If y=sin(x-sinx), what is the smallest positive value of x for which the tangent line is parallel to the x-axis

(a) 1.677

(b) 2.310

(c) 3.142

(d) 3.973

(e) 6.283

Answers

Answer 1

Answer:

Option b ) 2.310

Step-by-step explanation:

Given that the function is

[tex]y = sin (x-sinx)[/tex]

For finding when the tangent is parallel to x axis, we must find the least positive value of x for which y' i.e. derivative =0

Differentiate y with respect to x using chain rule.

[tex]y' = cos(x-sinx) * (1-cosx)[/tex]

Equate this to 0

Either one factor should be zero.

[tex]cos(x-sinx)=0\\x-sinx =\frac{\pi}{2} \\[/tex]

x=2.31 satisfies this

For the other root,

[tex]1-cos x =0\\cos x =1\\x =0\\[/tex]

Since positive least value is asked we can say

x =2.310

Option b


Related Questions

Jill filled up the gas tank in her new hybrid car.Jill put 10.3 gallons of gas in her car and she has driven 473.8 miles. Determine how many miles per gallon her car achieved

Answers

Jill put 10.3 gallons of gas into her car. She drove for 473.8 miles.

So we have to find how many miles per gallon she drove.

473.8 into 10.3 = 46

To make sure= 10.3 x 46 = 473.8

So Jill drove 46 miles per gallon.

HELP ME PLZZZ ITS PRECALC

Answers

Answer:

  8

Step-by-step explanation:

We observe that the logarithm bases are ...

  5√5 = √125 . . . . . 125 is the 2nd power of this

  2√2 = √8 . . . . . . . 8 is the 2nd power of this; 64 is the 4th power of √8

If we define ...

  [tex]p=\sqrt{125}\\q=\sqrt{8}[/tex]

Then our logarithms are ...

  [tex]\log_{p}{p^2}=x=2\\\\\log_{q}{q^4}=y=4\\\\xy=2\cdot 4=8[/tex]

The product of x and y is 8.

The wind speed near the center of a tornado is represented by the equation S=93logd+65, where d is the distance, in miles, that the tornado travels and S is the wind speed, in miles per hour. If the wind speed was 130 miles per hour, which equation could be used to find the distance that the tornado traveled?

Answers

Final answer:

To find the distance that the tornado traveled, rearrange the equation S = 93log(d) + 65 to solve for d. The equation to find the distance is d = 10^(65/93), where d is the distance in miles.

Explanation:

To find the distance that the tornado traveled, we can rearrange the equation S = 93log(d) + 65 to solve for d.

First, subtract 65 from both sides of the equation: 130 - 65 = 93log(d). Now, divide both sides by 93: 65/93 = log(d). Finally, take the inverse logarithm of both sides to find d: 10^(65/93) = d.

Therefore, the equation to find the distance that the tornado traveled is d = 10^(65/93), where d is the distance in miles.

We can find the value of [tex]\( d \)[/tex]. This equation is the one that would be used to determine the distance traveled by the tornado corresponding to a wind speed of 130 miles per hour.

To find the distance that the tornado traveled when the wind speed is known, we need to solve the given equation for [tex]\( d \)[/tex]. The original equation is  [tex]\[ S = 93\log d + 65 \][/tex]

Given that [tex]\( S = 130 \)[/tex] miles per hour, we substitute this value into the equation:

[tex]\[ 130 = 93\log d + 65 \][/tex]

Now, we need to isolate [tex]\( \log d \)[/tex]:

[tex]\[ 130 - 65 = 93\log d \] \[ 65 = 93\log d \][/tex]

Next, we divide both sides by 93 to solve for [tex]\( \log d \)[/tex]:

[tex]\[ \frac{65}{93} = \log d \][/tex]

To find [tex]\( d \)[/tex], we need to use the inverse of the logarithm function, which is the exponential function. The base of the logarithm is 10 (common logarithm) because it is not specified otherwise. Thus, we have:

[tex]\[ 10^{\frac{65}{93}} = d \][/tex]

This is the equation that could be used to find the distance[tex]\( d \)[/tex] that the tornado traveled when the wind speed is 130 miles per hour.

To find the numerical value of [tex]\( d \)[/tex], we calculate:

[tex]\[ d = 10^{\frac{65}{93}} \][/tex]

PLEASE HELP SOS
What type of exponential function is f(x) = 0.3(2.6)^x?
What is the function's percent rate of change?
Select from the drop-down menus to correctly complete each statement.

Answers

Answer:

Part a) Is a growth function

Part b) The function's percent rate of change is 160%

Step-by-step explanation:

we have

[tex]f(x)=0.3(2.6^x)[/tex]

This is a exponential function of the form

[tex]f(x)=a(b^x)[/tex]

where

a is the initial value or y-intercept

b is the base of the exponential function

If b> 1---> we have a growth function

if b< 1---> is a decay function

r is the percent rate of change

b=(1+r)

In this problem we have

[tex]a=0.3[/tex]

[tex]b=2.6[/tex]

The value of b >1

so

Is a growth function

Find the value of r

[tex]r=b-1=2.6-1=1.6[/tex]

convert to percentage

[tex]r=1.6*100=160\%[/tex]

Aaron wants to make a path to guide guest through the conservation area.He uses rolls of rope to make the path.He uses 3/4 of a roll of rope for 1/8. He has 4 rolls.How many more rolls does Aaron need to complete the path

Answers

Answer:

Aaron needs 2 more rolls to complete the path.

Step-by-step explanation:

Given:

Total rolls Aaron has = 4

Part of path covered by using [tex]\frac{3}{4}[/tex] of a roll = [tex]\frac{1}{8}[/tex]

So, in order to find the number of rolls required to cover the complete path is given using the unitary method.

Rolls used for [tex]\frac{1}{8}[/tex] of a path = [tex]\frac{3}{4}[/tex]

Therefore, rolls used to cover the whole path is given by dividing the rolls used for one-eighth of the path and the path covered. This gives,

[tex]=\frac{3}{4}\div \frac{1}{8}[/tex]

[tex]=\frac{3}{4}\times \frac{8}{1}[/tex]

[tex]=\frac{3\times 8}{4\times 1}[/tex]

[tex]=\frac{24}{4}[/tex]

[tex]=6\ rolls[/tex]

Now, rolls required to complete the path is 6. But Aaron has only 4 rolls.

So, he will need 6 - 4 = 2 rolls more to complete the path.

Final answer:

Aaron can cover 6 portions of the path with his 4 rolls. Since the path has 8 portions, he needs 2 more rolls of rope to complete the path.

Explanation:

In this question, Aaron uses 3/4 of a roll for 1/8 of the path. Therefore, he will need one roll for (1/8) / (3/4) = 2/3 of the path. Now, we want to know how many rolls he needs for the complete path. The full path will be 1/(2/3) = 3/2 = 1.5 times bigger than the amount of path he can cover with one roll. Since he has four rolls to start with, he can cover 4 * 1.5 = 6 portions of the path. But to cover a full path, he would need 8 portions (as 1/8 of the path corresponds to one portion). So, he needs 8 - 6 = 2 more rolls.

Learn more about Fraction Operations here:

https://brainly.com/question/304550

#SPJ12

Las Cruses, NM, is about 600 mi from Dallas, TX. One plane flies from Dallas to Las Cruses in 1 hr 12 min, and another plane with the same air speed flies from Las Cruses to Dallas in 1 hr 30 min. Find the air speed of the planes and the speed of the wind

Answers

Answer: the speed of the plane is 7.4 miles per minute.

the speed of the wind is 0.93 miles per minute.

Step-by-step explanation:

Let x represent the speed of the plane.

Let y represent the speed of the wind.

Distance of Las Cruses, NM from Dallas, TX is 600 miles.

Distance = speed × time

One plane flies from Dallas to Las Cruses in 1 hr 12 min(72 minutes). Assuming the plane flew in the same direction with the wind, then

600 = 72(x + y)

600 = 72x + 72y - - - - - - - - 1

Another plane with the same air speed flies from Las Cruses to Dallas in 1 hr 30 min(90 minutes). Assuming it flew in opposite direction to that of the wind, then

600 = 90x - 90y - - - - - - - 2

Adding equation 1 and equation 2, it becomes. 1200 = 162x

x = 1200/162 = 7.4 miles per minute.

x + y = 600/72 = 8.33

y = 8.33 - x = 8.33 - 7.4 = 0.93 miles per minute

Answer:

Hi am sitting in my post office waiting for you to come over and then I’ll come over to you

Step-by-step explanation:

Inside the post office office became offices when offices are offices

A paint crew gets a rush order to paint 80 houses in a new development. They paint the first y houses at a rate of x houses per week. Realizing that they'll be late at this rate, they bring in some more painters and paint the rest of the houses at the rate of 1.25x houses per week. The total time it takes them to paint all the houses under this scenario is what fraction of the time it would have taken if they had painted all the houses at their original rate of x houses per week?(A) 0.8(80 – y)(B) 0.8 + 0.0025y(C) 80/y – 1.25(D) 80/1.25y(E) 80 – 0.25y

Answers

Answer:

(B) 0.8+0.0025y

Step-by-step explanation:

Total houses =80

First y houses was painted at the rate of x hours per week

Remaining houses was painted at 1.25x hours per week

Remaining houses= 80-y

Rate = quantity/ time

Time = quantity/ rate

Time for the first painting = y/x

Time for the second painting = 80-y/1.25x

Total time y/x + 80-y/1.25x

= 0.25y +80/1.25x

If it was being painted at the original rate

Time = 80/x

The time to paint in this scenario as a fraction of the time it will take to paint in the original rate.

(0.25y+80/1.25x) /(x/80)

=( 0.25y +80)/100

=0.0025y +0.8

A machine shop is manufacturing a pair of gears that need to be in a ratio as close to 1.1839323 as possible, but they can’t make gears with more than 50 teeth on them. How many teeth should be on each gear to best approximate this ratio?

Answers

Answer: Driven gear will have 50 teeth, and driver gear will have 42 teeth

Step-by-step explanation: First we have to know the formula of gear ratio which is started below

(No of teeth on driven)/(No of teeth on driver)

Note: we should all know in the combination of a gear system, we have two gears, the driver gear and the driven gear

So since the least amount of teeth for any gear is 50, we assume the no of teeth on the driven is 50

And no of teeth on the driver is x

50/x = 1.1839323

Cross multiply

x x 1.1839323 = 50

x = 50/1.1839323

x = 42.23

To the nearest whole number = 42

So therefore, number of teeth on the driver gear is 42

To approximate the gear ratio of 1.1839323 with gear teeth not exceeding 50, gears with 42 and 50 teeth can be used, resulting in an actual ratio of approximately 1.1904762, which is a close approximation to the desired value.

To find the number of teeth on each gear for a ratio as close to 1.1839323 as possible with a maximum of 50 teeth on a gear, we can start by recognizing that gear ratios are a form of fraction. Since the ratio must not exceed the limit of 50 teeth on each gear, the numbers must be integers within this boundary. The ratio can be approximated by finding two numbers close to the target ratio when divided, while not exceeding the maximum teeth number of 50 for either gear.

For an initial approximation, we can multiply the ratio by a number that will give us an integer closest to 50. For example, multiplying 1.1839323 by 42 (because 50 / 1.1839323 is approximately 42.245) gives us approximately 49.725, which we can round to 50. Thus, the other gear would have 42 teeth (as we multiplied by 42 to stay within the boundary of 50 teeth on a gear).

Now, to check the obtained ratio, we divide 50 by 42, which gives us approximately 1.1904762. This is a very close approximation to the desired ratio of 1.1839323. Therefore, the gears should have 42 and 50 teeth, respectively, to best approximate the desired gear ratio.

How many ways can a person toss a coin 13 times so that the number of tails is between 7 and 9 inclusive

Answers

Answer:

3718 ways

Step-by-step explanation:

How many ways can a person toss a coin 13 times so that the number of tails is between 7 and 9 inclusive

Probability is the likelihood for an event to occur  or not

The formula for a combination is:

n choose r = n! / (r! x (n-r)!)  

n=13

r=7 to 9

We are going to add up the cases for 7 through 9:

[tex]^{n } C_{r}[/tex]

[tex]^{13 } C_{7}[/tex]+[tex]^{13 } C_{8}[/tex]+[tex]^{13 } C_{9}[/tex]

[tex]\frac{n!}{r!(n-r)!}[/tex]

[tex]\frac{13!}{7!(13-7)!}[/tex]+[tex]\frac{13!}{8!(13-8)!}[/tex]+[tex]\frac{13!}{9!(13-9)!}[/tex]

1716+1287+715

3718 ways

Mia starts with a piece of paper 6 cm long she folds the paper into a dragon that is 2 1/2 cm long. How much longer was the original paper than the dragon

Answers

Answer: the original length was

3 1/2 cm longer than the length of the dragon

Step-by-step explanation:

The original length of the paper is

6 cm. Mia folds the 6 cm piece of into a dragon that is 2 1/2 cm long. Converting 2 1/2 cm to decimal, it be comes 2.5cm

To determine How much longer the original paper was than the dragon, we would determine difference in length between the original paper and the dragon. It would be

6 - 2.5 = 3.5 = 3 1/2 cm

Answer: The original paper is longer by the difference btw the length

6cm - 2½cm

3½cm

Step-by-step explanation:

The measures of the angles of the triangle are 32, 53, 95 based on the side lengths, what are the measure of each angle?

Answers

Answer:

  angle measures are 32°, 53°, 95°.

Step-by-step explanation:

The problem statement asks you to report the angle measures after telling you what they are. The mention of side lengths (without any numbers for them) seems irrelevant.

  "The measures of the angles of the triangle are 32, 53, 95."

Given the function ƒ(x) = 8(x - 4) - 18, determine the value of x such that ƒ(x) = 22. Select one: A. 3 B. 6 C. 9 D. 12

Answers

Answer:

C. 9

Step-by-step explanation:

it's multiple choice so plug each value in

A = -26

B = -34

C = 22

D = 46

so the answer is c

Match the terms to their definition.
Part A
1. intersection of sets A and B is defined as any elements that are in either set A or set B
2. union of sets A and B is defined as any elements that are in both set A and set B
3. a statement formed by two or more inequalities
4. a member of a set
5. a collection or group of objects indicated by braces, { }
Part B
a. compound inequality
b. element
c. set
d. union
e. intersection

Answers

Final answer:

The correct matches are the intersection for common elements in both sets, union for all elements in either set, compound inequality for multiple inequalities, element for a set member, and set for a grouped collection of objects.

Explanation:

To match the terms with their definitions, we need to understand the concepts represented by each term. Here is the correct matching:

Intersection of sets A and B (e. intersection) is defined as any elements that are in both set A and set B.Union of sets A and B (d. union) is defined as any elements that are in either set A or set B.A compound inequality (a. compound inequality) is a statement formed by two or more inequalities.A member of a set (b. element) is a specific entity within that set.A collection or group of objects indicated by braces, { } (c. set).

These definitions are essential to understanding basic concepts in set theory, a foundation for probability and other areas of mathematics. Recognizing these definitions helps in identifying the relationships between sets and the outcomes of events, especially when working with Venn diagrams and calculating probabilities.

The Russet Potato Company has been working on the development of a new potato seed that is hoped to be an improvement over the existing seed that is being used. Specifically, the company hopes that the new seed will result in less variability in individual potato length than the existing seed without reducing the mean length. To test whether this is the case, a sample of each seed is used to grow potatoes to maturity. The following information is given:Old SeedNumber of Seeds = 11Average Length = 6.25 inchesStandard Deviation = 1.0 inchesNew SeedNumber of Seeds = 16Average Length = 5.95 inchesStandard Deviation = 0.80 inchesBased on these data, if the hypothesis test is conducted using a 0.05 level of significance, the calculated test statistic is:______

Answers

Answer:

[tex]F=\frac{s^2_2}{s^2_1}=\frac{0.8^2}{1.0^2}=0.64[/tex]

[tex]p_v =P(F_{15,10}<0.64)=0.2105[/tex]

Since the [tex]p_v > \alpha[/tex] we have enough evidence to FAIL to reject the null hypothesis. And we can say that we don't have enough evidence to conclude that the variation for the New sample it's significantly less than the variation for the Old sample at 5% of significance.  

Step-by-step explanation:

Data given and notation  

[tex]n_1 = 11 [/tex] represent the sampe size for the Old

[tex]n_2 =16[/tex] represent the sample size for the New

[tex]\bar X_1 =6.25[/tex] represent the sample mean for Old

[tex]\bar X_2 =5.95[/tex] represent the sample mean for the New

[tex]s_1 = 1.0[/tex] represent the sample deviation for Old

[tex]s_2 = 0.8[/tex] represent the sample deviation for New

[tex]\alpha=0.05[/tex] represent the significance level provided

Confidence =0.95 or 95%

F test is a statistical test that uses a F Statistic to compare two population variances, with the sample deviations s1 and s2. The F statistic is always positive number since the variance it's always higher than 0. The statistic is given by:

[tex]F=\frac{s^2_2}{s^2_1}[/tex]

Solution to the problem  

System of hypothesis

We want to test if the variation for New sample it's lower than the variation for the Old sample, so the system of hypothesis are:

H0: [tex] \sigma^2_2 \geq \sigma^2_1[/tex]

H1: [tex] \sigma^2_2 <\sigma^2_1[/tex]

Calculate the statistic

Now we can calculate the statistic like this:

[tex]F=\frac{s^2_2}{s^2_1}=\frac{0.8^2}{1.0^2}=0.64[/tex]

Now we can calculate the p value but first we need to calculate the degrees of freedom for the statistic. For the numerator we have [tex]n_2 -1 =16-1=15[/tex] and for the denominator we have [tex]n_1 -1 =11-1=10[/tex] and the F statistic have 15 degrees of freedom for the numerator and 10 for the denominator. And the P value is given by:

P value

Since we have a left tailed test the p value is given by:

[tex]p_v =P(F_{15,10}<0.64)=0.2105[/tex]

And we can use the following excel code to find the p value:"=F.DIST(0.64,15,10,TRUE)"

Conclusion

Since the [tex]p_v > \alpha[/tex] we have enough evidence to FAIL to reject the null hypothesis. And we can say that we don't have enough evidence to conclude that the variation for the New sample it's significantly less than the variation for the Old sample at 5% of significance.  

if the hypothesis test is conducted using a 0.05 level of significance, the calculated test statistic is 1.56. The option (d) is correct.

To test whether the new seed results in less variability in individual potato length compared to the old seed, we can perform an F-test for comparing variances.

The F-test statistic for comparing two variances is given by:

[tex]\[ F = \frac{s_1^2}{s_2^2} \][/tex]

where [tex]\( s_1^2 \)[/tex] is the variance of the old seed and [tex]\( s_2^2 \)[/tex] is the variance of the new seed. The larger variance should be the numerator to ensure the F-value is greater than or equal to 1.

Given data:

- Old Seed:

[tex]- \( n_1 = 11 \)\\ - \( \bar{x}_1 = 6.25 \) inches\\ - \( s_1 = 1.0 \) inch[/tex]

- New Seed:

[tex]- \( n_2 = 16 \)\\ - \( \bar{x}_2 = 5.95 \) inches\\ - \( s_2 = 0.80 \) inch[/tex]

First, calculate the variances:

- Variance of old seed, [tex]\( s_1^2 = (1.0)^2 = 1.0 \)[/tex]

- Variance of new seed, [tex]\( s_2^2 = (0.80)^2 = 0.64 \)[/tex]

Since [tex]\( s_1^2 \)[/tex] (old seed) is larger than [tex]\( s_2^2 \)[/tex] (new seed), we use:

[tex]\[ F = \frac{s_1^2}{s_2^2} = \frac{1.0}{0.64} \][/tex]

Now, calculate the F-value:

[tex]\[ F = \frac{1.0}{0.64} = 1.5625 \][/tex]

The calculated test statistic is approximately 1.56. Therefore, the correct answer is (d) 1.56.

The complete question is:

The Russet Potato Company has been working on the development of a new potato seed that is hoped to be an improvement over the existing seed that is being used. Specifically, the company hopes that the new seed will result in less variability in individual potato length than the existing seed without reducing the mean length. To test whether this is the case, a sample of each seed is used to grow potatoes to maturity. The following information is given: Old Seed - Number of Seeds = 11, Average length = 6.25 inches , Standard Deviation = 1.0 inches New Seed - Number of Seeds = 16, Average length = 5.95 inches Standard Deviation = 0.80 inches. On this data, if the hypothesis test is conducted using a 0.05 level of significance, the calculated test statistic is:

(a) 1.25

(b) 0.80

(c) 0.64

(d) 1.56

A carnival booth made $88 selling popcorn in one day . It made 22 times as much selling cotton candy how much money did the carnival booth make selling popcorn and cotton candy?

Answers

Answer:

Total money made by carnival booth selling popcorn and cotton candy = $2024

Step-by-step explanation:

Money made by carnival booth selling popcorn = $88

Money made by selling cotton candy was 22 times the money made by selling popcorn.

Thus, money made selling cotton candy = [tex]22\times \$88=\$1936[/tex]

Total money made by carnival booth selling popcorn and cotton candy = [tex]\$88+\$1936=\$2024[/tex]

In Fig .1 2-40,one end of a uniform beam of weight 222N is hinged to a wall ;the other end is sup -ported by a wire that makes angles 6 =30.0with both wall and beam .Find (a)thetension in the wire and the ( b)horizontaland (c)verticalcompo -nents of the force of the hinge on the beam .

Answers

Answer:

  (a) 74√3 N

  (b) 37√3 N

  (c) 111 N

Step-by-step explanation:

(a) The moment about the hinge produced by the beam is the product of the weight of the beam and the distance of its center from the wall. The tension in the wire counteracts that moment.

The tension in the wire acts at a horizontal distance from the wall that is twice the distance to the beam's center, so the tension's vertical component is only half the weight of the beam.

Since the wire is at a 30° angle to the wall, the horizontal component of the tension is 1/√3 times the vertical component. Altogether, the tension in the wire is (2/√3) times half the beam's weight, or 74√3 N.

__

(b) The horizontal force at the hinge counteracts the horizontal component of the tension in the wire, so is 111/√3 N = 37√3 N.

__

(c) The vertical component of the force at the hinge is half the beam weight, so is 111 N.

a) The tension in the wire is 192.3 N. b) The horizontal component of the force of the hi-nge on the beam is 96.1 N. c) Vertical component of the force of the hi-nge on the beam is 55.5 N.

(a) To find the tension in the wire, we can use a torque balance around the hi-nge. The torques due to the weight of the beam and the tension in the wire are equal and opposite, so we have:

T * L * cos(30°) = W * L/2

where:

T is the tension in the wire

L is the length of the beam

W is the weight of the beam

Solving for T, we get:

T = W * cos(30°) / 2

Substituting the known values, we get:

T = 222 N * cos(30°) / 2

= 192.3 N

Therefore, the tension in the wire is 192.3 N.

(b) The horizontal component of the force of the hi-nge on the beam is equal to the tension in the wire multiplied by the sine of the angle between the wire and the beam. This angle is 30°, so we have:

[tex]F_h[/tex] = T * sin(30°)

Substituting the known values, we get:

[tex]F_h[/tex] = 192.3 N * sin(30°)

= 96.1 N

Therefore, the horizontal component of the force of the hi-nge on the beam is 96.1 N.

(c) The vertical component of the force of the hi-nge on the beam is equal to the weight of the beam minus the tension in the wire multiplied by the cosine of the angle between the wire and the beam. This angle is 30°, so we have:

[tex]F_v[/tex] = W - T * cos(30°)

Substituting the known values, we get:

[tex]F_v[/tex] = 222 N - 192.3 N * cos(30°)

= 55.5 N

Therefore, the vertical component of the force of the hi-nge on the beam is 55.5 N.

To learn more about horizontal component here:

https://brainly.com/question/32317959

#SPJ3

Find the area of a rhombus with side length 6 and an interior angle with measure $120^\circ$.

Answers

Answer:

The area of a rhombus is [tex]18\sqrt{3}[/tex] square units.

Step-by-step explanation:

Side length of rhombus = 6 units.

Interior angle of rhombus = 120°

another Interior angle of rhombus = 180°-120° = 60°.

Draw an altitude.

In a right angled triangle

[tex]\sin \theta=\frac{opposite}{hypotenuse}[/tex]

[tex]\sin (60)=\frac{h}{6}[/tex]

[tex]\frac{\sqrt{3}}{2}=\frac{h}{6}[/tex]

Multiply both sides by 6.

[tex]3\sqrt{3}=h[/tex]

The height of the rhombus is [tex]3\sqrt{3}[/tex].

Area of a rhombus is

[tex]Area=base\times height[/tex]

[tex]Area=6\times 3\sqrt{3}[/tex]

[tex]Area=18\sqrt{3}[/tex]

Therefore, the area of a rhombus is [tex]18\sqrt{3}[/tex] square units.

Area of Rhombus is 31.176 unit² (Approx.)

Given that;

Length of rhombus side = 6 unit

Angle = 120°

Find:

Area of Rhombus

Computation:

Area of Rhombus = Side²(Sin θ)

Area of Rhombus = 6²(Sin 120)

Area of Rhombus = 36(0.866)

Area of Rhombus = 31.176 unit² (Approx.)

Learn more:

https://brainly.com/question/3234540?referrer=searchResults

Susan wants to mail her nephew a christmas gift. She has picked out a hat that is 27 inches long. The only box available is 15-by-20-by-15 inches. Will the bat fit in the box?

Answers

Answer:No, the hat will not fit into the box.

Step-by-step explanation:

The length of the hat is 27 inches long. The only box available is 15-by-20-by-15 inches. This represents the height , width and length of the box

Since all sides of the box are lesser than 27 inches, then the hat will not fit into the box.

what is the lateral area of a square pyramid with side length 11.2 and slant height 20

Answers

Answer:

The lateral surface area of square pyramid is 448 square units.

Step-by-step explanation:

We are given the following in the question:

Side length of square pyramid = 11.2 units

Slant height of square pyramid = 20 units

Lateral area of a square pyramid =

[tex]L = \dfrac{1}{2}Ph[/tex]

where P is the perimeter of square base and h is the slant height.

Perimeter of square base =

[tex]P = 4\times \text{Base edge}\\= 4\times 11.2 = 44.8\text{ units}[/tex]

Putting the values, we get:

[tex]L = \dfrac{1}{2}\times 44.8\times 20 = 448\text{ square units}[/tex]

Thus, the lateral surface area of square pyramid is 448 square units.

Answer:

[tex]448 cm^{2}[/tex]

Step-by-step explanation:

s = 11.2; l = 20

L.A.  = [tex]4 (\frac{1}{2} sl)[/tex]

L.A.= [tex]\frac{1}{2}(4 * 11.2)20[/tex]  Multiply 4 * 11.2 to get perimeter 44.8

L.A. = [tex]\frac{1}{2} pl[/tex]

L.A. = [tex]\frac{1}{2} (44.8)20\\[/tex] Simplify 44.8 * 20

L.A. = [tex]\frac{1}{2}(896)\\[/tex] Divide 896 by 2

L.A. = [tex]448cm^{2}[/tex]

A circle has its center at the origin and has a diameter of 24 units.

What is the standard equation of the circle?

Answers

Answer:

B

Step-by-step explanation:

radius=24/2=12

eq. of circle is

x²+y²=12²

Answer:

b. x² + y² = 12²

Step-by-step explanation:

A circle has a general equation of:

(x + h)² + (y – k)² = r²

where h and k are the center (h,k) and r is the radius.

The circle is centered at origin (0, 0), so h=0, k=0.

The diameter is 24, but we want the radius instead. So divide the diameter by 2 to get the radius. r = 24/2 = 12

Plug it into the equation

(x + h)² + (y – k)² = r²

(x + 0)² + (y – 0)² = 12²

x² + y² = 12²

Joe wants to find out volume of his marble . He fills a beaker with 100ml of water and then drops his marble in the breaker. His new reading is 147ml of water . The volume of the water is ??

Answers

Answer:

The volume of the marble is 47 ml

The volume of the water is 100 ml

Step-by-step explanation:

we know that

The volume of the marble is equal to the change in water level

so

To find out the volume of the marble subtract 100 ml from 147 ml

[tex]147-100=47\ ml[/tex]

The volume of the water no change

The volume of the water is 100 ml

Lina wants to find the least common denominator of 4/32 and 5/8 so that she can add the fractions.What is the least common denominator?Rewrite the fractions with a common denominator.Explain your reasoning

Answers

Answer:

Least common denominator = 32

Step-by-step explanation:

We are given the following in the question:

Lina wants to find the least common denominator of two fractions so she can add them.

[tex]\dfrac{4}{32}\text{ and }\dfrac{5}{8}[/tex]

To find the LCM of the fractions:

[tex]8 = 2\times 2\times 2\\32 = 2\times 2\times 2\times 2\times 2\\\text{Common factors = }2\times 2\times 2\\LCM = 2\times 2\times 2\times 2\times 2 = 32[/tex]

The fractions can be added in the following manner:

[tex]\dfrac{4}{32} + \dfrac{5}{8}\\\\=\dfrac{4\times 1}{32\times 1} + \dfrac{5\times 4}{8\times 4}\\\\= \dfrac{4}{32} + \dfrac{20}{32}\\\\=\dfrac{4+20}{32}\\\\=\dfrac{24}{32}[/tex]

For women aged 18-24, systolic blood pressures (in mm Hg) are normally distributed with a mean of 114.8 and a standard deviation of 13.1. Hypertension is commonly defined as a systolic blood pressure above 140. If 4 women in that age bracket are randomly selected, find the probability that their mean systolic blood pressure is greater than 140.

Answers

Answer: 0.0001

Step-by-step explanation:

Given : For women aged 18-24, systolic blood pressures (in mm Hg) are normally distributed with a mean of 114.8 and a standard deviation of 13.1.

i.e. [tex]\mu=114.8\ \ \ \&\ \ \sigma=13.1[/tex]

Sample size =4

Let x be the sample mean systolic blood pressure.

Then the probability that their mean systolic blood pressure is greater than 140 will be

[tex]P(x>140)=1-P(x\leq140)\\\\=1-P(\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}\leq\dfrac{140-114.8}{\dfrac{13.1}{\sqrt{4}}})\\\\\ =1-P(z\leq3.85)\ \ [\because \ z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=1-0.9999\ \ \text{[By z-table]}\\\\= 0.0001[/tex]

Hence, the required probability = 0.0001

Answer:

Hence, the required probability = 0.0001

Step-by-step explanation:

Solve this problems: a company has two office building that hold 30000 employees. Their headquarters contains 14 times as many employees as their overseas branch. Therefore, their headquarters contains employees

Answers

Their headquarters contains 28000 employees.

Step-by-step explanation:

Given,

Total number of employees = 30000

Let,

Number of employees in headquarters = x

Number of employees in overseas branch = y

According to given statement;

x+y=30000     Eqn 1

x = 14y             Eqn 2

Putting value of x from Eqn 2 in Eqn 1

[tex]14y+y=30000\\15y=30000\\[/tex]

Dividing both sides by 15

[tex]\frac{15y}{15}=\frac{30000}{15}\\y=2000[/tex]

Putting y=2000 in Eqn 2

[tex]x=14(2000)\\x=28000[/tex]

Their headquarters contains 28000 employees.

Keywords: linear equation, division

Learn more about linear equations at:

brainly.com/question/10046556brainly.com/question/100704

#LearnwithBrainly

The overseas branch has 2,000 employees, and since the headquarters has 14 times as many employees, it contains 28,000 employees.

We need to determine the number of employees at the headquarters of a company given that the headquarters has 14 times as many employees as the overseas branch, and the total number of employees in both buildings is 30,000.

Let's denote the number of employees in the overseas branch as x. Then, the number of employees in the headquarters is 14x. According to the problem, the total number of employees in both buildings is:

x + 14x = 30,000

Combining the terms:

15x = 30,000

To find x, we divide both sides by 15:

x = 30,000 / 15

x = 2,000

This means the overseas branch has 2,000 employees.

Now, since the headquarters contains 14 times as many employees as the overseas branch, we calculate:

14x = 14 * 2,000 = 28,000

Therefore, their headquarters contains 28,000 employees.

The length of a rectangle is the sum of the width and 3. The area of the rectangle is 54 units. What is the width, in units, of the rectangle?

Answers

I don’t know what to say about this question

Answer:

Step-by-step explanation:

let width=x

length=x+3

x(x+3)=54

x²+3x-54=0

x²+9x-6x-54=0

x(x+9)-6(x+9)=0

(x+9)(x-6)=0

x=-9,6

x=-9 (rejected)

as width can't be negative.

hence width=6 units

If n and y are positive integers and 450y = n³, which of the following must be an integer?"
I. [tex]\frac{y}{3*2^2*5}[/tex]
II. [tex]\frac{y}{3^2*2*5}[/tex]
III. [tex]\frac{y}{3*2*5^2}[/tex]
(A) None
(B) I only
(C) II only
(D) III only
(E) I, II, and III

Answers

Answer:

(B) I only

Step-by-step explanation:

450y = n³

y = n³ / 450 = n³ / (3² * 2 * 5²)

in order to keep y and n be positive integer, the minimal requirement for n³ is n³ = (3³ * 2³ * 5³)

y = n³ / 450

  = n³ / (3² * 2 * 5²)

  = (3³ * 2³ * 5³) / (3² * 2 * 5²)

  = 3*2²*5

∴ I. y / (3*2²*5) =  ((3³ * 5³ * 2³) / (3² * 5² * 2)) / (3*2²*5) = 1 ... that keep answer as the smallest positive integer .... Correct answer

II.   y / (3²*2*5) =  ((3³ * 5³ * 2³) / (3² * 5² * 2)) / (3²*2*5) = 2/3 ...not integer

III.  y / (3²*2*5) =  ((3³ * 5³ * 2³) / (3² * 5² * 2)) / (3*2*5²) = 2/5 ...not integer

Answer: The correct answer is neither

Step-by-step explanation:

for DeltaMath.

Veronica was recently diagnosed with a heart condition. Her doctor's bill was $4,200 for the diagnostics. Her policy has a $250 deductible and a 80/20 coinsurance provision up to $10,000 and then the insurance pays 100% thereafter. In total, how much will Veronica pay for her diagnosis?

Answers

Answer:

$1040

Step-by-step explanation:

As 80/20 insurance policy is a form of coinsurance in which deductible is satisfied first and then the client would pay 20% of additional medical costs and the remaining 80% is paid by the insurance company. Under the current scenario, Veronica will bear an amount of $250 and $790(i.e. 20% of the amount after deductible), totaling to $1040.

An aerial photograph from a U-2 spy plane is taken of a building suspected of housing nuclear warheads. When the photograph is taken, the angle of elevation of the sun is 30∘. By comparing the shadow cast by the building in question to the shadows of other objects of known size in the photograph, scientists determine that the shadow of the building in question is 98 feet long.How tall is the bulding? (Round your answer to two decimal places.)

Answers

Answer:

Building is 56.58 feet long.

Step-by-step explanation:

Consider the provided information.

An aerial photograph from a U-2 spy plane is taken of a building suspected of housing nuclear warheads.

When the photograph is taken, the angle of elevation of the sun is 30°.

By comparing the shadow cast by the building in question to the shadows of other objects of known size in the photograph, scientists determine that the shadow of the building in question is 98 feet long.

As we know: [tex]\tan\theta=\frac{opp}{adj}[/tex]

The value of tan 30 degrees is [tex]\frac{1}{\sqrt{3} }[/tex]

[tex]\tan30=\frac{h}{98}[/tex]

[tex]\frac{1}{\sqrt{3}}=\frac{h}{98}[/tex]

[tex]h=\frac{98}{\sqrt{3}}[/tex]

[tex]h=56.58[/tex]

Hence, Building is 56.58 feet long.

Answer:

56.58 feet long

Step-by-step explanation:

Consider the provided information.

An aerial photograph from a U-2 spy plane is taken of a building suspected of housing nuclear warheads.

When the photograph is taken, the angle of elevation of the sun is 30°.

By comparing the shadow cast by the building in question to the shadows of other objects of known size in the photograph, scientists determine that the shadow of the building in question is 98 feet long.

As we know:

The value of tan 30 degrees is

Hence, Building is 56.58 feet long.

Martin has a combination of 33 quarters and dimes worth a total of $6. Which system of linear equations can be used to find the number of quarters, q, and the number of dimes, d, Martin has?A) q + d = 625q + 10d = 33B) q + d = 60.25q + 0.1d = 33C) q + d = 3325q + 10d = 6D) q + d = 330.25q + 0.1d = 6

Answers

Answer:

D) q + d = 330

0.25q + 0.1d = 6

Step-by-step explanation:

Let q= numbers of quarters

d = number of dimes

q + d = 33 ...........(1)

q = 33 - d

xq + yd = 6 ..........(2)

We will consider the options to know the correct answer

From option A

q +d = 6

25q + 10d = 33

This is wrong

Option B

q + d = 60

0.25q + 0.1d = 33

This is also wrong

Option C

q+d = 33

25q + 10d = 6

Put q = 33 -d in equation 2

25(33 - d) + 10q = 6

825 - 25d + 10d = 6

825 - 15d = 6

-15d = 6-825

-15d = -819

d = -819/-15

d= 54.6

This is also wrong because d exceeds the combination.

Option D

q+d = 33

0.25q + 0.1d = 6

Put q = 33 -d in equation 2

0.25(33 - d) + 0.1d = 6

8.25 - 0.25d + 0.1d = 6

8.25 - 0.15d = 6

-0.15d = 6 - 8.25

-0.15d = -2.25

d = -2.25/ -0.15

d = 15

q = 33 - 15

q = 18

This is correct

Answer:

It's D.

Step-by-step explanation:

Edge 2020;)

A sale transaction closes on April 15th. The day oIf a lot contains 48,000 square feet and is 240’ wide, how deep is the lot? closing belongs to the seller. Real estate taxes for the year, not yet billed, are expected to be $2,110. According to the 365-day method, what is the seller's share of the tax bill?

a. $626
b. $675
c. $607
d. $721

Answers

Answer:

c =$607

200 ft deep

Step-by-step explanation:

A sale transaction closes on April 15th. The day oIf a lot contains 48,000 square feet and is 240’ wide, how deep is the lot? closing belongs to the seller. Real estate taxes for the year, not yet billed, are expected to be $2,110. According to the 365-day method, what is the seller's share of the tax bill?

a. $626

b. $675

c. $607

d. $721

Since there are 90 days between january and March, we add that to the 15 days in April. which will give us 105 days.

Applying the 365-day method,

therefore 2110/365

5.78*105

606.98

approximately=$607

b. the day golf contains 48000 square feet

then 48000 divided by how wide it is

48,000 sq ft ÷ 240' = 200'

Other Questions
Five islands, A, B, C, D, and E, differ only in distance from the mainland, area, and species diversity. Which island would be predicted to have the highest species diversity? How did U.S. expansion to California affect most members of the Mexican aristocracy in the region? On June 30 the general ledger of Beverly Hills Clothiers, a clothing store, showed a balance of $63,895 in the Purchases account, a balance of $2,975 in the Freight In account, and a balance of $4,280 in the Purchases Returns and Allowances account. What was the delivered cost of the purchases made during June? almedas skin has lost some flexibility and the lends of her left eye is beginning to cloud she is concerned that the normally seperate protein fibers that make up her bodys connective tissue are forming bonds with one another you can tell almeda that she can reduce cross linking by Many people receive unsolicited calls from telemarketers or unwanted ""junk"" mailers advertising offers for products such as cable or internet services or cellular phone companies. Most people do not consider these offers and do not make a change to the plans or services that they receive because they do not want to make a decision that requires serious consideration or thought. This is an example of the _____ bias. An 85-foot rope from the top of a tree house to the ground forms a 45 degree angle of elevation from the ground. How high is the top of the tree house? According to the textbook authors, the sort of environment a teacher should strive to establish is one that allows students to at 40c, 50g of KClO3 is dissolved in 100g of water, is this solution saturated, unsaturated, or supersaturated? 12-2/3x=x-18 so how do you answer this question The development of popular literary forms, such as Japanese Kabuki theater,1. restricted the use of the performing arts to the political elite 2. caused a decline in literacy rates among most urban dwellers3. provided an opportunity for writers, artists, and actors to acquire higher social standing4. gave merchants the opportunity to acquire political and economic prestige The empirical method of study is based on ________. a. statistics b. guesswork c. practice d. observation ILL GIVE BRAINLEST AND POINTS A pair of jeans is regularly $129.99, on sale for $90.99 before tax. What is the percent markdown? The largest sandwich ever made weighed 5440 pounds. If everyone on Earth shares the sandwich equally, how much would you get? what fraction of a regular sandwich does this represent? Certain requirements apply to the retention of email communications by Investment Advisers under the Investment Advisers Act of 1940. Which statement is true with regard to such e-mail communication regulations?[A] All e-mails, business related or not must be maintained as correspondence[B] Business related emails are required to be maintained as correspondence[C] Retention of email communications are kept at the discretion of the investment advisor[D] Emails are not required to be preserved Why might a bill be passed in the House differ from a Senate bill on the same subject? Sayuri's Asian Caf makes the best pot stickers in town. The kitchen's production is usually between 20 and 22 pot stickers per hour. Sayuri buys a new machine to help the team make pot stickers faster. She tracks production over the course of seven days. On which day does the machine make a positive impact on production? A single central register of IP addresses and names (a DNS style system) is an efficient means of translating human readable names to IP addresses. Which of the following is NOT solved by DNS? A. It is inefficient to have everyone on the Internet maintain their own list of IP addresses. B. There are too few IP addresses to meet the current demand. C. When someone new joins the Internet they must inform everyone else of the new IP address D. When an IP address changes, it is impossible to locate a computer until the owner announces the change. As water moves down through the ground, what force is acting against it?A. Capillary actionB. SaturationC. GravityD. Permeability Two parallel electrodes that are typically separated by 3cm with a 5V potential difference across them.What is the magnitude of the electric field between the two electrodes in ionization type detectors?