the root that you want to eliminate, that is, by [tex]\sqrt{5}[/tex] :
[tex]\frac{5}{\sqrt{5}}*\frac{\sqrt{5} }{\sqrt{5} } =\frac{5*\sqrt{5} }{\sqrt{5} *\sqrt{5} } = \frac{5\sqrt{5} }{\sqrt{5} ^{2} } =\frac{5\sqrt{5} }{5} =\sqrt{5}[/tex]
Answer:
the answer is 7.2
Step-by-step explanation:
the square root of 5 is 2.2 that plus 5 is 7.2
Can I get brainliest
Please please help me
Answer:
x = 4.1
Step-by-step explanation:
The line segment from the centre to the chord is a perpendicular bisector Thus one half of the chord = 15.6 ÷ 2 = 7.8
Consider the right triangle formed with legs x and 7.8 and hypotenuse 8.8
Using Pythagoras' identity on the right triangle
The square on the hypotenuse is equal to the sum of the squares on the other two sides, then
x² + 7.8² = 8.8²
x² + 60.84 = 77.44 ( subtract 60.84 from both sides )
x² = 16.6 ( take the square root of both sides )
x = [tex]\sqrt{16.6}[/tex] ≈ 4.1
Need help asap! Thank you in advanced!
Answer:
b
Step-by-step explanation:
The i is is square root of -1, which can be factored out from under the square root.
What is the value of x? Enter your answer as a decimal to the nearest tenth in the box.
ANSWER
23.6 feet
EXPLANATION
The given triangle is a right triangle.
The hypotenuse is 27 ft.
The given angle I s 29°
The unknown side x, is adjacent to the given angle.
We use the cosine ratio to get,
[tex] \cos(29 \degree) = \frac{adjacent}{hypotenuse} [/tex]
[tex] \cos(29 \degree) = \frac{x}{27} [/tex]
We multiply both sides by 27 to get;
[tex]x = 27\cos(29 \degree) [/tex]
[tex]x = 23.6ft[/tex]
to the nearest tenth.
Answer:
x = 23.6
Step-by-step explanation:
Points to remember
Trigonometric ratios
Sin θ = Opposite side/Hypotenuse
Cos θ = Adjacent side/Hypotenuse
Tan θ = Opposite side/Adjacent side
To find the value of x
From the figure we can see a right angled triangle, ABC
Cos 29 = Adjacent side/Hypotenuse
= AB/AC
= x/27
x = 27 * Cos 29
= 27 * 0.87
= 23.6
Therefore x = 23.6
#10. The sales tax on a $56.00 purchase is $4.48. At that rate, how much more would $66.25 worth of goods cost than $58.75 worth of goods after the tax is applied????? HELPPP DUE IN 30 MINUTES
Answer:
$8.10
Step-by-step explanation:
First step is to determine the tax rate, which you can easily figure out with the first sentence, since you have $4.48 tax on $56 purchase. The tax rate is then:
TR = 4.48 / 56 = 0.08 or 8%
Now, the question can be rephrased as "What's the total difference, including taxes, between a purchase of $66.25 (A) and another of $58.75 (B)"
Let's find out the total cost for both purchases:
A = 66.25 * 1.08 = 71.55 (66.25 + 8% tax)
B = 58.75 * 1.08 = 63.45 (58.75 + 8% tax)
Difference is then 71.55 - 63.45 = 8.10
The $66.25 purchase of goods will cost $8.10 more than the $58.75 purchase of goods once the 8% tax is applied.
Which property is shown in the matrix addition below?
| 6
lo
-8
2
1 0
-19] [
0
0
0
0
6
0
-8
2
1
-19)
inverse property
identity property
commutative property
associative property
Answer:
Identity Property
Step-by-step explanation:
The property shown in the given matrix addition is identity property (of addition)
Let's define additive identity first,
For all real numbers there is exists a number zero which is when added to any real number, the number remains the same. The number is called additive identity.
Similarly, for matrices, there exists a matrix of same dimensions that is when added to the matrix, gives the same result as the original matrix.
The matrix is denoted by O and it only contains zeros..
Answer:
Identity property
Step-by-step explanation:
The ratio in lowest terms of length to width for a rectangle with length 10 and width 4 is 5/2 .
True False
Write an equation of the line passing through point P(0,-1) that is parallel to the line y=-2x+3
Y = __
The answer to this question is:
y = -2x - 1
50 points!!! Please help!!!
Two variables are correlated with r=−0.31.
Which answer best describes the strength and direction of the association between the variables?
weak positive
weak negative
strong negative
strong positive
The r value is a number between -1 and +1.
For a negative value, the closer to -1 it would be a strong negative, if it is closer to 0, it would be a strong negative.
-0.31 is closer to 0 than -1, so it would have a strong negative association.
Find the area of the following figure drawn from the side of length eight to the side of length 2 is 8 unit long
Answer:
(52) is the homogeneous mixture