How are amounts of hydrogen and oxygen gas made from the electrolytic decomposition of water related to the chemical formula of water?

Answers

Answer 1
Very simply, you get twice as much Hydrogen as Oxygen, because the chemical formula is H2O, meaning two hydrogen atoms bonded to one oxygen atom.

Related Questions

A 1.50-g sample of hydrated copper(ii) sulfatewas heated carefully until it had changed completely to anhydrous copper(ii) sulfate () with a mass of 0.957 g. determine the value of x. [this number is called the number of waters of hydration of copper(ii) sulfate. it specifies the number of water molecules per formula unit of in the hydrated crystal.]

Answers

CuSO₄·xH₂O → CuSO₄ + xH₂O

M(CuSO₄)=159.61 g/mol
M(H₂O)=18.02 g/mol
m(CuSO₄·xH₂O)=1.50 g
m(CuSO₄)=0.957 g

m(CuSO₄·xH₂O)/M(CuSO₄·xH₂O)=m(CuSO₄)/M(CuSO₄)

M(CuSO₄·xH₂O)=M(CuSO₄)+xM(H₂O)

m(CuSO₄·xH₂O)/{M(CuSO₄)+xM(H₂O)}=m(CuSO₄)/M(CuSO₄)

M(CuSO₄)+xM(H₂O)=m(CuSO₄·xH₂O)M(CuSO₄)/m(CuSO₄)

xM(H₂O)=m(CuSO₄·xH₂O)M(CuSO₄)/m(CuSO₄)-M(CuSO₄)

x=M(CuSO₄)/M(H₂O){m(CuSO₄·xH₂O)/m(CuSO₄)-1}

x=159.61/18.02*{1.50/0.957-1}=5.0

x=5

CuSO₄·5H₂O

How much heat is removed from the skin by the evaporation of 190 g (about 1/2 cup) of isopropyl alcohol?

Answers

Final answer:

The evaporation of 190g of isopropyl alcohol would remove approximately 463.6 kJ of heat.

Explanation:

The student asked: 'How much heat is removed from the skin by the evaporation of 190 g (about 1/2 cup) of isopropyl alcohol?' The process of evaporation removes heat from the surface it's occurring on because energy is needed to change a substance from a liquid state to a gaseous one. This is known as the enthalpy of vaporization. Unfortunately, the value provided for the vaporization of water can't be directly used for isopropyl alcohol. However, using related scientific data, the approximate heat of vaporization for isopropyl alcohol is about 2.44 kJ/g. Therefore, to calculate the heat removed by evaporation of 190g of isopropyl alcohol, we would multiply the mass (190g) by the heat of vaporization (2.44 kJ/g) which totals approximately 463.6 kJ.

Learn more about Evaporation of isopropyl alcohol here:

https://brainly.com/question/36260030

#SPJ12

Final answer:

To calculate the heat removed by the evaporation of isopropyl alcohol, one would typically multiply the number of moles of the alcohol by its heat of vaporization, which is approximately 45.3 kJ/mol at boiling point; however, the specific heat of vaporization at skin temperature is necessary to determine the exact amount of heat removed.

Explanation:

To determine how much heat is removed from the skin by the evaporation of isopropyl alcohol, we need the heat of vaporization for isopropyl alcohol (also known as isopropanol). The heat of vaporization is the amount of heat required to turn a liquid into a vapor without a temperature change. Unfortunately, we do not have the exact heat of vaporization value for isopropyl alcohol at human skin temperature provided in the reference, which would directly allow the calculation. However, we can consider that the heat of vaporization for isopropyl alcohol is typically around 45.3 kJ/mol at its boiling point.

For the sake of explanation, let's assume that this value is close enough to use for a skin temperature of 37 °C. The molar mass of isopropyl alcohol (C3H8O) is approximately 60.1 g/mol. First, we would convert 190 g of isopropyl alcohol to moles:

Moles of isopropyl alcohol = mass (g) / molar mass (g/mol) = 190 g / 60.1 g/mol

Then, we would multiply the moles by the heat of vaporization to get the total amount of heat removed:

Heat removed (kJ) = moles * heat of vaporization (kJ/mol)

Without the exact value for the heat of vaporization of isopropyl alcohol at skin temperature, we cannot provide the exact amount of heat removed. However, this process illustrates how the calculation would be performed given the correct data.

Learn more about Heat removal by evaporation of isopropyl alcohol here:

https://brainly.com/question/31605623

#SPJ3

How many grams of naoh would react with 507 g fecl2 in the reaction fecl2 + 2naoh fe(oh)2(s) + 2nacl?

Answers

Answer: Correct answer is 507g FeCl2 x (1 mol FeCl2 / 126.8 g FeC2) x (1 mol Fe(OH)2 / 1 mol FeCl2) x (89.8 g Fe(OH)2/ 1 mol Fe(OH)2) = 359 g Fe(OH)2.

Answer:ANSWER

Explanation:

A(n) ________ chemical reaction releases energy, whereas a(n) ________ reaction requires an input of energy.

Answers

There are two types of chemical reaction based on the direction of heat or energy. 

If the energy or heat is absorbed by the system of reactants in order to form the specific products then, the reaction is called endothermic. 

However, if the energy is released by the reactants in the process of producing the products then, the reaction is exothermic.

Hence, for this item, the first blank should be filled with exothermic and the second blank should be filled with endothermic. 

There are sometimes given chemical reactions that do not involve the transfer of heat from the system or from the system. 

Answer:

Exothermic chemical reaction

Endothermic chemical reaction

An Exothermic chemical reaction releases energy, whereas an Endothermic chemical reaction requires an input of energy.

An Exothermic chemical reaction involves the release of heat(thermal energy) in a system to the surroundings. The enthalpy(heat) change which is ΔH decreases in this type of reaction

An Endothermic chemical reaction involves the absorption or input of heat in the form of thermal energy by the system from the surroundings. The enthalpy(heat) change which is ΔH increases in this type of reaction.  

Read more on https://brainly.com/question/4548577

If 1.20 moles of an ideal gas occupy a volume of 18.2 L at a pressure of 1.80 atm, what is the temperature of the gas, in degrees Celsius?
-125°C
59.5°C
273°C
32°C

Answers

The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant =  0.0821
T is the temperature required (calculated in kelvin)

Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin

The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius

When the volume of a gas is changed from 3.6 L to 15.5 L, the temperature will change from oC to 87°C

Answers

the answer:
When the volume of a gas is changed from 3.6 L to 15.5 L, the temperature will change from  ?? oC to 87°C

application of charles law

charle's law tells that 

T1/ V1 = T2 / V2, T must be in kelvin

it is given that  V1 = 3.6 L, V2 = 15.5 L, 
T2= 87°C= 360.15 K

so to find T1,  T1 =(T2 / V2) x V1

T1= (360.15 / 15.5) * 3.6= 83.64° K = - 190.15° C


Answer:

-189.5

Explanation:

Correct with Acellus Chemistry

Aluminum reacts with chlorine gas to form aluminum chloride. 2al(s)+3cl2(g)→2alcl3(s) what minimum volume of chlorine gas (at 298 k and 225 mmhg) is required to completely react with 7.85 g of aluminum

Answers

The balanced chemical reaction is expressed as:

2Al(s)+3Cl2(g)→2AlCl3(s)

To determine the volume of chlorine gas needed given the mass of aluminum metal to be used, we need to calculate for the moles of chlorine needed and use a relation that relates moles and volume by assuming the gas to be an ideal gas. We use the equation PV =nRT. We calculate as follows:

7.85 g Al ( 1 mol / 26.98 g ) ( 3 mol Cl2 / 2 mol Al ) = 0.43643 mol Cl2

PV = nRT
V = nRT / P
V = 0.43643 (0.08205) (298) / (225/760)
V = 36.04 L chlorine gas

The minimum volume needed would be 36.04 L.
Final answer:

To find the minimum volume of chlorine gas required to react with 7.85 g of aluminum, we convert the mass of aluminum to moles, find the necessary moles of chlorine gas using the balanced equation, and then apply the ideal gas law to find the volume.

Explanation:

The question is asking about the volume of chlorine gas required to completely react with a given amount of aluminum. We know from the balanced equation that 2 moles of aluminum (Al) react with 3 moles of chlorine gas (Cl) to form 2 moles of aluminum chloride (AlCl₃). First, we've to convert the mass of aluminum to moles by dividing the mass 7.85g by the molar mass of aluminum (26.98 g/mol), giving approximately 0.291 mol.

From the equation, we know the mole ratio of Al to Cl2 is 2 to 3. Therefore, 0.291 moles of Al will require 0.437 mol of Cl₂. Next, we apply the ideal gas law (PV=nRT) to find the volume. Here, P=225 mmHg (which is 0.296 atmospheres), R=0.0821(atm L)/(mol K), T=298 K and n=0.437 mol.

Finally, solving for V in PV=nRT gives us V = nRT/P, approximating 11.08 L as the minimum volume of chlorine gas required to react.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ3

Write a balanced equation for the oxidation-reduction reaction that occurs when hydrogen peroxide reacts with ferrous ion

Answers

H₂O₂ + 2FeSO₄ + H₂SO₄ → Fe₂(SO₄)₃ + 2H₂O

H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O  k=1
Fe²⁺ → Fe³⁺ + e⁻                 k=2

H₂O₂ + 2H⁺ + 2Fe²⁺ → 2H₂O + 2Fe³⁺


The balanced equation for the reaction of hydrogen peroxide with ferrous ions to produce ferric ions and water in an acidic solution is H2O2(aq) + 2H+(aq) + 2Fe2+(aq) → 2H2O(l) + 2Fe3+(aq).

The balanced equation for the oxidation-reduction reaction that occurs when hydrogen peroxide reacts with the ferrous ion (Fe2+) in an acidic solution to produce ferric ion (Fe3+) and water is:

H2O2(aq) + 2H+(aq) + 2Fe2+(aq) → 2H2O(l) + 2Fe3+(aq)

This reaction showcases the oxidizing property of hydrogen peroxide. The ferrous ion (Fe2+) is oxidized to the ferric ion (Fe3+), while the hydrogen peroxide (H2O2) is reduced to water (H2O).

Convert 112°C to Kelvin.

Answers

112°C is 385.15 Kelvin

Answer:

112 °C = 385 K

Explanation:

The relation between Kelvin and Celsius degrees is

0°C = 273.15 K

To convert the temperature from Celsius to Kelvin we must add 273.15:

112 °C + 273.15 = 385.15 K

With the correct significant figures the answer would be 385 K

Research the amount of carbon dioxide generally found in the air and in breath. which has more carbon dioxide? what are some of the other sources of carbon dioxide in air?

Answers

In atmosphere there is 0.04 % of co2 in the air
In breath we breath out about 2 to 3 pounds of  co2 which is greater than the amount of co2 found in air \
The sources of co2 are
respiration 
combustion of organic fuels or compounds

Answer:

1- Carbon dioxide in our breath comes from the carbon in our food.

2- All plants need carbon dioxide to survive.

3- About .04 percent of the atmosphere's air is carbon dioxide and  4.4       percent of our breath is carbon dioxide we breathe out more carbon          dioxide than we breathe in.

4- Some effects might include combustion with other gasses and it could also potentially kill all life.

Explanation:

A covalent bond between two atoms occurs when the atoms

Answers

A covalent bond occurs between two atoms that share or distribute their valence electrons. According to the Bohr model, the electrons that overlap between the 2 atoms are your bonding electrons.

These bonds occur between 2 nonmetals.
Final answer:

Covalent bonds between atoms form when these atoms share one or more pairs of their valence electrons. This is a pathway to stability for the atoms involved. This type of bonding happens in many compounds, such as in a molecule of hydrogen.

Explanation:

A covalent bond between two atoms occurs when these atoms share one or more pairs of their valence electrons. In this type of bonding, both atoms contribute at least one electron to the shared pair. This is a way for both atoms to achieve a stable electron configuration, often completing an outer shell of electrons.

For example, consider the hydrogen molecule, H2. Hydrogen has one valence electron and needs two for stability, so two hydrogen atoms can share their electrons to form a covalent bond, resulting in a stable molecule.

Learn more about Covalent Bonding here:

https://brainly.com/question/33425898

#SPJ2

Which is expected to have the largest dispersion forces? which is expected to have the largest dispersion forces? c12h26 be cl2 c3h8 f2?

Answers

The one I would expect to have the largest dispersion forces would be the largest and heaviest molecule. This is evidenced by the fact that that molecule is a liquid at room temperature while all the others are gases.

C3H8 = This is propane and a gas at room temperature

F2 = Also a gas at room temperature

BeCl2 = This is a solid and forms an extended lattice in the form of Be-Cl-Be bridges therefore dispersion forces are not important

Therefore the answer to this is C12H26 which is a wax and a liquid at room temperature.

Answer:

C12H26

Final answer:

Among the substances listed (C12H26, Be, Cl2, C3H8, F2), the largest dispersion forces are expected in C12H26 due to its larger molecular size and weight. Dispersion forces are temporary shifts in electron density causing attraction between molecules and are much stronger in larger and heavier molecules.  Smaller molecules like Cl₂ and F₂ have weaker dispersion forces.

Explanation:

The substance expected to have the largest dispersion forces from the ones mentioned (C12H26, Be, Cl2, C3H8, F2) is C12H26 due to its large size and molecular weight. Dispersion forces, also known as London dispersion forces, are temporary shifts in electron density in non-polar molecules that result in attraction between molecules. This is typically stronger in larger and heavier molecules. As C12H26 is a larger, heavier, and more complex molecule than the others listed, it has more electrons, hence more shifting of electron density and stronger resultant dispersion forces.

For other compounds like Cl₂ and F₂, they are gases at room temperature, meaning that their dispersion forces are weaker. This is because dispersion forces influence the boiling and melting points of substances. Larger dispersion forces lead to higher melting and boiling points, which is also why C12H26, a component of diesel and other heavy oils, is a liquid at room temperature.

Learn more about Dispersion Forces here:

https://brainly.com/question/31306859

#SPJ11

Helium has a density of 1.79×10^-4 g/mL at standard temperature and pressure. A balloon has a volume of 6.3 liters. Calculate the mass of helium that it would take to fill the balloon. Be sure to follow significant figure rules when calculating the answer.

A. 35,000g
B. 1.1×10^-3 g
C. 2.8×10^-5 g
D. 1.1g

Answers

6,3 L = 6300 mL
..................
1,79×10^-4g -------- 1 mL
Xg --------------------- 6300 mL
X = 0,000179×6300
X = 1,1277g ≈ 1,1g

:•)

Problem page write a balanced half-reaction for the reduction of solid manganese dioxide mno2 to manganese ion mn 2 in acidic aqueous solution. be sure to add physical state symbols where appropriate.

Answers

In a reduction reaction, some electrons are gained by the substance being reduced. The balanced half-reaction to this would be:

MnO2(s)  +  4 H+ (aq)  +  2e ---> Mn^2+ (aq)  +  2 H2O (aq)

It is called balanced reaction since the number of each element in the left side is equal to the number of each element on the right side.

Final answer:

The balanced half-reaction for the reduction of solid manganese dioxide (MnO2) to manganese ion (Mn^2+) in acidic aqueous solution is: 2MnO2 (s) + 4H+ (aq) + 2e- -> Mn^2+ (aq) + 2H2O (l).

Explanation:

The balanced half-reaction for the reduction of solid manganese dioxide (MnO2) to manganese ion (Mn^2+) in acidic aqueous solution is:



2MnO2 (s) + 4H+ (aq) + 2e- → Mn^2+ (aq) + 2H2O (l)



In this reaction, the solid manganese dioxide is reduced to manganese ion by gaining two electrons, and four hydrogen ions are involved in the reaction to balance the charges.

Learn more about Reduction of manganese dioxide to manganese ion here:

https://brainly.com/question/33946374

#SPJ11

Copper is which type of solid? molecular solid ionic solid covalent atomic solid metallic atomic solid

Answers

It's metallic atomic solid as it is a kind of metal .

Copper is a metallic atomic solid , the atoms are arranged in a regular pattern, with the valence electrons being free to move throughout the structure.Thus, the correct option is metallic atomic solid.

Copper is an example of a metal, and metals typically exhibit metallic bonding, where the valence electrons form a "sea" of delocalized electrons, creating strong bonds between the metal atoms. This allows for the high electrical and thermal conductivity that metals are known for.

Metallic solids are compounds that are entirely comprised of metal atoms that are held together by metallic bonds.Metallic bonding is a type of intramolecular force of attraction that occurs between a lattice of positive ions and a "sea" of delocalized electrons.

Thus, the correct option is metallic atomic solid.

Learn more about metallic atomic solid,here:

https://brainly.com/question/28620902

#SPJ6

A car travels at 15 kilometers west in 10 minutes after reaching the destination the car travels back to the starting point again taking 5 minutes what is the average velocity of the car

Answers

The distance there and back is 30 kilometers. The total time is 15 minutes. Divide the distance by the time to get 2 kilometers. The average velocity is 2 kilometers. Hope this helps! ;)

Answer: D 2.0 meters/second

Explanation:

Why is it important to stir the solution in the flask as you add titrant from the buret?

Answers

The main reason for this instruction is to speed up the rate of diffusion. Neutralization reactions are determined by the end point. In theory, an endpoint can be determined from a slope in a graph. However, the slope is very steep, such that a slight change in addition of titrant, it would exceed the endpoint. Therefore, you have to stir the solution so that you can see the immediate reaction with every tiny drop that is added. There might be cases where the color is not significant because it still hasn't diffused in the solution very well.

A 0.465 g sample of an unknown compound occupies 245 mL at 298 K and 1.22 atm. What is the molar mass of the unknown compound?

Answers

Using the Ideal Gas Law
PV= nRT
PV = (m/Mr) RT The molar mass of the unknown compound is : 38.0 g/mol

Mr = mRT / PV =  0.465 g x 0.08206 L * atm * K⁻¹  mol ⁻¹ x 298 K / 1.22 atm x 0.245 L = 38.0 g / mol 

everything else but G / Mol are cancelled out. 

Jane bought some raisins to keep in her purse as a snack what is one reason raisins dont need refrigeration

Answers

Raisins are dried up grapes. The drying process worked on preserving raisins. Most of the water contained in them was removed during the drying process. This dry environment is not suitable for bacteria to breed in and, thus, raisins won't go rancid. 

Answer: The drying process worked to preserve them

Explanation: apex

Which configuration of a phospholipid would you expect to see in the presence of water?

Answers

The configurations that you would expect a phospholipid to see in the presence of water would be double-layered aggregations. The fatty acid tails of the phospholipid would face inside since it is the hydrophobic part, of the molecule. And, the phosphate part would be the one facing outward, interacting with water molecules since it is the hydrophilic part, water-loving. Hydrophobic means it hates water or it repels water molecules while hydrophilic means it attracts water molecule. This configuration is also known as the phospholipid bilayer where two layers of phospholipid molecules are adjecent to each other forming a double layer.

Ammonia nh3 chemically reacts with oxygen gas o2 to produce nitric oxide no and water h2o . what mass of water is produced by the reaction of 8.45g of oxygen gas? round your answer to 3 significant digits.

Answers

1) Balanced chemical reaction

4NH3 + 5O2 ---> 4NO + 6H2O

2) Molar ratios

4 mol NH3 : 5 mol O2 : 4 mol NO : 6 mol H2O

3) Convert 8.45 g of O2 to moles

moles = mass in grams / molar mass = 8.45 g / 32.0 g/mol = 0.264 mol O2

4) Proportion

5 mol O2 / 6 mol H2O = 0.264 mol O2 / x

=> x = 0.264 mol O2 * 6 mol H2O / 5 mol O2 = 0.3168 mol H2O

5) Convert 0.3168 mol H2O in grams

mass = molar mass * number of moles

molar mass H2O = 18.0 g/mol

mass = 18.0 g/mol * 0.3168 mol = 5.7024 g ≈ 5.70 g

Answer: 5.70 g
Final answer:

In the reaction, each mole of O2 produces 1.2 moles of H2O. By converting the mass of O2 in the problem to moles (using O2's molar mass), multiply by 1.2 to find moles of H2O, and then converting moles of H2O to grams (using H2O's molar mass), the problem can be solved.

Explanation:

This question concerns the reaction of ammonia (NH3) with oxygen gas (O2) to produce nitric oxide (NO) and water (H2O). This is an oxidation-reduction reaction. The balanced equation for the reaction is actually 4NH3 (g) + 5O2 (g) -> 4NO (g) + 6H2O (g). Oxygen's molar mass is 32.00 g/mol, the molar mass of water is 18.02 g/mol. Therefore, for every 5 mol of O2, 6 mol of H2O are produced, or every 1 mol of O2 produces 1.2 mol of H2O (6/5). So, you can calculate the number of moles of gas in 8.45 g then multiply by 1.2 to get the number of moles of H2O, and finally multiply this by the molar mass of H2O to find the mass in grams. The final answer can be rounded to 3 significant digits.

Learn more about Chemical Reaction here:

https://brainly.com/question/34137415

#SPJ11

The electron stable state configuration in atoms is best seen in the ______ configuration.

inert gas
full d shell
full f shell
full s shell

Answers

The electron stable state configuration in atoms is best seen in the inert gas configuration.
Inert gas are the most stable since they have their valence electron shell saturated with electrons (the valence shell has the maximum number of electrons it can hold). They need neither donate nor accept electrons.

when the pressure that a gas exerts on a sealed container changes from blank torr to 900 torr the temperature changes from 300 k to 450 k

Answers

It's 600 torr, just use Gay-Lussac's law P1/T1=P2/T2

Answer:

Initial pressure = 600 torr

Explanation:

Given:

Initial pressure, P1 = 900 torr

Initial Temperature, T1 = 300 K

Final temperature, T2 = 450 K

To determine:

Final pressure of  gas, P2

Explanation:

Based on the ideal gas equation

[tex]PV = nRT\\[/tex]

where n = moles of gas

R = gas constant, T = temperature

At constant volume (V), the above equation becomes:

P/T = constant

This is Gay-Lussac's law

[tex]\frac{P1}{T1} =\frac{P2}{T2} \\\\P1=\frac{P2}{T2} *T1=\frac{900\ torr}{450\ K} *300\ K=600\ torr[/tex]

Aluminium chloride dissolved in Water =? When you dissolve aluminium chloride in water, what is the balanced chemical equation? NOTE: Not a chemical reaction, just dissolving.

Answers

Dissolution and dissociation of aluminum chloride:

AlCl₃(s) → Al³⁺(aq) + 3Cl⁻(aq)


The cation of aluminum is hydrolyzed:

Al³⁺ + 2H₂O ⇄ AlOH²⁺ + H₃O⁺
AlOH²⁺ +2H₂O ⇄ Al(OH)₂⁺ + H₃O⁺
Al(OH)₂⁺ + 2H₂O ⇄ Al(OH)₃ + H₃O⁺

Consider KOH and the following information. Hsol = –58 kJ/mol Hhydr of = –336 kJ/mol Hhydr of = –532.7 kJ/mol What is the Hlat rounded to the correct number of significant figures? Use Hsol = –Hlat + Hhydr.
A. –927 kJ/mol
B. –926.7 kJ/mol
C. –811 kJ/mol
D. –810.7 kJ/mol

Answers

The total Hhydr is:

Hhydr = – 336 kJ/mol + – 532.7 kJ/mol

Hhydr = - 868.7 kJ/mol

Therefore using the formula Hsol = –Hlat + Hhydr we can get Hlat.

– 58 kJ/mol = – Hlat + - 868.7 kJ/mol

- Hlat = 810.7 kJ/mol

Hlat = - 810.7 kJ/mol

ANSWER: 

D. –810.7 kJ/mol

Answer:D

Explanation:

Matt made a list of materials that conduct heat and electricity he noted that most materials that conduct heat also conduct electricity Matt concluded that only metals conduct both heat and electricity how would you respond to matt's conclusion

Answers

he was testing metals among other things, which means that both electricity and heat can flow throught most materials
Final answer:

Matt's conclusion that only metals conduct both heat and electricity is partially correct. While most metals do conduct both, there are also non-metal substances, like graphite and ionic solutions, that exhibit these properties.

Explanation:

While Matt's observation that many materials that conduct heat also conduct electricity is correct, his conclusion that only metals conduct both heat and electricity is not completely accurate. In fact, there are also some non-metal materials which can conduct heat and electricity. For example, graphite, a form of carbon and a non-metal, has layers of carbon atoms that are free to move and conduct electricity. Similarly, many ionic solutions can also conduct electricity when they are in the liquid state as their ions are free to move.

Conduction of heat and electricity often happens in materials that have free electrons. Metals are a great example of this, but they're not the only example. So, while it's true that most metals do conduct both heat and electricity, it's important to note that they are not the only materials that can do so.


Learn more about Conduction here:

https://brainly.com/question/35882137

#SPJ2

What is the ph of a solution containing 0.12 mol/l of nh4cl and 0.03 mol/l of naoh (pka of is 9.25)?

Answers

The Henderson-Hasselbalch equation fails to provide accurate pH readings for excessively diluted buffer solutions because it ignores the self-dissociation that occurs in water. The pH of the solution is 8.65.

The Henderson-Hasselbalch equation establishes a connection between an acid's pKa (acid dissociation constant) and pH in aqueous solutions. When the concentration of the acid and its conjugate base, or the base and the corresponding conjugate acid, are known, the pH of a buffer solution can be determined with the use of this equation.

The expression used to calculate pOH is:

pOH = pKb + log  [Conjugate acid]/ [Weak base]

pKa + pKb = 14

pKb = 14 - pKa

pKb = 14 - 9.25

pKb = 4.75

pOH = 4.75 + log 0.12 / 0.03

pOH = 5.35

pH = 14 - pOH

pH = 14 - 5.35

pH = 8.65

To know more about pH, visit;

https://brainly.com/question/27945512

#SPJ12

Radioactive decay occurs when two nuclei are smashed into each other and combine to form a much larger nucleus and release a vast amount of energy.

True
False

Answers

True........................................

What volume of 0.0200 m calcium hydroxide?

Answers

The molarity is the number of moles of solute dissolved in one liter of solvent. It is calculated using the formula M = n/V. To find the volume we have to specify the number of moles dissolved to get the required molarity concentration which is 0.200 m. 

Calcium hydroxide may be used in the process of titration with acids to get a neutral solution and determine the unknown concentration of the acid. In such case we use the following formula;
M1V1 = M2V2
M1 is the molarity of CaOH
V1 is the volume of CaOH
M2 is the molarity of the acid
V2 is the volume of the acid

How many milliliters of a 0.266 m lino3 solution are required to make 150.0 ml of 0.075 m lino3 solution?

Answers

We need an equation that would relate the concentration of the original solution to that of the desired solution. To solve this we use the equation expressed as follows, 

M1V1 = M2V2

where M1 is the concentration of the stock solution, V1 is the volume of the stock solution, M2 is the concentration of the new solution and V2 is its volume.

M1V1 = M2V2

0.266 M x V1 = 0.075 M x 150 mL

V1 = 42.29 mL


Therefore, we need about 42.29 mL of the 0.266 M of lithium nitrate solution to make 150.0 mL of the 0.075 M lithium nitrate solution.

[tex]\boxed{{\text{42}}{\text{.3 mL}}}[/tex] of a 0.266 M [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution is required to make 150 mL of a 0.075 M [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

Further Explanation:

The concentration is the proportion of substance in the mixture. The most commonly used concentration terms are as follows:

1. Molarity (M)

2. Molality (m)

3. Mole fraction (X)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The molarity equation is given by the following expression:

[tex]{{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}} = {{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}[/tex]                      …… (1)

Here,

[tex]{{\text{M}}_{\text{1}}}[/tex] is the molarity of the initial [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{V}}_{_{\text{1}}}}[/tex] is the volume of the initial [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{M}}_{\text{2}}}[/tex] is the molarity of the new [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{V}}_{_{\text{2}}}}[/tex] is the volume of the new [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

Rearrange equation (1) to calculate [tex]{{\text{V}}_{\text{1}}}[/tex].

[tex]{{\text{V}}_{\text{1}}}=\frac{{{{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}}}{{{{\text{M}}_{\text{1}}}}}[/tex]                    …… (2)

The value of [tex]{{\text{M}}_{\text{1}}}[/tex] is 0.266 M.

The value of [tex]{{\text{M}}_{\text{2}}}[/tex] is 0.075 M.

The value of [tex]{{\text{V}}_{_{\text{2}}}}[/tex] is 150 mL.

Substitute these values in equation (2).

[tex]\begin{aligned}{{\text{V}}_{\text{1}}}&=\frac{{\left({{\text{0}}{\text{.075 M}}} \right)\left( {{\text{150 mL}}} \right)}}{{{\text{0}}{\text{.266 M}}}}\\&=42.29{\text{ mL}}\\&\approx 42.{\text{3 mL}}\\\end{aligned}[/tex]

Learn more:

1. What is the concentration of alcohol in terms of molarity? https://brainly.com/question/9013318

2. What is the molarity of the stock solution of luminol? https://brainly.com/question/2814870

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: molarity, LiNO3, 42.3 mL, molarity equation, volume, M1, M2, V1, V2, 150 mL, 0.075 M, 0.266 M, concentration, concentration terms.

Other Questions
A Mateo y Marta ______ duelen los ojos. Keegan and Iris are learning about examining the animal's hair coat. Keegan says the hair coat should be examined for brittleness and alopecia. Iris say the hair coat should be examined for oiliness and stiffness. Who is correct? A 0.465 g sample of an unknown compound occupies 245 mL at 298 K and 1.22 atm. What is the molar mass of the unknown compound? This activity allows the brain to recover What best describes the overall impact of wilhelm roentgen's discovery of x-rays? A cell goes through cellular respiration and produces ATP which it then uses to move a molecule across the cell membrane. How does the energy in the original glucose molecule change during this process? A "Local" train leaves a station and runs at an average rate of 35 mph. An hour and a half later an "Express" train leaves the station and travels at an average rate of 56 mph on a parallel track. How many hours after the Express train starts will the it overtake the Local? The development of early Greek culture occurred over a period of approximately how many years after the end of the Mycenaean Civilization Simplify (9.5)(2)(5). which algebraic expression represents the phase The social media management dashboard that allows marketing managers submit messages to social media on a scheduled basis and also collect and analyze data from social media is called ________. The area of a triangle is 6.75m2. If the base of the triangle is 3 m, what is the height of the triangle? What is the most relevant characteristic of motion What is customer perception and why is it important? QUESTION 10Fill in the blank in the following sentence with the appropriate form of the verb estar below. T ________ en la clase de ingls con Juan, no? A.estamos B.eres C.estoy D.ests The medical word for accumulation of serous fluids in the abdominal cavity is: As much as 90% of the matter in the universe may be unseen dark matter. where is this dark matter? Madison deposited a total of $5,000 between two saving accounts bearing simple interest. One of the accounts has an interest rate of 4% while the other rate is 5%. If the total interest earned after one year is $220, find the amount deposited into each of the accounts. The lengths of three sides of a quadrilateral are shown below: Side 1: 1y2 + 3y 6 Side 2: 4y 7 + 2y2 Side 3: 3y2 8 + 5y The perimeter of the quadrilateral is 8y3 2y2 + 4y 26. Part A: What is the total length of sides 1, 2, and 3 of the quadrilateral? (4 points) Part B: What is the length of the fourth side of the quadrilateral? (4 points) Part C: Do the answers for Part A and Part B show that the polynomials are closed under addition and subtraction? Justify your answer. Someone please help me out!