If we assume that all possible poker hands (comprised of 5 cards from a standard 52 card deck) are equally likely, what is the probability of being dealt: a. a flush? (A hand is said to be a flush if all 5 cards are of the same suit. Note that this definition means that straight flushes (five cards of the same suit in numeric sequence) are also considered flushes.) b. one pair? (This occurs when the cards have numeric values a, a, b, c, d, where a, b, c, and d are all distinct.) c. two pairs? (This occurs when the cards have numeric values a, a, b, b, c, where a, b and c are all distinct.) d. three of a kind? (This occurs when the cards have numeric values a, a, a, b, c, where a, b and c are all distinct.) e. four of a kind? (This occurs when the cards have numeric values a, a, a, a, b.)

Answers

Answer 1

Answer:

See the attached photo for the calculations and answers

Step-by-step explanation:

The calculations and explanations are shown in the 3 attached photos below.

If We Assume That All Possible Poker Hands (comprised Of 5 Cards From A Standard 52 Card Deck) Are Equally
If We Assume That All Possible Poker Hands (comprised Of 5 Cards From A Standard 52 Card Deck) Are Equally
If We Assume That All Possible Poker Hands (comprised Of 5 Cards From A Standard 52 Card Deck) Are Equally
Answer 2

The answer to the given question will be a) P(flush) = 0.0019 b) P(one pair) = 0.4225 c) P( two pairs) = 0.475 d) P(three of a kind) = 0.211 e) P(four of a kind) = 0.00024

What is probability?

It's a field of mathematics that studies the probability of a random event occurring. From 0 to 1, the value is expressed.

The probability of being dealt a flush:

For a suit there are 4 choices and 13C₅ choices for a card in that suit

Probability of flush = 4.( 13C₅)/52C₅

Probability of flush = 0.0019

The probability of being dealt one pair:

There are 13 possible values of a, 4C₂ choice for suit of a, 12C₃ value for b, c, d and 4 choices each for choosing the suit of b, c, d.

P(one pair) = (13.4C₂.12C₃.4.4.4)/52C₅

P(one pair) = 0.4225

The probability of being dealt two pairs:

There are 13C₂ possibility for the value of a and b, 4C₂ choices for suits of both a and b and 44 possibilities for c from the remaining cards.

P(2 pairs) = (13C₂.4C₂.4C₂.44)/(52C₅) = 0.475

The probability of being dealt three of a kind:

There are 13 possibilities for the value of a and 4C₃ choices for the suits of a, 12C₂ possibilities for both b and c and 4 choices of suits for both b and c.

P( three of a kind) = (13.4C₃.12C₂.4.4)/52C₅ = 0.211

The probability of being dealt four of a kind:

There are 13 possibilities of a and 4C₄ values for the suit of a and 48 choices of b from the remaining cards.

P(four of a kind) = (13.4C₄.48)/52C₅ = 0.00024

Learn more about probability on:

https://brainly.com/question/24756209

#SPJ2


Related Questions

The difference of two numbers is 15, and their quotient is 6. what are the two numbers

Answers

the two numbers are 18 and 3

Which of the following is a zero for the function f(x) = (x + 3)(x − 7)(x + 5)? x = −7 x = −3 x = 3 x = 5

Answers

Answer:

  x = −3

Step-by-step explanation:

A zero of a function is a value that makes one of the factors be zero.

To make x+3 = 0, x = -3.

To make x-7 = 0, x = 7.

To make x+5 = 0, x = -5.

Of these values that make the factors zero, only x = -3 is on your choices list.

Answer:  The correct option is

(B) x = - 3.

Step-by-step explanation:  We are given to select the correct zero of the following polynomial function :

[tex]f(x)=(x+3)(x-7)(x+5)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

The zeroes of the function f(x) are given by

[tex]f(x)=0\\\\\Rightarrow (x+3)(x-7)(x+5)=0\\\\\Rightarrow x+3=0,~~x-7=0,~~x+5=0\\\\\Rightarrow x=-3,7,-5.[/tex]

Therefore, the zeroes of the given function are

x = -3, x = 7 and x = -5.

Thus, the correct option is

(B) x = -3.

the researchers have also determined that the current rate of the rise in water level is twice the 1880 to 2009 rate. assuming that this new rate began in 2009, you can use the function g(x) = 3.2(x - 2009) + 206, which models the total rise in water level in mm since 1880 for any year x, beginning in 2009.

1. what is the domain of g(x)?
2. write a simplified function, g(x)
3. according to the model, what will be the total rise in water level by 2025?
4. when will the total rise in water level be equal to about half a meter?

please help and thank you!!​

Answers

Answer:

x ≥ 20093.2x -6222.8257.2 mmyear 2100

Step-by-step explanation:

1. The problem statement tells you the function applies for year values (x) 2009 and later. The domain is real numbers greater than or equal to 2009.

__

2. We can use the distributive property to eliminate parentheses:

  3.2(x -2009) +206 = 3.2x -6428.8 +206

  = 3.2x -6222.8

__

3. Put 2025 in the equation and do the arithmetic

  g(2025) = 3.2·2025 -6222.8 = 257.2 . . . . mm

__

4. Put this value of level rise in the equation and solve for x.

  g(x) = 3.2x -6222.8

  500 = 3.2x -6222.8 . . put 500 mm where g(x) is in the equation

  6722.8 = 3.2x . . . . . . . add 6222.8

  x = 6722.8/3.2 = 2100.875

The water rise will be equal to about half a meter late in the year 2100.

How do I find the diagonal length?

Answers

B. 16 Inches The original length was 12 inches but since you are cutting across the cheese it will be longer. Since you are cutting across that means the width of the cheese will come into the equation as well.

Just add 12 and 4.

Check the picture below.

Which is most likely to have a mass of 3 grams? A. an apple B. a backpack C. a paper clip D. a cat

Answers

Answer:

C. a paper clip

Step-by-step explanation:

An apple generally weighs more than 3 grams, and can go even into oz.

Depending on the type of material the backpack is made of, and also how big it is, the mass can vary, however, it is safe to say the backpack will be more than 3 grams.

A cat definitely weighs more than 3 grams. Any born cat that weighs only 3 grams will not survive.

~

For this case we have the following options:

An apple, it is known that the apple will never weigh 3 grams.

A backpack will not have that weight either.

A cat would never weigh 3 grams or be newborn.

To have an object of 3 grams, the object must be very light.

A paperclip is very likely to weigh 3 grams because it is a very small and extremely light object.

Answer:

Option C

What is the degree of x?

Answers

Subtract the smaller angle from the larger angle and divide by 2.

66 -14 = 52

52/2 = 26

x = 26

How many times as bigger is it? Picture shown above

Answers

2 * 10^2

Divide the first numbers, which are 6 and 3, to get 2. Then, subtract the powers of the exponents, which are 5 and 3, to get 2.

please can someone answer this.

Answers

Answer:

  •  x = -4, x = 0, x = 1

Step-by-step explanation:

x is a factor of all terms, so x=0 is a zero. (Eliminates choices 1 and 5.)

The sum of coefficients is 0, so x=1 is a zero. (Eliminates choices 3 and 4.)

Reversing the sign of the odd-degree terms gives signs of -++, so there is one sign change, hence one negative real root (by Descartes' rule of signs). This confirms choice 2 as the answer.

___

Of course, your graphing calculator can answer this almost as quickly.

a ball is thrown with a slingshot at a velocity of 110ft/sec at an angle of 20 degrees above the ground from a height of 4.5 ft. approximentaly how long does is take for the ball to hit the ground. Acceleration due to gravity is 32ft/s^2

Answers

Answer:

[tex]t=2.47\ s[/tex]  

Step-by-step explanation:

The equation that models the height of the ball in feet as a function of time is

[tex]h(t) = h_0 + s_0t -16t ^ 2[/tex]

Where [tex]h_0[/tex] is the initial height, [tex]s_0[/tex] is the initial velocity and t is the time in seconds.

We know that the initial height is:

[tex]h_0 = 4.5\ ft[/tex]

The initial speed is:

[tex]s_0 = 110sin(20\°)\\\\s_0 = 37.62\ ft/s[/tex]

So the equation is:

[tex]h (t) = 4.5 + 37.62t -16t ^ 2[/tex]

The ball hits the ground when when [tex]h(t) = 0[/tex]

So

[tex]4.5 + 37.62t -16t ^ 2 = 0[/tex]

We use the quadratic formula to solve the equation for t

For a quadratic equation of the form

[tex]at^2 +bt + c[/tex]

The quadratic formula is:

[tex]t=\frac{-b\±\sqrt{b^2 -4ac}}{2a}[/tex]

In this case

[tex]a= -16\\\\b=37.62\\\\c=4.5[/tex]

Therefore

[tex]t=\frac{-37.62\±\sqrt{(37.62)^2 -4(-16)(4.5)}}{2(-16)}[/tex]

[tex]t_1=-0.114\ s\\\\t_2=2.47\ s[/tex]  

We take the positive solution.

Finally the ball takes 2.47 seconds to touch the ground

Someone help me understand how to do this

Answers

Answer:

6.7 cm

Step-by-step explanation:

To make use of the Law of Sines for finding b, you need to know the missing angle B. Since the sum of the angles of a triangle is 180°, you can find angle B as ...

B = 180° -82° -55° = 43°

Now, you put the numbers you know into the formula given and solve for b.

sin(A)/a = sin(B)/b

sin(55°)/(8 cm) = sin(43°)/b

Cross multiplying gives ...

b·sin(55°) = (8 cm)·sin(43°)

and dividing by the coefficient of b gives you ...

b = (8 cm)·sin(43°)/sin(55°) ≈ 6.7 cm

Answer:

6.7 cm

Step-by-step explanation:

Which of the following points is a solution of y > |x| + 5?

A. (0,5)

B. (1,7)

C. (7,1)

Answers

Answer:

B. (1,7)

Step-by-step explanation:

Answer is B. (1,7)

If x = 1 then

y > 1 + 5

7 > 6

Answer:

(1 , 7) is a solution of y > IxI + 5 ⇒ answer B

Step-by-step explanation:

* Lets revise the absolute value

- IxI = positive value

- IxI can not give negative value

- The value of x could be positive or negative

* Lets solve the problem

∵ y > IxI + 5

∴ y > x + 5 OR y > -x + 5

- Lets check the answers

∵ y > 0 + 5 ⇒ y > 5

- But y = 5, and 5 it is not greater than 5 and there is no difference

 between the two cases because zero has no sign

∴ (0 , 5) not a solution

∵ y > 1 + 5 ⇒ y > 6

- Its true y = 7 and 7 is greater than 6

∵ y > -1 + 5 ⇒ y > 4

- Its true y = 7 and 7 is greater than 4

∴ (1 , 7) is a solution

∵ y > 7 + 5 ⇒ y > 12

- But y = 1 and 1 is not greater than 12

∵ y > -7 + 5 ⇒ y > -2

- Its true y = 1 and 1 is greater than -2

* we can not take this point as a solution because it is wrong

 with one of the two cases

∴ (7 , 1) is not a solution

The graph of the function y = cos(2x) is shown below.

Answers

Answer:D pie

Step-by-step explanation:

You get 2pie/2 cancel out you get pie

The period of y=cos(2x) is π, so the frequency is 1/π.

The key features of the graph are:

Amplitude: The amplitude of the graph is 1, which means the function oscillates between −1and 1.

Period: The period of the graph is π, which means the function completes one cycle every πunits on the x -axis. This is because the frequency of the function is 2, which means it completes two cycles for every 2π units on the x -axis.

Midline: The midline of the graph is y=0. This is because the function is neither shifted up nor down.

Extrema: The graph has maxima at x=2kπ​ for any integer k, and minima at x=2(2k+1)π​for any integer k.

The graph of the function y=cos(2x). The frequency of a trigonometric function is the reciprocal of its period. The period of y=cos(2x) is π, so the frequency is 1/π.

What is the solution with steps?
2cosx=-sin^2x

Answers

Try this option, the answer is marked with red colour.

which fraction is equivalent to 1 use the number line to help answer the question​

Answers

10/10 it simplifies to 1

Answer: 10/10

Step-by-step explanation:

10 divided by 10 is 1.

Answer this question please; number 5... show all work thank you

Answers

Answer:

rate of the plane in still air is 33 miles per hour and the rate of the wind is 11 miles per hour

Step-by-step explanation:

We will make a table of the trip there and back using the formula distance = rate x time

                 d              =            r       x       t

there

back

The distance there and back is 264 miles, so we can split that in half and put each half under d:

               d            =         r        x        t

there    132

back     132

It tells us that the trip there is with the wind and the trip back is against the wind:

           

              d           =        r         x        t

there     132        =    (r + w)

back      132       =     (r - w)

Finally, the trip there took 3 hours and the trip back took 6:

           

             d         =        r        *        t

there    132     =    (r + w)     *       3

back     132     =    (r - w)      *       6

There's the table.  Using the distance formula we have 2 equations that result from that info:

132 = 3(r + w)        and        132 = 6(r - w)

We are looking to solve for both r and w.  We have 2 equations with 2 unknowns, so we will solve the first equation for r, sub that value for r into the second equation to solve for w:

132 = 3r + 3w and

132 - 3w = 3r so

44 - w = r.  Subbing that into the second equation:

132 = 6(44 - w) - 6w and

132 = 264 - 6w - 6w and

-132 = -12w so

w = 11

Subbing w in to solve for r:

132 = 3r + 3(11) and

132 = 3r + 33 so

99 = 3r and

r = 33

An object is launched from a launching pad 144 ft. above the ground at a velocity of 128ft/sec. what is the maximum height reached by the rocket?

Answers

Answer:

18) a. h(x) = -16x² + vx + h(0) ⇒ h(x) = -16x² + 128x + 144

b. The maximum height = 400 feet

c. Attached graph

19) The rocket will reach the maximum height after 4 seconds

20) The rocket hits the ground after 9 seconds

Step-by-step explanation:

* Lets study the rule of motion for an object with constant acceleration

# The distance S = ut ± 1/2 at², where u is the initial velocity, t is the time

  and a is the acceleration of gravity

# The vertical distances h in x second is h(x) - h(0), where h(0)

   is the initial height of the object above the ground

∵ h(x) = vx + 1/2 ax², where h is the vrtical distance, v is the initial

  velocity, a is the acceleration of gravity (32 feet/second²) and x

  is the time

18)a.

∵ The value of a = -32 ft/sec² ⇒ negative because the direction

   of the motion

  is upward

∴ h(x) - h(0) = vx - (1/2)(32)(x²) ⇒ (1/2)(32) = 16

∴ h(x) = vx - 16x² + h(0)

∴ h(x) = -16x² + vx + h(0) ⇒ proved

* Find the height of the object after x seconds from the ground

∵ h(0) = 144 and v = 128 ft/sec

∴ h(x) = -16x² + 128x + 144

b.

* At the maximum height h'(x) = 0

∵ h'(x) = -32x + 128

∴ -32x + 128 = 0 ⇒ subtract 128 from both sides

∴ -32x = -128 ⇒ ÷ -32

∴ x = 4 seconds

- The time for the maximum height = 4 seconds

- Substitute this value of x in the equation of h(x)

∴ The maximum height = -16(4)² + 128(4) + 144 = 400 feet

c. Attached graph

19)

- The object will reach the maximum height after 4 seconds

20)

- When the rocket hits the ground h(x) = 0

∵ h(x) = -16x² + 128x + 144

∴ 0 = -16x² + 128x + 144 ⇒ divide the two sides by -16

∴ x² - 8x - 9 = 0 ⇒ use the factorization to find the value of x

∵ x² - 8x - 9 = 0

∴ (x - 9)( x + 1) = 0

∴ x - 9 = 0 OR x + 1 = 0

∴ x = 9 OR x = -1

- We will rejected -1 because there is no -ve value for the time

* The time for the object to hit the ground is 9 seconds

Given: m KP =2m IP , m IVK =120° Find: m∠KJL.

Will give 99 points!!!

Answers

Answer:

KJL = 40 degrees

Step-by-step explanation:

KJL = 1/2*( arc KP - arc IP)

arc IPK=360-120=240

KP=2(IP)

Kp=2x, IP = x

3x=240, x=80

KP=160

IP=80

KJL=(160-80) / 2 = 40 degrees

Answer:

40°

Step-by-step explanation:

What is the y-intercept of the function f(2)=4-5x?
-5
-4
4
5

Answers

C. 4

First, rearrange the equation into slope intercept form, which is y = mx + b, where m is the slope and b is the y-intercept. You get y = -5x + 4. This means the y-intercept is 4.

For this case we have a function of the form [tex]y = f (x)[/tex]

Where:

[tex]f (x) = 4-5x[/tex]

To find the y-intercept of the function we must do x = 0.

Then, replacing:

[tex]f (0) = 4-5 (0)\\f (0) = 4-0\\f (0) = 4[/tex]

So, the y-intercep of the function is 4

ANswer:

4

Option C

Derive the quadratic formula from the standard form (ax2 + bx + c = 0) of a quadratic equation by following the steps below.
1. Divide all terms in the equation by a.
2. Subtract the constant (the term without an x) from both sides.
3. Add a constant (in terms of a and b) that will complete the square.
4. Take the square root of both sides of the equation.
5. Solve for x.

Answers

Answer:

The result is the well-known quadratic formula: x = (-b±√(b²-4ac))/(2a)

Step-by-step explanation:

Start with the standard form quadratic equation:

ax² +bx +c = 0

1. Divide by a

x² +(b/a)x +(c/a) = 0

2. Subtract the constant

x² +(b/a)x = -(c/a)

3. Complete the square

x² +(b/a)x + (b/(2a))² = (b/(2a))²-(c/a)

(x +b/(2a))² = (b²-4ac)/(2a)²

4. Take the square root

x +b/(2a) = ±√(b²-4ac)/(2a)

5. Subtract the constant on the left to get x by itself

x = (-b±√(b²-4ac))/(2a)

Final answer:

The quadratic formula, which provides the solution to the standard quadratic equation ax² + bx + c = 0, is derived through a series of algebraic manipulations, including dividing by a, completing the square, taking the square root, and solving for x.

Explanation:

Derivation of the Quadratic Formula

The objective is to derive the quadratic formula from the standard quadratic equation (ax² + bx + c = 0). Following the given steps:

Divide all terms by a: x² + (b/a)x + (c/a) = 0.Subtract c/a from both sides to isolate the x terms: x² + (b/a)x = -c/a.Add the square of half the coefficient of x to both sides to complete the square: (b/2a)². Now the equation is x² + (b/a)x + (b/2a)² = (b/2a)² - c/a.Take the square root of both sides: x + (b/2a) = ±√(b² - 4ac)/2a.Solving for x leads to the quadratic formula: x = (-b ± √(b²- 4ac))/(2a).

Amanda bought $500 bond with a 6% coupon that matures in 20 years. What are amanda's total annual earnings for this bond?

A.) $30.00
B.) $6.00
C.) $50.00
D.) $60.00

Answers

Answer:

it is $30.00

Step-by-step explanation:

A spinner has five equal sections that are numbered 1-5. In which distributions does the variable X have a binomial distribution? Select each correct answer.

A.) When the spinner is spun multiple times, X is the number of spins until it lands on 5.
B.) When the spinner is spun four times, X is the number of times the spinner does not land on an odd number.
C.) When the spinner is spun three times, X is the sum of the numbers the spinner lands on.
D.) When the spinner is spun five times, X is the number of times the spinner lands on 1.

Answers

Answer: The answer is C

Step-by-step explanation: If you think about it the spinner only spun 3 times and when that happens them you sum up X

(C) When the spinner is spun three times, X is the sum of the numbers the spinner lands on.

Binomial Distribution:The binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a series of n independent experiments, each asking a yes-or-no question and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability [tex]q=1p[/tex]). This distribution is used in probability theory and statistics. A Bernoulli trial, or experiment, is another name for a single success-or-failure experiment, and a Bernoulli process is another name for a series of results. For a single trial, or [tex]n=1[/tex], the binomial distribution is a Bernoulli distribution. The popular binomial test of statistical significance is based on the binomial distribution.

Therefore, the correct option is (C) When the spinner is spun three times, X is the sum of the numbers the spinner lands on.

Know more about binomial distribution here:

https://brainly.com/question/9325204

#SPJ2

If 4a+8b+4c=1
What is 16a+16c+32b?

Answers

Answer:

4

Step-by-step explanation:

[tex] 16a+32b+16c= 4*(4a+8b+4c)[/tex]

Answer:

If 4a+8b+4c=1, then 16a+16c+32b = 4

Step-by-step explanation:

To answer the question, a rule of three can be raised:

4a + 8b + 4c --------------- 1

16a + 16c + 32b --------- X

X = (16a + 16c + 32b) ÷ (4a + 8b + 4c)

This is equivalent to the division of the two polynomials, 16a + 16c + 32b by 4a + 8b + 4c.

Before dividing we organize the first polynomial,

16a + 16c + 32b = 16a + 32b + 16c

Dividing the two polynimials, we have

16a + 32b + 16c   | 4a + 8b + 4c  

-16a - 32b - 16c            4

       = 0 =

The exact quotient is 4, since the residue is 0

Hope this hepls!

A software designer is mapping the streets for a new racing game. All of the streets are depicted as either perpendicular or parallel lines. The equation of the lane passing through A and B is -7x + 3y = -21.5. What is the equation of the central street PQ?

A.
-3x + 4y = 3

B.
-1.5x − 3.5y = -31.5

C.
2x + y = 20

D.
-2.25x + y = -9.75

This is a PLATO math question, will give 15 pts to the best answer

Answers

Answer:

B.   -1.5x − 3.5y = -31.5

Step-by-step explanation:

You forgot to provide the reference image which is essential to answer the question, but I managed to find it... and attach it to my answer.

In the given equation for AB, if we place the y term on the left and x term on the right, we see the slope of that line is 7/3 (y = (7x - 21.5)/3 ==> 7/3x).

We see on the image that the line PQ is perpendicular to AB.  That means that its slope is -3/7.

If we quickly check the slopes of each of the possible answers...

A. -3x + 4y = 3 ----> 4y = 3x - 3 ==> y = (3x-3)/4 => slope = 3/4

Not what we're looking for.

B. -1.5x - 3.5y = -31.5 ==> 3.5y = -1.5x + 31 ===> y = (-1.5x +31)/3.5

that gives us a slope of -1.5/3.5... We can simplify it... -3(0.5)/7(0.5) = -3/7

Exactly as predicted.

Since we have the point P (7,6), we can enter it in the equation to verify:

-1.5x - 3.5y = -31.5

-1.5 (7) - 3.5 (6) = -10.5 - 21 = -31.5  --- Verified

C. 2x + y = 20 ==> y = 20 - 2x ===> slope is -2, not what we want.

D. -2.25x + y = -9.75 ==> y = 2.25x - 9.75 ==> slop is 2.25 cannot be it.

Answer: B. -1.5x − 3.5y = -31.5

Step-by-step explanation:

Consider the following function. f(x) = 9 − x2/3 Find f(−27) and f(27). f(−27) = f(27) = Find all values c in (−27, 27) such that f '(c) = 0. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) c = Based off of this information, what conclusions can be made about Rolle's Theorem? This contradicts Rolle's Theorem, since f is differentiable, f(−27) = f(27), and f '(c) = 0 exists, but c is not in (−27, 27). This does not contradict Rolle's Theorem, since f '(0) = 0, and 0 is in the interval (−27, 27). This contradicts Rolle's Theorem, since f(−27) = f(27), there should exist a number c in (−27, 27) such that f '(c) = 0. This does not contradict Rolle's Theorem, since f '(0) does not exist, and so f is not differentiable on (−27, 27). Nothing can be concluded.

Answers

I guess the function is [tex]f(x)=9-x^{2/3}[/tex]. Then [tex]f(-27)=0[/tex] and [tex]f(27)=0[/tex].

The derivative is [tex]f'(x)=-\dfrac23 x^{-1/3}[/tex], but there is no [tex]c[/tex] such that

[tex]-\dfrac23c^{-1/3}=0[/tex]

This doesn't contradict Rolle's theorem because [tex]f'(0)[/tex] does not exists. In other words, [tex]f[/tex] is not differentiable on (-27, 27), so the conditions of Rolle's theorem are not met. (Looks like that would be the last option, or the second to last option if the last one is "Nothing can be concluded")

Final answer:

The function f(x) = 9 - x²/3 is even, and its derivative f'(c) equals to zero at c=0, which lies within the interval (-27, 27). Therefore, it does not contradict Rolle's theorem.

Explanation:

The function in question is f(x) = 9 - x²/3. When we substitute x with -27 and 27, we get f(-27) = 9 - ((-27)²/3) = -243 and f(27) = 9 - (27²/3) = -243. This confirms that the function is even as f(-27) = f(27).

To find the critical values, we'll take the derivative of the function, which gives us f'(x) = -2x/3. We set f '(c) = 0, solving for c, and determine c = 0. Rolle's Theorem states that if a function is continuous on a closed interval [a, b], differentiable on the open interval (a, b), and f(a) = f(b), then there exists at least one c in the interval (a, b) such that f '(c) = 0. With f(-27) = f(27) and the derivative proving to be zero at c=0 (which is inside the interval (-27,27)) this does not contradict Rolle's theorem.

Learn more about Rolle's Theorem here:

https://brainly.com/question/30809316

#SPJ11

Please help! Limited time

Answers

Number 2,3,5 are true

A box contains 8 red balls, 5 brown balls, 4 purple balls, and 3 green balls. What is the probability that a purple ball will be selected from the box after a red ball is taken out and not replaced?

Write the probability as a percent. Round to nearest tenth of a percent as needed.

Answers

Answer:

21.1 percent

Step-by-step explanation:

Total balls after -1 red ball=7+5+4+3=19

Prob of purple ball= purple ball/total balls

= 4/19

=0.2105...

percentage:21.1%

Final answer:

The probability of selecting a red ball and then a purple one without replacement from a box containing 8 red, 5 brown, 4 purple, and 3 green balls is approximately 8.4%.

Explanation:

In probability, there are two events of interest here: selecting a red ball and then selecting a purple ball. Since the total number of balls changes after picking the red ball, these are dependent events. The probability of the first event (selecting a red ball) is 8 out of 20 (total balls). Then, with a red ball removed and not replaced, the probability of the second event (selecting a purple ball) is 4 out of 19. To find the overall probability, we multiply the probabilities of these two events.

To convert the probability to a percentage, multiply the result by 100. By doing this, the probability rounds to approximately 8.4%.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Two tracking stations are on the equator 148 miles apart. A weather balloon is located on a bearing of N41°E from the western station and on bearing of N21°E From the eastern station. How far is the balloon from the western station? Round to the nearest mile from the nearest station. A 404 mil B 382 mi C 413 mil D 373 mi

Answers

Answer:

  A  404 mi

Step-by-step explanation:

If we designate the points of the triangle A, B, and C for the locations of the western station, eastern station, and balloon, respectively, we have the following:

  ∠CAB = 90° - 41° = 49°

  ∠CBA = 90° + 21° = 111°

  ∠ACB = 41° -21° = 20°

side "c" (opposite ∠ACB) is 148 miles

The distance we're asked to find is AC = b, the longest side of the triangle. The law of sines tells us ...

  b/sin(B) = c/sin(C)

  b = c·sin(B)/sin(C) = (148 mi)·sin(111°)/sin(20°) ≈ 403.98 mi ≈ 404 mi

Final answer:

Using trigonometry and the law of sines, the distance from the balloon to the western station is approximately 373 miles.

Explanation:

This is a problem involving trigonometry, particularly the use of the law of sines. The two tracking stations and the balloon form a triangle. The angle at the western station is 41°, the angle at the eastern station is (180 - 21 - 41) = 118°, and the distance between the two stations (the side opposite to the 41° angle) is 148 miles. According to the Law of Sines, the ratio of each side of the triangle to the sine of its opposite angle is constant. Thus, we can set up the equation sin(41°) / x = sin(118°) / 148 miles, where x represents the distance from the balloon to the western station. Solving for x gives us approximately 373 miles.

Learn more about Law of Sines here:

https://brainly.com/question/12652434

#SPJ11

Find the value of x in the triangle above

Answers

Answer:

62 degrees

Step-by-step explanation:

degrees in a triangle: 180

this triangle is isosceles, so remaining 2 angles must be congruent

2x+56=180

2x=124

x=62

[tex]4(x - 8) {}^{3} - 18 = 846[/tex]
​need help solving it

Answers

Answer:

x=14

Step-by-step explanation:

4(x - 8)³ - 18 = 846

4(x - 8)³ = 864

(x - 8)³ =216

∛(x - 8)³ =∛216

x-8 = 6

x= 6+8

x=14

Answer:

x=14

Step-by-step explanation:

look this solution :

Solve the system below for m and b.

1239 = 94m + b
810 = 61m + b

Answers

Answer:

m=13 b=17

Step-by-step explanation:

Answer:

m=13 b=17

hope this helps

Other Questions
Triangle ABC is similar to triangle WYZ. select all angles whose tangent equals 3/4 Which scenario involves acceleration? a motorcycle at constant speed on a highway a recreational vehicle parked in a campground a car decreasing its speed due to a red light a teenager talking to friends at an intersection which american author was most directly inspired by the ideals of transcendentalsim How do you solve for a side in right triangles? Which strategies can be used to solve this problem? Marcus bought books for his vacation. He bought a mystery book for $14, a fantasy novel for $25, and 3 biographies that cost $6 each. How much money did Marcus spend on the books altogether? Choose all answers that are correct. A. Translate into an equation. 14 + 25 + 6 = n B. Work backward. Start with $6 and add this amount to $25 and $14. Multiply the sum by 3 to get the amount Marcus spent. C. Use logical reasoning. Think that Marcus bought a total of 5 books. Multiply $6 by 3 to get the cost of the biographies. Add this amount to the cost of the two other books ($14 and $25) to get the total amount Marcus spent. D. Draw a diagram. Draw 5 rectangles to represent the 5 books Marcus bought. Put $14 in one rectangle and $25 in another rectangle. Write $6 in each of the remaining 3 rectangles. Add the 5 amounts together to get the total amount Marcus spent. An equation is written to represent the relationship between the temperature in Alaska during a snow storm, y, as it relates to the time in hours, x, since the storm started. A graph of the equation is created. Which quadrants of a coordinate grid should be used to display this data? Quadrant 1 only What is the x-intercept of the equation y=-5x+1,450? Can you please help me. how many points out of 416 do i need to get to get a 60% in class Right now I have 153. Invasion literature is still popular becuase it: A rectangular room is 2 times as long as it is wide, and its perimeter is 30 meters. Find the dimension of the room. Which of the following statements regarding risk factors for disease is accurate? a. Having multiple risk factors is the same as having only one risk factor when determining the likelihood of getting a disease. b. The absence of a risk factor guarantees that a person will never develop the disease. c. A risk factor means the disease will occur. d. Risk factors tend to dissipate over the course of a lifetime. e. Risk factors tend to cluster. Match the English myth derivative with the correct sentence. 1. His nature made him fun to be with 2. For Halloween any - costume is acceptable. 3. The new boy in school was an -.4. The punishment for arriving home late seemed - to the teenager. 5. Susie was always my - she always beat me by a little bit in things academic and athletic. 6. A former teacher mr. smith has been my trusted .7. The glow of dawn is much softer than the glow of sunset. 8. An vacation for me would be an unscheduled month of traveling through Italy. 9. When you accompany me to state competition you are under my .10. He is so smart that I can never follow the twists and turns of his mind. What landforms are created by divergent boundaries the numbers of points scored by a football team in 7 different games are26, 38, 33, 20, 27,3, and 28. For numbers 4a-4c select true or false toindicate whether the statement is correct.4a.The outlier in the data set is 3.O TrueO False4b. The difference between theoutlier and the median is 24.O TrueO False4c.The outlier in this set of dataaffects the mean by increasing it.O TrueO False How many kilocalories of energy would you expect a person in contemporary England to consume daily (including food, transportation, household use, etc.)? Which statement best explains why the equation X +2=3x-14 can be used to slice for x ? Which excerpt from Robin Hood shows how Robins reaction to conflict changes him? A.What is done is done; and the egg cracked cannot be cured. B.my bow and eke mine arrows are as good as thine; C.[he] lay hidden in Sherwood Forest for one year, and in that time there gathered around him many others like himself, cast out D.some had been despoiled by a great baron or a rich abbot or a powerful esquireall, for one cause or another, had come to Sherwood Write a fictional story that end "And neither of them ever went their again". If f(x) = 1-x which value is equivalent to |f(I)|