Answer:
See explanation
Step-by-step explanation:
Assuming your system is:
[tex]x + 3y = 4[/tex]
[tex]3x - 5y = 8[/tex]
Then make x the subject in the first equation to get:
[tex]x = 4 - 3y[/tex]
Put this equation into the second equation to get:
[tex]3(4 - 3y) - 5y = 8[/tex]
[tex]12 - 9y - 5y = 8[/tex]
[tex] - 9y - 5y = 8 - 12[/tex]
[tex] -14y = - 4[/tex]
[tex]y = \frac{ - 4}{ - 14} = \frac{2}{7} [/tex]
This means that:
[tex]x = 4 - 3 \times \frac{2}{7} [/tex]
[tex]x = 4 - \frac{6}{7} = \frac{22}{7} [/tex]
solve by using distributive property: 12x - 6y = 12 and x = -2y +11
Answer:
x = [tex]\frac{1}{11}[/tex]; y = [tex]\frac{-60}{11}[/tex]
Step-by-step explanation:
x = -2y + 11 so x + 2y = 11 (1)
12x - 6y = 12 so 6x - y = 6 (2)
(1) - 2(2) ↔ (x + 2y) - 2(6x - y) = 11 - 2(6)
↔ - 11x = - 1
↔ x = [tex]\frac{1}{11}[/tex]
(2) ↔ y = 6x - 6 = 6([tex]\frac{1}{11}[/tex]) - 6 = [tex]\frac{6}{11}[/tex] - 6 = [tex]\frac{-60}{11}[/tex]
Brainliest???
last question promise
Answer:
80°
Step-by-step explanation:
A triangle = 180° total.
Because it is a parallelogram, 40° is also the measure of BCE.
180° - 60° - 40° = 80°
BEC = 80°
If x over 5 equals 3 then what is x
Answer:
x=15
Step-by-step explanation:
x/5 =3
Multiply each side by 5
x/5 *5 = 3*5
x = 15
A store that sells merchandise on a college campus is restocking their inventory of sweatshirts and t-shirts. They order a total of 934 items. Each sweatshirt costs $8.00 and each t-shirt costs $5.00. They spend a total of $5,933.00.
A system of equations is written to represent this scenario, where s represents the number of sweatshirts ordered and t represents the number of t-shirts ordered.
{s+t=934
{8s+5+=5933
The solution to the system is (421, 513). Interpret this solution in the context of the situation.
A. The store ordered 513 sweatshirts and 421 t-shirts.
B. The store ordered 421 sweatshirts and 513 t-shirts.
C. The store spent $513.00 on sweatshirts and $421.00 on t-shirts.
D. The store spent $421.00 on sweatshirts and $513.00 on t-shirts.
Answer:
Option B.
Step-by-step explanation:
A system of equations is written to represent this scenario, where s represents the number of sweatshirts ordered and t represents the number of t-shirts ordered.
s + t = 934
8s + 5t = 5,933
The solution to the system is (421, 513).
So, The number of sweatshirts = 421
And the number of t-shirts = 513
Because 8 * 421 + 5 * 513 = $5,933
We will check the options:
A. The store ordered 513 sweatshirts and 421 t-shirts. ⇒Wrong
B. The store ordered 421 sweatshirts and 513 t-shirts. ⇒True
C. The store spent $513.00 on sweatshirts and $421.00 on t-shirts. ⇒Wrong
Because the solution represents the number of sweatshirts and t-shirts.
D. The store spent $421.00 on sweatshirts and $513.00 on t-shirts. ⇒Wrong
Because the solution represents the number of sweatshirts and t-shirts.
So, the answer is option B.
Which of the following equations has infinitely many solutions
Answer:
D
Step-by-step explanation:
Both equations are same
Answer:
D. 3x - 5 = -5 + 3x
Step-by-step explanation:
3x - 5 = -5 + 3x
3x = 3x
x = x (Infinitely many solutions)
Last year, Rina's history and math classes had regular tests. Each history test had 14
questions and each math test had 11 questions. If Rina had to answer the same number of
history questions and math questions last year, what is the smallest number of each type of
question she must have answered?
Answer:
154
Step-by-step explanation:
This ones tough so im not sure but try it. I hope this helps
The difference of a number and five is negative one. Find the number.
Answer:
The number is 4
Step-by-step explanation:
Write algebraically:
n-5=-1
n=4
The number is 4
To find the number when the difference of a number and five is negative one, substitute the given values into an equation and solve for the unknown variable.
Explanation:To solve the problem, let's assign a variable to the unknown number. Let's call it 'x'. The difference of a number and five can be represented as 'x - 5'. According to the problem, this expression is equal to -1. So, we can write the equation x - 5 = -1. To find x, we need to isolate it on one side of the equation. Adding 5 to both sides, we get x = 4. Therefore, the number is 4.
Learn more about number difference here:https://brainly.com/question/18757471
#SPJ2
joe had 84 heads of cabbage . peter picked one third of the heads of cabbage . How many did peter picked?
Answer:
28
Step-by-step explanation:
Answer:
Peter picked 28.
Step-by-step explanation:
1/3 of 84 is 28 because 84 divided 3 and multiplied by 1 is 28.
Calvin has $360 less in his savings account than he had 8 weeks ago. Each
week he deposited $15 into his account. What was his average withdrawal
each week?
Answer:
Calvin withdraws $ 60 each week
Step-by-step explanation:
1. Let's review the information given to us to answer the question correctly:
Calvin's account balance difference than 8 weeks ago = - $ 360
Weekly amount Calvin deposits = $ 15
Number of weeks to compare = 8
2. What was his average withdrawal each week?
Let's calculate the weekly average withdrawal this way:
Weekly average withdrawal = [Calvin's account balance difference than 8 weeks ago - (Weekly amount Calvin deposits * Number of weeks to compare)]/Number of weeks to compare
Replacing with the values given:
Weekly average withdrawal = [-360 - (15 * 8)]/8
Weekly average withdrawal = -360 - 120 / 8
Weekly average withdrawal = -480 / 8
Weekly average withdrawal = -60
Calvin withdraws $ 60 each week
The difference of a number p and -9 is 12
Answer: 3
Step-by-step explanation: Your equation is p- (-9)=12. A negative plus a negative is a positive. So the equation is basically p+9=12. 12 minus 9 is 3 and that's the answer!
Complete the equation of the line through (3,-8) and (6,-4).
Use exact numbers.
Answer:
y = 4/3x - 12
Step-by-step explanation:
Use Point Slope Form: (y - y1) = m(x - x1)
Step 1: Find the slope
m = [tex]\frac{y2 - y1}{x2 - x1}[/tex]
m = [tex]\frac{-4 - (-8)}{6 - 3}[/tex]
m = [tex]\frac{-4 + 8}{3}[/tex]
m = [tex]\frac{4}{3}[/tex]
Step 2: Plug into point slope form
(y - (-4)) = 4/3(x - 6)
y + 4 = 4/3x - 24/3
y + 4 - 4 = 4/3x - 8 - 4
y = 4/3x - 12
Answer: y = 4/3x - 12
Bowser bought mushrooms
at the farmer's market. He
paid $4.32 for 6 pounds of
mushrooms. At that rate,
how much should he pay for
5 pounds of mushrooms?
A line that comes closest to data in the coordinate plane is called the line of
That would be the line of best fit.
The line of best fit is a straight line that best represents the data on a scatter plot.
Hope that helps, :)
Can someone help me solve this
Answer:
∠ 6 = 38°
Step-by-step explanation:
∠6 and 38° are vertical and congruent, thus
∠ 6 = 38°
True or false: f(x) is a function.
f(x)
Answer:
yes it is
Step-by-step explanation:
f(x) or g(x) are functions
Answer:
It is False
Step-by-step explanation:
I tried true and got it wrong
If a tennis ball has a diameter of 14, What is the volume of the tennis ball? Use 3.14 for pi.
Answer:
1436
Step-by-step explanation:
g The circumference of a circle is 268.53 m. What is the approximate area of the circle? Use 3.14 for pi.
Answer:
5741.11 m^2
Step-by-step explanation:
The formula for circumference is C=2(pi)r. Solve for r with the given info of the the circumference. r= 268.53/(2*3.14) r=42.76. The formula for area is (pi)r^2. Knowing r, substitute and solve.
There are twelve inches in 1 foot. Convert 3 feet to inches.
Answer:
36 inches
Step-by-step explanation:
since there are 12 inches in one foot, just do 12 x 3 which equals 36.
What’s the explicit formula for -4, -16, -64, -256
Answer:
[tex]a_{n}[/tex] = - 4[tex](4)^{n-1}[/tex]
Step-by-step explanation:
Note the common ratio r between consecutive terms in the sequence, that is
- 16 ÷ - 4 = - 64 ÷ - 16 = - 256 ÷ - 64 = 4
This indicates the sequence is geometric with n th term ( explicit formula )
[tex]a_{n}[/tex] = a[tex](r)^{n-1}[/tex]
where a is the first term and r the common ratio
Here a = - 4 and r = 4, thus
[tex]a_{n}[/tex] = - 4 [tex](4)^{n-1}[/tex] ← explicit formula
Question 1 (Mandatory) (1 point)
Which method is best used to prove that a figure has a right angle?
a) Using slope formula to show two segments have opposite reciprocal slopes.
Ub Using slope formula to show two segments have the same slope.
C) Using distance formula to show two segments are congruent.
od) Using the midpoint formula to show two segments have the same midpoint.
Answer:
A
Step-by-step explanation:
Right angle means that the two sides that meet to create right angle are "perpendicular".
Two perpendicular lines meet to form the angle of 90 degrees.
In coordinate geometry, how do we prove that two lines are perpendicular??
We show that their slopes are negative reciprocals of each other.
This also tells us that the angle between the two lines are "right angle".
So, we can use slope formula to show two segments have opposite reciprocal slopes, that will tell us that it is a right angle between the two segments.
Option A is right.
Ten increased by 6 times a number
is the same as 4 less than 4 times
the number. Find the number.
Answer: the number is -7
-angie:) pls mark me brainnliest!
Step-by-step explanation:
Explanation:
The easiest way to solve this equation is to write an equation and solve for the unknown number. This is the equation:
10
+
6
x
=
4
x
−
4
Subtract each side by 4x.
10
+
2
x
=
−
4
Subtract both sides by 10.
2
x
=
−
14
Divide by 2 on each side to isolate
x
.
x
=
−
7
So you have your answer: the number is
−
7
. To double-check your answer, you can plug this number back into the equation and see if it comes out to be true:
10
+
6
(
−
7
)
=
4
(
−
7
)
−
4
10
−
42
=
−
28
−
4
−
32
=
−
32
This equation is true, so you know
−
7
has to be the unknown number .
Answer:
-7
Step-by-step explanation:
10+6x=4x-4
-4x -4x
10+2x=-4
-10 -10
2x=-14
/2 /2
x=-7
A gas can hold 10 L of gas. How many cans could we fill with 7 L of gas?
Answer: It is only one can that can be filled up.
Step-by-step explanation: If 1 gas can can hold 10 L of gas and you only have 7 L then how can you fill up more than 1 gas can with only 7 L? You don't have enough gas to fill up more than 1 gas can. So you are left with only 1 gas can filled but only with 7 L.
Final answer:
To find the average density of a full gasoline can, both the mass of the gasoline (20.0 L multiplied by 0.75 kg/L for 15.0 kg) and the mass of the can (2.50 kg) are added to get a total mass of 17.5 kg. This is divided by the volume of gasoline the can holds (20.0 L) to yield an average density of 0.875 kg/L.
Explanation:
The question centers on calculating the average density of a gasoline can when it is full. To do this, we need to consider the total mass of the can and the gasoline together and the total volume they occupy.
The mass of the gasoline can itself is 2.50 kg. When full, the can holds 20.0 L of gasoline. Assuming the density of gasoline is 0.75 kg/L, we can calculate the mass of the gasoline as:
Mass of gasoline = 20.0 L × 0.75 kg/L = 15.0 kg
Then, we add the mass of the gasoline to the mass of the can to get the total mass:
Total mass = Mass of steel can + Mass of gasoline
Total mass = 2.50 kg + 15.0 kg = 17.5 kg
To find the average density, we use the formula:
Density = Total mass / Total volume
The volume here is the volume of gasoline the can holds since we typically ignore the thickness of the container in such calculations unless otherwise specified. Hence the average density is calculated based on the volume of gasoline only.
Average density = 17.5 kg / 20.0 L
Average density = 0.875 kg/L
This value represents the combined density of the steel can and the gasoline within it.
Kate bought $23.40 worth of two types of bird seed. Thistle bird seed sells for $1.60 per pound
and wild bird seed sells for $0.95 per pound. If she bought 12 pounds of wild bird seed, write
and solve a linear equation to find the amount of thistle bird seed she purchased
Answer:
The amount of thistle bird seed she purchased was 7.5 pounds
Step-by-step explanation:
Let
x ----> the amount in pounds of thistle bird seed she purchased
x ----> the amount in pounds of wild bird seed she purchased
we know that
Kate bought $23.40 worth of two types of bird seed.
so
[tex]1.60x+0.95y=23.40[/tex] ----> equation A
She bought 12 pounds of wild bird seed
so
[tex]y=12\ pounds[/tex]
substitute the value of y in the equation A
[tex]1.60x+0.95(12)=23.40[/tex]
solve for x
[tex]1.60x=23.40-11.40\\1.60x=12\\x=7.5\ pounds[/tex]
therefore
The amount of thistle bird seed she purchased was 7.5 pounds
Kate bought 7.5 pounds of thistle bird seed.
Since Kate bought $ 23.40 worth of two types of bird seed, thistle bird seed sells for $ 1.60 per pound and wild bird seed sells for $ 0.95 per pound, if she bought 12 pounds of wild bird seed, to find the amount of thistle bird seed she purchased, the following calculation must be performed, through a linear function:
(12 x 0.95) + 1.60X = 23.40 11.40 + 1.60X = 23.40 1.60X = 23.4 - 11.4 X = 12 / 1.60 X = 7.5
Therefore, Kate bought 7.5 pounds of thistle bird seed.
Learn more in https://brainly.com/question/3400735
14) What is the vertex of y= x- 4x + 7?
Calculate, to the nearest cent, the future value FV of an investment of $10,000 at the stated interest rate after the stated amount of time. 7.5% per year, compounded daily (assume 365 days/year), after 12 years
Answer: 1,000
First, you have to find how much 7.5% is coming out of 10,000. So in this case it's 750. Multiply 750 by 12 years. Thats 9000, you then subtract 9000 and 10,000 to get 1,000.
The future value of a $10,000 investment at a 7.5% annual interest rate compounded daily after 12 years is $22,589.67.
Explanation:To calculate the future value of an investment that is compounded daily, we use the formula: FV = P ((1 + (r/n))^{nt}, where:
P is the principal amount (the initial amount of money)r is the annual interest rate (in decimal form)n is the number of times the interest is compounded per yeart is the time the money is invested for in yearsGiven that the principal amount P is $10,000, the annual interest rate r is 7.5% (or 0.075 in decimal form), the number of times the interest is compounded per year n is 365, and the time t is 12 years, we plug these values into the formula:
FV = $10,000 ((1 + (0.075/365))^{365 * 12}
By calculating this amount, we find that the future value of the investment, to the nearest cent, would be $22,589.67.
Train B travels 140 miles which is 40% of the total distance it will travel. What is the total number of miles train B will travel?
Answer:
350 Miles
Step-by-step explanation:
140/40 = x/100
x = 350
350 Miles
Please help ty! I added extra points.
Hillary and Charlene both drove from City A to City B. At 10 a.m., Hillary left City A and drove at an average speed of 120 km/h. Charlene drove at an average speed of 144 km/h and took 50 minutes. She arrived at City B at the same time as Hillary. Find the time Charlene left City A.
Let's denote the time Charlene left City A as [tex]\( t \).[/tex]
Since Charlene took 50 minutes (or [tex]\(\frac{50}{60} = \frac{5}{6}\) hours)[/tex] to reach City B, and she arrived at the same time as Hillary, we can set up the equation based on the distances traveled by both:
For Hillary:
[tex]\[ \text{Distance}_\text{Hillary} = \text{Speed}_\text{Hillary} \times \text{Time}_\text{Hillary} \]\[ \text{Distance}_\text{Hillary} = 120 \times (t + 1) \][/tex]
For Charlene:
[tex]\[ \text{Distance}_\text{Charlene} = \text{Speed}_\text{Charlene} \times \text{Time}_\text{Charlene} \]\[ \text{Distance}_\text{Charlene} = 144 \times \left(t + \frac{5}{6}\right) \][/tex]
Since they traveled the same distance, we can equate these two expressions:
[tex]\[ 120 \times (t + 1) = 144 \times \left(t + \frac{5}{6}\right) \][/tex]
Now, solve for \( t \):
[tex]\[ 120t + 120 = 144t + 120 \]\[ 24t = 120 \]\[ t = 5 \][/tex]
So, Charlene left City A at 5:00 a.m.
how can you find the differnt between points
Answer:
subtract one from the other
Step-by-step explanation:
You find the difference between points the same way you find any difference: you subtract one from the other.
Points are generally described by an ordered pair. When you subtract one point from the other, you subtract corresponding parts of the ordered pair:
(a, b) - (c, d) = (a-c, b-d)
__
Sometimes, when you're interested in finding the difference between points (x, y), you want to do something different with the y-difference than you do with the x-difference.
For example, the slope of a line is calculated as the ratio of the y-difference to the x-difference. The length of a line segment is the root of the sum of the squares of the differences.
I WILL GIVE BRAINLIEST
Part A:
A garden is in the shape of a circle with a radius of 10 feet. Edging is placed around the garden
How much edging, in feet, is needed to go around the garden? Round to the nearest whole number?
Part B:
Another garden is in the shape of a semicircle with a radius of 25 feet. Edging is placed around this garden.
How much edging, in feet, is needed to go around this garden? Round to the nearest whole number.
Answer:
Part A = 64 feet
Part B = 79 feet
Step-by-step explanation:
Part A
10 × 2 = 20 = Diameter
Formula is C = π × diameter
20 × π = 62.8318530718 feet = 64 feet
Part B
25 × 2 = 50
Same formula
50 × π = 157.079632679 feet
157.079632679 ÷ 2 = 78.5398163395 feet = 79 feet
divide by 2 because it is a semi circle
Hope his helped :)
For the circular garden with a radius of 10 feet, 63 feet of edging is required. For the semicircular garden with a radius of 25 feet, 129 feet of edging is needed. These figures are obtained by calculating the circumference of a circle and a semicircle, then rounding to the nearest whole number.
Explanation:To find out how much edging is needed for the gardens, we need to calculate the circumference of the circles.
Part A
The formula for the circumference of a circle (which is the distance around the edge) is 2πr, where π (pi) is approximately 3.14, and r is the radius. For a circle with a radius of 10 feet, the circumference is:
2 × 3.14 × 10 feet = 62.8 feet
Rounded to the nearest whole number, we need 63 feet of edging for the garden.
Part B
For a semicircle with a radius of 25 feet, the circumference is half that of a whole circle, plus the diameter (which is 2 × radius). So, first calculate the circumference of the whole circle and then divide by 2 and add the diameter:
(2 × 3.14 × 25 feet) / 2 + 2 × 25 feet = 78.5 feet + 50 feet = 128.5 feet
Rounded to the nearest whole number, we need 129 feet of edging for the semicircular garden.
-3(2w+5)+7w=5(w-11) what is w?
Answer:
w = 10
Step-by-step explanation
Answer:
53 = w OR 10.6=w
5
Step-by-step explanation:
-3(2w+5)+7w=5(w-11)
-6w-15+7w=5w-55
+6w +6w
-15+13=5w-55
+15 +15
13=5w-40
+40 +40
53=5w
5 5
53 = w OR 10.6=w
5
Hope that helps!! PLEASE GIVE ME BRAINLIEST!!!