Given two vectors A--> = 4.20 i^+ 7.20 j^ and B--> = 5.70 i^− 2.40 j^ , find the scalar product of the two vectors A--> and B--> .

Find the angle between these two vectors.

Answers

Answer 1

Answer:

[tex]\vec{A}\times \vec{B}=-51.12\hat{k}[/tex]

[tex]\theta=83.2^{\circ}[/tex]

Explanation:

We are given that

[tex]\vec{A}=4.2\hat{i}+7.2\hat{j}[/tex]

[tex]\vec{B}=5.70\hat{i}-2.40\hat{j}[/tex]

We have to find the scalar product and the  angle between these two vectors

[tex]\vec{A}\times \vec{B}=\begin{vmatrix}i&j&k\\4.2&7.2&0\\5.7&-2.4&0\end{vmatrix}[/tex]

[tex]\vec{A}\times \vec{B}=\hat{k}(-10.08-41.04)=-51.12\hatk}[/tex][tex]\hat{k}[/tex]

Angle between two vectors is given by

[tex]sin\theta=\frac{\mid a\times b\mid}{\mid a\mid \mi b\mid}[/tex]

Where [tex]\theta[/tex] in degrees

[tex]\mid{\vec{A}}\mid=\sqrt{(4.2)^2+(7.2)^2}=8.3[/tex]

Using formula[tex]\mid a\mid=\sqrt{x^2+y^2}[/tex]

Where x= Coefficient of unit vector i

y=Coefficient of unit vector j

[tex]\mid{\vec{B}}\mid=\sqrt{5.7)^2+(-2.4)^2}=6.2[/tex]

[tex]\mid{\vec{A}\times \vec{B}}\mid=\sqrt{(-51.12)^2}=51.12[/tex]

Using the formula

[tex]sin\theta=\frac{51.12}{8.3\times 6.2}=0.993[/tex]

[tex]\theta=sin^{-1}(0.993)=83.2[/tex]degrees

Hence, the angle between given two vectors=[tex]83.2^{\circ}[/tex]

Answer 2
Final answer:

The scalar product of vectors A = 4.20 i + 7.20 j and B = 5.70 i - 2.40 j is 6.66. To find the angle between A and B, calculate the magnitudes of each vector and use the cosine formula involving the scalar product and magnitudes.

Explanation:

Finding Scalar Product and Angle Between Two Vectors

To find the scalar product (also known as the dot product) of two vectors A and B, you multiply the corresponding components of the vectors and add them up. For vectors A = 4.20 i + 7.20 j and B = 5.70 i - 2.40 j, the scalar product A · B is:

Scalar Product = (Ax * Bx) + (Ay * By) = (4.20 * 5.70) + (7.20 * -2.40) = 23.94 - 17.28 = 6.66.

To find the angle between the two vectors, we use the formula that involves the scalar product and the magnitudes of the two vectors:

cos(θ) = (A · B) / (|A| * |B|).

First, calculate the magnitudes of A and B:

|A| = √(4.202 + 7.202)|B| = √(5.702 + -2.402)

Then, calculate cos(θ) and finally θ using the arccos function on a calculator. Plug in the scalar product and the magnitudes into the formula to get the angle.


Related Questions

where in your environment can you observe some of the general properties of wave motion

Answers

Answer:

Air, water, rock and soil

Explanation:

The environment where the general properties of wave motion can be observed is the wave medium which is any substance or particle that carries the wave, or through which the wave travels.

ocean waves are carried by watersound waves are carried by airthe seismic waves of an earthquake are carried by rock and soil

In ideal flow, a liquid of density 850 kg/m3 moves from a horizontal tube of radius 1.00 cm into a second horizontal tube of radius 0.500 cm at the same elevation as the first tube. The pressure differs by DP between the liquid in one tube and the liquid in the second tube. (a) Find the volume flow rate as a function of DP. Evaluate the volume flow rate for (b) DP 5 6.00 kPa and (c) DP 5 12.0 kPa. 49. The Venturi tube discussed

Answers

Final answer:

To find the volume flow rate in ideal flow between two horizontal tubes, use the equation A1v1 = A2v2, where A1 and A2 are the cross-sectional areas of the tubes and v1 and v2 are the velocities of the liquid. To find the volume flow rate as a function of DP, substitute the values of A1 and v1 into the equation Q = A1v1. For specific values of DP, substitute the values of A1 and v1 into the equation Q = A1v1.

Explanation:

For liquids, the volume flow rate can be determined using the equation A1v1 = A2v2. In this equation, A1 and A2 are the cross-sectional areas of the first and second tubes, and v1 and v2 are the velocities of the liquid flowing through the tubes. Since the first tube is larger in radius, it has a larger cross-sectional area. Therefore, the velocity of the liquid in the first tube is smaller than in the second tube. The volume flow rate can be expressed as:

Q = A1v1

where Q is the volume flow rate and is equal to the product of the cross-sectional area and velocity of the liquid in the first tube.

(a) The volume flow rate as a function of DP can be found by substituting the values of A1 and v1 into the equation Q = A1v1. Since the radii of the tubes are given, the cross-sectional areas can be calculated using the formula A = πr2.

(b) To evaluate the volume flow rate for DP = 6.00 kPa, substitute the values of A1 and v1 into the equation Q = A1v1.

(c) To evaluate the volume flow rate for DP = 12.0 kPa, substitute the values of A1 and v1 into the equation Q = A1v1.

Learn more about liquid here:

https://brainly.com/question/34457794

#SPJ2

The energy required to dissociate KF into neutral atoms is 498 kJ/mol. Given that the first ionization energy for K is 418 kJ/mol, calculate the electron affinity (in kJ/mol) for F. Show your work for all calculations.

Answers

Answer: Electron affinity of F equals

275.8kJ/mol

Explanation: Electron affinity is the energy change when an atom gains an electron.

Let's first calculate the energy required -E(r)to dissociate KF into ions not neutral atom which is given.

E(r) = {z1*z2*e²}/{4π*permitivity of space*r}

z1 is -1 for flourine

z2 is +1 for potassium

e is magnitude of charge 1.602*EXP{-9}C

r is ionic bond length of KF(is a constant for KF 0.217nm)

permitivity of free space 8.854*EXP{-12}.

Now let's solve

E(r)= {(-1)*(1)*(1.602*EXP{-9})²} /

{4*3.142*8.854*EXP(-12)*0.217*EXP(-9)

E(r) = - 1.063*EXP{-18}J

But the energy is released out that is exothermic so we find - E(r)

Which is +1.603*EXP{-18}J

Let's now convert this into kJ/mol

By multiplying by Avogadro constant 6.022*EXP(23) for the mole and diving by 1000 for the kilo

So we have,

1.603*EXP(-18) *6.022*EXP(23)/1000

-E(r) = 640.2kJ/mol.

Now let's obtain our electron affinity for F

We use this equation

Energy of dissociation (nuetral atom)= electron affinity of F +(-E(r)) + ionization energy of K.

498kJ/mol

=e affinity of F + 640.2kJ/mol

+(-418kJ/mol)

(Notice the negative sign in ionization energy for K. since it ionize by losing an electron)

Making electron affinity of F subject of formula we have

Electron affinity (F)=498+418-640.2

=275.8kJ/mol.

Ricardo, of mass 80 kg, and Carmelita, who is lighter, are enjoying Lake Merced at dusk in a 30 kg canoe. When the canoe is at rest in the placid water, they exchange seats, which are 3.0 m apart and symmetrically located with respect to the canoe's center. If the canoe moves 40 cm horizontally relative to a pier post, what is Carmelita's mass?

Answers

Answer:

m=57.65 kg

Explanation:

Given Data

Ricardo mass m₁=80 kg

Canoe mass m₂=30 kg

Canoe Length L= 3 m

Canoe moves x=40 cm

When Canoe was at rest the net total torque is zero.

Let the center of mass is at x distance from the canoe center and it will be towards the Ricardo cause. So the toque around the center of mass is given as

[tex]m_{1}(L/2-x)=m_{2}x+m_{2}(L/2-x)[/tex]

We have to find m₂.To find the value of m₂ first we need figure out the value of.As they changed their positions the center of mass moved to other side by distance 2x.

so

2x=40

x=40/2

x=20 cm

Substitute in the above equation we get

[tex]m_{x}=\frac{m_{1}(L/2-x)-m_{2}x }{L/2+x}\\m_{x}=\frac{80(\frac{3}{2}-0.2 )-30*0.2}{3/2+0.2}\\m_{x}=57.65 kg[/tex]

A liquid has a specific gravity of 1.1 at room temperature. What is its (a) Density at room temperature in kg/m3 (b) Specific volume at room temperature in ft3/lbm? (c) If the liquid is placed in a 2 L bottle that has a mass of 157 g, how much will the full bottle weigh?

Answers

To solve this problem we will proceed to find the density from the specific gravity. Later we will find the specific volume as the inverse of the density. Finally with the data obtained we will find the total weight in the bottle.

a) [tex]\rho = \gamma * 1000[/tex]

Here,

[tex]\rho[/tex] = Density

[tex]\gamma[/tex] = Specific gravity

[tex]\rho = 1.1 * 1000[/tex]

[tex]\rho = 1100 kg/m3[/tex]

b)

[tex]\text{Specific volume}= \frac{1}{\rho}[/tex]

[tex]\upsilon = \frac{1}{1100}[/tex]

[tex]\upsilon = 0.00090909 m^3/kg[/tex]

From the equivalences of meters to feet and kilograms to pounds, we have to

[tex]1m = 3.280839895 ft[/tex]

[tex]1 kg = 2.2046 lbm[/tex]

Converting the previous value to British units:

[tex]\upsilon = 0.00090909 m^3/kg (\frac{3.280839895^3 ft^3}{1m^3} )(\frac{1kg}{2.2046 lbm})[/tex]

[tex]\upsilon= 0.0145757 ft^3 / lbm[/tex]

c)

[tex]V = 2*10^{-3} m^3[/tex]

Mass of the liquid in bottle is

[tex]m = V\rho[/tex]

[tex]m= (2*10^{-3} m^3 )(1100kg/m^3)[/tex]

[tex]m = 2.2kg = 2200g[/tex]

Therefore the Total weight

[tex]W= 157 + 2200 = 2357 g[/tex]

The electric field everywhere on the surface of a thin, spherical shell of radius 0.770 m is of magnitude 860 N/C and points radially toward the center of the sphere.

(a) What is the net charge within the sphere's surface?
(b) What can you conclude about the nature and distribution of the charge inside the spherical shell?

Answers

Answer:

(a) [tex]Q = 7.28\times 10^{14}[/tex]

(b) The charge inside the shell is placed at the center of the sphere and negatively charged.

Explanation:

Gauss’ Law can be used to determine the system.

[tex] \int{\vec{E}} \, d\vec{a} = \frac{Q_{enc}}{\epsilon_0}\\

E4\pi r^2 = \frac{Q_{enc}}{\epsilon_0}\\

(860)4\pi(0.77)^2 = \frac{Q_{enc}}{8.8\times 10^{-12}}\\

Q_enc = 7.28\times 10^{14}[/tex]

This is the net charge inside the sphere which causes the Electric field at the surface of the shell. Since the E-field is constant over the shell, then this charge is at the center and negatively charged because the E-field is radially inward.

The negative charge at the center attracts the same amount of positive charge at the surface of the shell.

A lead ball is dropped into a lake from a diving board 6.10 mm above the water. After entering the water, it sinks to the bottom with a constant velocity equal to the velocity with which it hit the water. The ball reaches the bottom 4.50 ss after it is released. How deep is the lake?

Answers

Answer:

D=1.54489 m

Explanation:

Given data

S=6.10 mm= 0.0061 m

To find

Depth of lake

Solution

To find the depth of lake first we need to find the initial time ball takes to hit the water.To get the value of time use below equation

[tex]S=v_{1}t+(1/2)gt^{2} \\ 0.0061m=(0m/s)t+(1/2)(9.8m/s^{2} )t^{2}\\ t^{2}=\frac{0.0061m}{4.9m/s^{2} }\\ t=\sqrt{1.245*10^{-3} }\\ t=0.035s[/tex]

So ball takes 0.035sec to hit the water

As we have found time Now we need to find the final velocity of ball when it enters the lake.So final velocity is given as

[tex]v_{f}=v_{i}+gt\\v_{f}=0+(9.8m/s^{2} )(0.035s)\\ v_{f}=0.346m/s[/tex]

Since there are (4.50-0.035) seconds left for (ball) it to reach the bottom of the lake

So the depth of lake given as:

[tex]D=|vt|\\D=|0.346m/s*4.465s|\\D=1.54489m[/tex]

Answer: d = 1.54m

The depth of the lake is 1.54m

Explanation:

The final velocity of the ball just before it hit the water can be derived using the equation below;

v^2 = u^2 + 2as ......1

Where ;

v is the final velocity

u is the initial velocity

a is the acceleration

s is the distance travelled.

Since the initial velocity is zero, and the acceleration is due to gravity, the equation becomes:

v^2 = 2gs

v = √2gs ......2

g = 9.8m/s^2

s = 6.10mm = 0.0061m

substituting into equation 2

v = √(2 × 9.8× 0.0061)

v = 0.346m/s

The time taken for the ball to hit water from the time of release can be given as:

d = ut + 0.5gt^2

Since u = 0

d = 0.5gt^2

Making t the subject of formula.

t = √(2d/g)

t = √( 2×0.0061/9.8)

t = 0.035s

The time taken for the ball to reach the bottom of the lake from the when it hits water is:

t2 = 4.5s - 0.035s = 4.465s

And since the ball falls for 4.465s to the bottom of the lake at the same velocity as v = 0.346m/s. The depth of the lake can be calculated as;

depth d = velocity × time = 0.346m/s × 4.465s

d = 1.54m

The depth of the lake is 1.54m

A 3.0 cm × 3.0 cm parallel-plate capacitor has a 3.0 mm spacing. The electric field strength inside the capacitor is 1.2×105 V/m . What is the potential difference across the capacitor? How much charge is on each plate?

Answers

To solve this problem it is necessary to apply the concepts related to the voltage depending on the electric field and the distance, as well as the load depending on the capacitance and the voltage. For the first part we will use the first mentioned relationship, for the second part, we will not only define the load as the capacitance by the voltage but also place it in terms of the Area, the permittivity in free space, the voltage and the distance.

PART A ) Voltage in function of electric field and distance can be defined as,

[tex]V = Ed[/tex]

Our values are,

[tex]E = 1.2*10^5 V/m[/tex]

[tex]d = 3.0mm = 3*10^{-3}[/tex]

Replacing,

[tex]V = (1.2*10^5)(3*10^{-3})[/tex]

[tex]V = 360v[/tex]

Therefore the potential difference across the capacitor is 360V

PART B) The charge can be defined as,

[tex]Q = CV = \frac{\epsilon AV}{d}[/tex]

Here,

[tex]\epsilon = 8.85*10^{-12} F/m[/tex], Permittivity of free space

[tex]A = s^2[/tex], area of each capacitor plate

s = Length of capacitor plate

Replacing,

[tex]Q = \frac{\epsilon AV}{d}[/tex]

[tex]Q = \frac{(8.85*10^{-12})(0.03)^2(240)}{2.0*10^{-8}m}[/tex]

[tex]Q = 9.558*10^{-10}C[/tex]

Therefore the charge on each plate is [tex]9.558*10^{-10}C[/tex]

The potential difference across the parallel-plate capacitor is 360 V. The charge on each plate of the capacitor is approximately 0.95 x 10^-8 C.

The potential difference across a parallel-plate capacitor is calculated using the formula V = Ed, where E is the electric field strength and d is the distance (or spacing) between the plates. As given, E is 1.2 x 10^5 V/m, and d is 3.0 mm (or 3.0 x 10^-3 m). Therefore, the potential difference V across the plates is given by V = 1.2 x 10^5 V/m * 3.0 x 10^-3 m = 360 V.

The amount of charge Q on each plate of the capacitor can be found using the formula Q = εEA, where ε is the permittivity of free space (ε = 8.85 x 10^-12 F/m), E is the electric field strength, and A is the area of the plate. Substituting the values given, we have A = 3.0 cm * 3.0 cm = 9 cm^2 = 9 x 10^-4 m^2, E = 1.2 x 10^5 V/m, and ε = 8.85 x 10^-12 F/m. Therefore, Q = εEA = 8.85 x 10^-12 F/m * 1.2 x 10^5 V/m * 9 x 10^-4 m^2 ≈ 0.95 x 10^-8 C.

Learn more about Parallel-Plate Capacitor here:

https://brainly.com/question/30312803

#SPJ6

When two point charges are a distance d part, the electric force that each one feels from the other has magnitude F. In order to make this force twice as strong, the distance would have to be changed to
A) √2d
B) d/√2
C) d/4
D) 2d
E) d/2

Answers

Answer:b

Explanation:

Given

Force of attraction is F when charges are d distance apart.

Electrostatic force is given by

[tex]F=\frac{kq_1q_2}{d^2}---1[/tex]

where k=constant

[tex]q_1[/tex] and [tex]q_2[/tex] are charges

d=distance between them

In order to double the force i.e. 2F

[tex]2F=\frac{kq_1q_2}{d'^2}----2[/tex]

divide 1 and 2 we get

[tex]\frac{F}{2F}=\frac{d'^2}{d^2}[/tex]

[tex]d'=\frac{d}{\sqrt{2}}[/tex]

A point charge Q is located a short distance from a point charge 3Q, and no other charges are present. If the electrical force on Q is F, what is the electrical force on 3Q?a. 3Fb. √3Fc. F/√3d. Fe. F/3

Answers

Answer:

d) F

Explanation:

According to columb's law:

"The magnitude of electrostatic force between two charges is directly proportional to the product of magnitude of two charges and inversly proportional to separation between them."

If q₁ and q₂ are magnitude of two charges, d is distance between them and k is dielectric constant, then force F is given by

                                               

                                              [tex]F=\frac{kq_{1}q_{2}}{d^2}[/tex]

According to this force exerted on point charge Q is same as that of 3Q, so force point 3Q charge experience is also F

Two vertical springs have identical spring constants, but one has a ball of mass m hanging from it and the other has a ball of mass 2m hanging from it.Part A If the energies of the two systems are the same, what is the ratio of the oscillation amplitudes?

Answers

To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,

The energy of the system having mass m is,

[tex]E_m = \frac{1}{2} m\omega_1^2A_1^2[/tex]

The energy of the system having mass 2m is,

[tex]E_{2m} = \frac{1}{2} (2m)\omega_1^2A_1^2[/tex]

For the two expressions mentioned above remember that the variables mean

m = mass

[tex]\omega =[/tex]Angular velocity

A = Amplitude

The energies of the two system are same then,

[tex]E_m = E_{2m}[/tex]

[tex]\frac{1}{2} m\omega_1^2A_1^2=\frac{1}{2} (2m)\omega_1^2A_1^2[/tex]

[tex]\frac{A_1^2}{A_2^2} = \frac{2\omega_2^2}{\omega_1^2}[/tex]

Remember that

[tex]k = m\omega^2 \rightarrow \omega^2 = k/m[/tex]

Replacing this value we have then

[tex]\frac{A_1}{A_2} = \sqrt{\frac{2(k/m_2)}{(k/m_1)^2}}[/tex]

[tex]\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m_1}{m_1}}[/tex]

But the value of the mass was previously given, then

[tex]\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m}{2m}}[/tex]

[tex]\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{1}{2}}[/tex]

[tex]\frac{A_1}{A_2} = 1[/tex]

Therefore the ratio of the oscillation amplitudes it is the same.

An oscillator creates periodic waves on two strings made ofthe same material. The tension is the same in both strings.If the strings have different thicknesses,which of the following parameters, if any, will be different in thetwo strings?Check all that apply.a. wave frequencyb. wave speedc. wavelengthd. none of the above

Answers

The wave speed and wavelength will differ across strings of different thicknesses held at the same tension; the wave frequency remains the same.

When two strings of different thicknesses are made of the same material and held at the same tension, the wave speed and wavelength will differ, whereas the wave frequency will remain the same. This is because the speed of a wave on a string is determined by the tension (T) and the linear mass density (μ), where v = (T/μ)¹/2; as the tension is constant and the material is the same, it is the difference in thickness (hence, different densities) that causes a variance in wave speed. Since wave frequency (f) is related to the speed (v) and wavelength (λ) by the equation v = fλ, and the oscillator creates waves at a fixed frequency, a change in wave speed inherently impacts the wavelength.

You are given vectors Aâ = 4.8 i^â 7.0 j^ and Bâ = - 4.0 i^+ 7.3 j^. A third vector Câ lies in the xy-plane. Vector Câ is perpendicular to vector Aâ and the scalar product of Câ with Bâ is 14.0. Find the X and Y components of vector C

Answers

Answer:

Vector C = -1.56i^ +1.07j^

This question requires that we use the properties of the scalar product of two vectors to find the required x and y component.

The dot product of two perpendicular vectors is equal to and the product of two vectors that are not parallel is equal to a nonzero value.

These are the properties that have been used in solving this problem alongside solving the simultaneous questions generator.

Explanation:

The full solution can be found in the attachment below.

Thank you for reading and I hope this post is helpful to you.

What is the magnitude of the electric force of attraction between an iron nucleus (q=+26e)(q=+26e) and its innermost electron if the distance between them is 1.5×10−12m1.5×10−12m?

Answers

The magnitude of the electric force of attraction between the iron nucleus and its innermost electron is approximately 2.645 × 10^-3 Newtons.

To calculate the magnitude of the electric force of attraction between an iron nucleus and its innermost electron, we can use Coulomb's law:

Given:

Charge of the iron nucleus, q1 = +26e

Charge of the electron, q2 = -e (where e is the elementary charge, 1.6 × 10^-19 C)

Distance between them, r = 1.5 × 10^-12 m

Convert the charge of the nucleus from elementary charges to coulombs:

q1 = +26e × 1.6 × 10^-19 C/e = +4.16 × 10^-18 C

Calculate the electric force using Coulomb's law:

F = (8.9875 × 10^9 N m^2/C^2) × |(+4.16 × 10^-18 C) × (-1.6 × 10^-19 C)| / (1.5 × 10^-12 m)^2

F ≈ (8.9875 × 10^9) × | -6.656 × 10^-37 | / (2.25 × 10^-24)

F ≈ (8.9875 × 10^9) × 2.947 × 10^-13

F ≈ 2.645 × 10^-3 N

So, the magnitude of the electric force of attraction between the iron nucleus and its innermost electron is approximately 2.645 × 10^-3 Newtons.

How far from the nucleus in angstroms (1 angstrom = 1 × 10–10 m) is the electron in a hydrogen atom if it has an energy of –8.72 × 10–20 J?

Answers

Bohr's model of atom postulated that the electrons revolves around the nucleus only in those orbits which have fixed energy and do not lose energy while revolving in them.

According to Bohr's model, the energy at infinite distance is taken to be zero and as it approaches the atom, it starts becoming more negative.

The [tex]n^{th}[/tex] shell of electrons is calculated by

[tex]n^2 = \frac{kZ^2}{E_n}[/tex]

Here

E_n = Energy at [tex]n^{th}[/tex] level

k = Constant

n = Number of shell

Z = Atomic number of the element

Replacing we have that

[tex]n^2 = \frac{-(2.179*10^{-18}J)(1)^2}{-8.72*10^{-20}J}[/tex]

[tex]n = 24.98[/tex]

[tex]n \approx 25[/tex]

Thus

[tex]n = \pm 5[/tex]

Since number of shell cannot be negative we have that n = 5

Now the distance of electron from nucleus is given according to relation

[tex]r = (0.529)(n^2)[/tex]

[tex]r = (0.529)(5^2)[/tex]

[tex]r = 13.225 \AA[/tex]

Therefore the distance of electron from nucleus is 13.225A

Final answer:

The electron in a hydrogen atom is approximately 2.116 angstroms away from the nucleus.

Explanation:

To determine the distance of an electron from the nucleus in a hydrogen atom, we can use the equation for the energy of an electron in a hydrogen atom: E = -13.6eV / n^2, where n is the principal quantum number. We can convert the energy from joules to electron volts (eV) by using the conversion factor 1eV = 1.6x10^-19J. Substituting the given energy, we have:

-8.72x10^-20J = -13.6eV / n^2.

By rearranging the equation and solving for n, we find that n≈2. Thus, the electron is in the second energy level. The distance from the nucleus in angstroms (Å) can be calculated using the formula r = 0.529n^2Å, where r is the distance from the nucleus. Substituting n = 2, we get:

r = 0.529 x 2^2 = 2.116Å.

Therefore, the electron is approximately 2.116 angstroms away from the nucleus.

Learn more about distance of electron from nucleus here:

https://brainly.com/question/35571736

#SPJ3

75) A river 100 m wide flows 1 m/s due south. A boat that travels 1 m/s relative to the water is pointed due east as it crosses from the west bank. Relative to its starting point, the boat travels

A) 141 m.
B) 100 m.
C) 200 m.
D) more than 200 m.
E) nowhere

Answers

Answer: A) 141 m

Explanation:

Given that the boat travels at a speed of 1m/s due east in a river that flows 1m/s due south.

Let north represent positive y axis and east represent positive x axis.

Then we can resolve the resultant velocity of the boat to vector form.

Vr = i - j ( 1 m/s on x axis and -1m/s on y axis)

The time required to travel 100m from west to east at a speed of 1m/s is;

Time t = distance/speed = 100m/1m/s = 100s

Since the boat will use 100s to cross the river, We can now determine the resultant distance after 100s:

Distance = velocity × time = (i - j) × 100 = 100i - 100j

Distance = 100i - 100j (in vector form)

Magnitude of the Resultant distance can be given as:

dr = √(dx^2 + dy^2)

dr = √(100^2 + 100^2)

dr = √(20000)

dr = 141.42m

dr = 141m

Final answer:

A) The boat's overall displacement relative to its starting point is 141 m.

Explanation:

To solve this problem, we can break it down into two components: the magnitudes of the boat's eastward displacement and southward displacement. The time it takes for the boat to cross the river can be calculated using the width of the river and the boat's eastward speed. The distance the boat drifts downstream during this time can be calculated using the river's southward speed and the time taken. By combining these two displacements, we can determine the boat's overall displacement relative to its starting point.

The eastward displacement of the boat can be found using the formula: eastward displacement = eastward speed x time.

Plugging in the given values, we get: eastward displacement = 1 m/s x (100 m / 1 m/s) = 100 m.

The southward displacement of the boat can be found using the formula: southward displacement = southward speed x time.

Plugging in the given values, we get: southward displacement = 1 m/s x (100 m / 1 m/s) = 100 m.

Therefore, the boat's overall displacement relative to its starting point, which is the combination of the eastward and southward displacements, is equal to the square root of (eastward displacement squared + southward displacement squared).

Plugging in the calculated values, we get overall displacement = sqrt((100 m)^2 + (100 m)^2) = sqrt(2) x 100 m = 141 m.

Learn more about Boat displacement here:

https://brainly.com/question/36032146

#SPJ3

A guitar string is 90 cm long and has a mass of 3.7 g . The distance from the bridge to the support post is L=62cm, and the string is under a tension of 500 N . What are the frequencies of the fundamental and first two overtones?

Answers

To solve this problem we will apply the concept of frequency in a string from the nodes, the tension, the linear density and the length of the string, that is,

[tex]f = \frac{n}{2L}(\sqrt{\frac{T}{\mu}})[/tex]

Here

n = Number of node

T = Tension

[tex]\mu[/tex] = Linear density

L = Length

Replacing the values in the frequency and value of n is one for fundamental overtone

[tex]f = \frac{n}{2L}(\sqrt{\frac{T}{\mu}})[/tex]

[tex]f = \frac{1}{2(62*10^{-2})}(\sqrt{\frac{500}{(\frac{3.7*10^{-3}}{90*10^{-2}})}})[/tex]

[tex]\mathbf{f = 281.2Hz}[/tex]

Similarly plug in 2 for n for first overtone and determine the value of frequency

[tex]f = \frac{n}{2L}(\sqrt{\frac{T}{\mu}})[/tex]

[tex]f = \frac{2}{2(62*10^{-2})}(\sqrt{\frac{500}{(\frac{3.7*10^{-3}}{90*10^{-2}})}})[/tex]

[tex]\mathbf{f = 562.4Hz}[/tex]

Similarly plug in 3 for n for first overtone and determine the value of frequency

[tex]f = \frac{n}{2L}(\sqrt{\frac{T}{\mu}})[/tex]

[tex]f = \frac{3}{2(62*10^{-2})}\bigg (\sqrt{\frac{500}{(\frac{3.7*10^{-3}}{90*10^{-2}})}} \bigg)[/tex]

[tex]\mathbf{f= 843.7Hz}[/tex]

A large centrifuge is used to expose aspiring astronauts to accelerations similar to those experienced in rocket launches and atmospheric reentries. At what angular velocity is the centripetal acceleration 10 g if the rider is 15.0 m from the center of rotation

Answers

Answer:

ω = 2.55 rad/sec

Explanation:

Assuming no other external forces acting in the horizontal plane, the only force keeping the  rider in a circular path of a radius equal to his distance to the center of rotation, is the centripetal force.

According to Newton's 2nd law, in the horizontal direction, we have:

F = Fc = m*a = m*ω²*r

We know that a = ac = 10*g = 98.0 m/s², and that r = 15.0 m.

Replacing these values in (1), and solving for ω, we get:

ω = √98.0m/s²/ 15.0 m = 2.55 rad/sec

The centrifugal force in a rocket.

The centrifugal force is the force that is related to the outwards or away from the body. The larger force is used to expose the aspiring astronomers to accelerations that are the same as those experienced by the rockets that are launched and the air reentries.

Thus the answer is  ω = 2.55 rad/sec

The centrifugal force is used to measure the acceleration of the astronauts when they are launched in the air or atmosphere. The angular velocity of the centripetal force that accelerates to 10g if the rider is 15.0 meters from the center.Taking no external forces acting on the plane,As per the Newton's 2nd law, the formulae.F= Fc = m*a = m*ω²*r know that a = ac = 10*g = 98.0 m/s², and that r = 15.0 m. On replacing these values in (1), and solving for ω, we get: ω equal to 2.55 rad/sec.

Learn more about the centrifuge is used.

brainly.com/question/26431449.

For aerodynamic reasons, nearly all modern aircraft feature at leastone large vertical stabilizer. The B-2 "stealth" bomber pictured to theright, however, has no vertical fins at all. Why not?

Answers

Answer:

Answer:

The reason why the B-2 "stealth" bomber has no vertical fins (or stabilizers) at all, is because by design, the vertical fins are not required to provide stability; the stability for yaw movement is provided through a computer that controls the B-2 stealth bomber; hence the B-2 stealth bomber does not need a vertical stabilizer in order to fly.

A horizontal plank of mass m and length L is pivoted at one end. The plank’s other end is supported
by a spring of force constant k. The plank is displaced by a
small angle

from its horizontal equilibrium position and
released. (a) Show that it moves with simple harmonic motion
with an angular frequency

= 3k/m . (b) Evaluate the
frequency if the mass is 5.00 kg and the spring has a force
constant of 100 N/m

Answers

Final answer:

The horizontal plank on a pivot supported by a spring exhibits simple harmonic motion with angular frequency ω = √(3k/m). When the mass is 5.00 kg and the spring constant is 100 N/m, the frequency is approximately 1.95 Hz.

Explanation:

A horizontal plank of mass m and length L is pivoted at one end and supported by a spring of force constant k at the other. This setup is displaced by a small angle θ from its horizontal equilibrium position and released.

Part A: Derivation of Simple Harmonic Motion

To show the plank moves with simple harmonic motion (SHM) and to find the angular frequency ω, we analyze the forces acting on the plank when displaced. The restoring force F exerted by the spring is F = -kx, where x is the linear displacement of the spring. For small angles, θ, x ≈ Lθ. Thus, F ≈ -kLθ. Applying Newton's second law for rotational motion, τ = Iα, where τ is the torque, I is the moment of inertia of the plank, and α is the angular acceleration. The torque caused by the spring is τ = -kL²θ, and the moment of inertia of the plank about the pivot is I = (1/3)mL². From τ = Iα, we get α = -3k/mθ, indicating SHM with an angular frequency ω = √(3k/m).

Part B: Calculating the Frequency

Given m = 5.00 kg and k = 100 N/m, ω = √(3k/m) = √(3*100/5) = √60. Hence, the frequency f is f = ω/(2π) = √60/(2π) ≈ 1.95 Hz.

Suppose the entire population of the world gathers in ONE spot and everyone jumps at the sound of a prearranged signal. While everyone is in the air, does the Earth gain momentum in the opposite direction?a) No, the inertial mass of Earth is so large that the planet's change in motion is imperceptibleb) Yes, however the change in momentum of Earth is much less than that of all the jumping people because of Earth's large inertial massc) Yes, Earth recoils like that of a rifle firing a bullet with a change in momentum equal to and opposite of peopled) It depends

Answers

Final answer:

Yes, the Earth does gain momentum in the opposite direction due to the conservation of momentum principle when everyone jumps, but the effect is negligible given Earth's massive inertial mass. So the correct option is b.

Explanation:

The question posed is whether the Earth gains momentum in the opposite direction when the entire population of the world jumps and everyone is in the air. According to the conservation of momentum, the answer is yes, but the change in the Earth's momentum is incredibly small to the point of being imperceptible. This is because the inertial mass of Earth is so large compared to the combined mass of all the people that the result of this collective jump would be negligible when it comes to the Earth's momentum.

If we consider a closed system that includes both the Earth and the people jumping, then the total change of momentum for the system must be zero. When people jump, they exert a force on the Earth, and Earth exerts an equal and opposite force on them—this is Newton's third law. However, because of the Earth's substantially greater mass, it experiences an inconsequentially small acceleration in response to this force. While the Earth does indeed recoil much like when a force is applied through a goalpost from a football player hitting it, the Earth's recoil is immeasurably small.

Light from a helium-neon laser (λ=633nm) passes through a circular aperture and is observed on a screen 4.0 m behind the aperture. The width of the central maximum is 2.5 cm .What is the diameter (in mm) of the hole?

Answers

Answer:

d = 0.247 mm

Explanation:

given,

λ = 633 nm

distance from the hole to the screen = L = 4 m

width of the central maximum = 2.5 cm

                                             2 y = 0.025 m

                                               y = 0.0125 m

For circular aperture

  [tex]sin \theta = 1.22\dfrac{\lambda}{d}[/tex]

using small angle approximation

  [tex]\theta = \dfrac{y}{D}[/tex]

now,

   [tex]\dfrac{y}{D} = 1.22\dfrac{\lambda}{d}[/tex]

   [tex]y = 1.22\dfrac{\lambda\ D}{d}[/tex]

   [tex]d = 1.22\dfrac{\lambda\ D}{y}[/tex]

   [tex]d = 1.22\dfrac{633\times 10^{-9}\times 4}{0.0125}[/tex]

         d =0.247 x 10⁻³ m

         d = 0.247 mm

the diameter of the hole is equal to 0.247 mm

Final answer:

The diameter of the hole is approximately 0.0201 mm.

Explanation:

The width of the central maximum in a diffraction pattern can be determined using the formula:

w = (2 * λ * D) / x

Where w is the width of the central maximum, λ is the wavelength of the light, D is the distance between the aperture and the screen, and x is the diameter of the hole. Rearranging the formula, we can solve for x:

x = (2 * λ * D) / w

Plugging in the given values, we get:

x = (2 * 633 * 10^-9 * 4.0) / 0.025

x ≈ 0.0201 mm

An oscillator creates periodic waves on a stretched string.
If the period of the oscillator doubles, what happens to the wavelength and wave speed?

a. The wavelength doubles but the wave speed is unchanged.
b. The wavelength is halved but the wave speed is unchanged.
c. The wavelength is unchanged but the wave speed doubles.

Answers

Answer:

A. The wavelength doubles but the wave speed is unchanged

Explanation:

The relationship between the period and wavelength is direct. Doubling the period of the oscillator will correspondingly double the wavelength but the wave speed is unaffected

An oscillator creates periodic waves on a stretched string. If the period of the oscillator doubles, then the wavelength doubles but the wave speed is unchanged. So option A is correct here.

When the period of the oscillator doubles, it means that the time it takes for one complete oscillation or cycle of the wave doubles. The period of a wave is inversely proportional to its frequency. If the period doubles, the frequency is halved. The wavelength of a wave is the distance between two consecutive crests or troughs. The wavelength of a wave is inversely proportional to its frequency. When the frequency is halved, the wavelength doubles to maintain the relationship.

Learn more about periodic waves here.

https://brainly.com/question/14530620

#SPJ6

The position of a particle along a straight-line path is defined by s=(t3−6t2−15t+7) ft, wheret is in seconds.A. Determine the total distance traveled when t = 8.3 s .B. What are the particle's average velocity at the time given in part A?C. What are the particle's average speed at the time given in part A?D. What are the particle's instantaneous velocity at the time given in part A?E. What are the particle's acceleration at the time given in part A?

Answers

Answer:

A) The total distance traveled when t = 8.3 s is 234 ft.

B) The average velocity of the particle is 4.1 ft/s.

C) The average speed at t = 8.3 s is 28 ft/s.

D) The instantaneous velocity at t = 8.3 s is 92 ft/s.

E) The acceleration of the particle at t = 8.3 s is 37.8 ft/s²

Explanation:

Hi there!

A) The position of the particle at a time "t", in feet, is given by the function "s":

s(t) = t³ - 6t² - 15t + 7

First, let´s find at which time the particle changes direction. The sign of the instantaneous velocity indicates the direction of the particle. We will consider the right direction as positive. The origin of the frame of reference is located at s = 0 and t = 0 so that the particle at t = 0 is located 7 ft to the right of the origin.

The instaneous velocity (v(t)) of the particle is the first derivative of s(t):

v(t) = ds/dt = 3t² - 12t - 15

The sign of v(t) indicates the direction of the particle. Notice that at t = 0,

v(0) = -15. So, initially, the particle is moving to the left.

So let´s find at which time v(t) is greater than zero:

v(t)>0

3t² - 12t - 15>0

Solving the quadratic equation with the quadratic formula:

For  every t > 5 s, v(t) > 0 (the other solution of the quadratic equation is -1. It is discarded because the time can´t be negative).

Then, the particle moves to the left until t = 5 s and, thereafter, it moves to the right.

To find the traveled distance at t= 8.3 s, we have to find how much distance the particle traveled to the left and how much distance it traveled to the right.

So, let´s find the position of the particle at t = 0, at t = 5 and at t = 8.3 s

s(t) = t³ - 6t² - 15t + 7

s(0) = 7 ft

s(5) = 5³ - 6 · 5² - 15 · 5 + 7 = -93 ft

s(8.3) = 8.3³ - 6 · 8.3² - 15 · 8.3 + 7 = 40.9 ft

So from t = 0 to t = 5, the particle traveled (93 + 7) 100 ft to the left, then from t = 5 to t = 8.3 the particle traveled (93 + 40.9) 134 ft to the right. Then, the total distance traveled when t = 8.3 s is (134 ft + 100 ft) 234 ft.

B) The average velocity (AV) is calculated as the displacement over time:

AV = Δs / Δt

Where:

Δs = displacement (final position - initial position).

Δt = elapsed time.

In this case:

final position = s(8.3) = 40.9 ft

initial position = s(0) = 7 ft

Δt = 8.3 s

So:

AV = (s(8.3) - s(0)) / 8.3 s

AV = (40.9 ft - 7 ft) / 8.3 s

AV = 4.1 ft/s

The average velocity of the particle is 4.1 ft/s (since it is positive, it is directed to the right).

C) The average speed is calculated as the traveled distance over time. The traveled distance at t = 8.3 s was already obtained in part A: 234 ft. Then, the average speed (as) will be:

as = distance / time

as = 234 ft / 8.3 s

as = 28 ft/s

The average speed at t = 8.3 s is 28 ft/s

D) The instantaneous velocity at any time t was obtained in part A:

v(t) = 3t² - 12t - 15

at t = 8.3 s

v(8.3) = 3(8.3)² - 12(8.3) - 15

v(8.3) = 92 ft/s

The instantaneous velocity at t = 8.3 s is 92 ft/s.

E) The particle acceleration at any time t, is obtained by derivating the velocity function:

v(t) = 3t² - 12t - 15

dv/dt = a(t) =  6t - 12

Then at t = 8.3 s

a(8.3) = 6(8.3) - 12

a(8.3) = 37.8 ft/s²

The acceleration of the particle at t = 8.3 s is 37.8 ft/s²

Final answer:

Given the missing information, we can only calculate the particle's instantaneous velocity and acceleration at 8.3 s, which can be obtained by taking derivatives of the position function.

Explanation:

This is a physics problem involving kinematics and calculus. Let's address each part of the question:

A. To find the total distance, we would need to know the initial position of the particle. Without this information, we cannot accurately calculate the total distance.

B. Average velocity is defined as the displacement divided by the time interval, which is irrelevant in this case because we do not know the displacement.

C. Similar to B, without displacement information, we cannot calculate average speed.

D. Instantaneous velocity is given by the first derivative of the position function. By taking the derivative of s, we can get the velocity function: v(t) = 3t^2 - 12t - 15. Plug in t = 8.3 s, we can then get the instantaneous velocity.

E. Acceleration is given by the first derivative of the velocity function or the second derivative of the position function. With our velocity function, v(t), we can take its derivative to find a(t) = 6t - 12. Plugging in t = 8.3 s will give the particle's acceleration at that time.

Learn more about Kinematics here:

https://brainly.com/question/35140938

#SPJ3

A car starting from rest accelerates at a rate of 2 m/sec2 . Find the average speed of this object in the first 10 seconds.

Answers

Answer:

The final speed of the car in the first 10 seconds will be 20 m/s.

Explanation:

Given that,

Initial speed of the car, u = 0

Acceleration of the car, [tex]a=2\ m/s^2[/tex]

Time, t = 10 s

We need to find the speed of the car in the first 10 seconds. It can be calculated using first equation of motion. It is given by :

[tex]v=u+at[/tex]

v is the final speed of the car

[tex]v=at[/tex]

[tex]v=2\ m/s^2\times 10\ s[/tex]

v = 20 m/s

So, the final speed of the car in the first 10 seconds will be 20 m/s. Hence, this is the required solution.

A car starts from rest at a stop sign. It accelerates at 3.8 m/s 2 m/s2 for 6.0 s, coasts for 1.6 ss , and then slows down at a rate of 3.3 m/s 2 m/s2 for the next stop sign.
How far apart are the stop signs?

Answers

To solve this problem we will start by calculating the distance traveled while relating the first acceleration in the given time. From that acceleration we will calculate its final speed with which we will calculate the distance traveled in the second segment. With this speed and the acceleration given, we will proceed to calculate the last leg of its route.

Expression for the first distance is

[tex]s_1 = ut +\frac{1}{2} at^2[/tex]

[tex]s_1 = 0+\frac{1}{2} (3.8)(6)^2[/tex]

[tex]s_1 = 68.4m[/tex]

The expression for the final speed is

[tex]v = v_0 +at[/tex]

[tex]v = 0+(3.8)(6)[/tex]

[tex]v = 22.8m/s[/tex]

Then the distance becomes as follows

[tex]s_2 = vt[/tex]

[tex]s_2 = (22.8)(1.6)[/tex]

[tex]s_2 = 36.48m[/tex]

The expression for the distance at last sop is

[tex]v_1^2=v_0^2 +2as_3[/tex]

[tex]22.8^2 = 0+2(3.3)s_3[/tex]

[tex]s_3 =78.7636m[/tex]

Therefore the required distance between the signs is,

[tex]S = s_1+s_2+s_3[/tex]

[tex]S = 68.4+36.48+78.76[/tex]

[tex]S = 183.64m[/tex]

Therefore the total distance between signs is 183.54m

A -2.37 µC point charge and a 4.74 µC point charge are a distance L apart.
Where should a third point charge be placed so that the electric force on that third charge is zero? (Hint: Solve this problem by first placing the -2.37 µC point charge at the origin and place the 4.74 µC point charge at x = −L.)

Answers

Answer:

[tex]x=2L\pm \sqrt{\frac{(-2L)^2-4\times 1\times(-L^2)}{2\times 1} }[/tex]

Explanation:

Given:

charge on first particle, [tex]q_1=-2.37\times 10^{-6}\ C[/tex]charge on the second particle, [tex]q_2=4.74\times 10^{-6}\ C[/tex]distance between the two charges = L

Now the third charge must be placed  on the line joining the two charges at a distance where the intensity of electric field is same for both the charges that point will not lie between the two charges because they are opposite in nature.

[tex]E_1=E_2[/tex]

[tex]\frac{1}{4\pi\epsilon_0} \times \frac{q_1}{x^2} =\frac{1}{4\pi\epsilon_0} \times \frac{q_2}{(L+x)^2}[/tex]

[tex]\frac{2.37}{x^2} =\frac{4.74}{L^2+x^2+2xL}[/tex]

[tex]2x^2=L^2+x^2+2xL[/tex]

[tex]x^2-2L.x-L^2=0[/tex]

[tex]x=2L\pm \sqrt{\frac{(-2L)^2-4\times 1\times(-L^2)}{2\times 1} }[/tex]

An eight-turn coil encloses an elliptical area having a major axis of 40.0 cm and a minor axis of 30.0 cm. The coil lies in the plane of the page and carries a clockwise current of 6.20 A. If the coil is in a uniform magnetic field of 1.98 10-4 T directed toward the left of the page, what is the magnitude of the torque on the coil? Hint: The area of an ellipse is A = ?ab, where a and b are, respectively, the semimajor and semiminor axes of the ellipse.

Answers

Answer:

9.25 x 10^-4 Nm

Explanation:

number of turns, N = 8

major axis = 40 cm

semi major axis, a = 20 cm = 0.2 m

minor axis = 30 cm

semi minor axis, b = 15 cm = 0.15 m

current, i = 6.2 A

Magnetic field, B = 1.98 x 10^-4 T

Angle between the normal and the magnetic field is 90°.

Torque is given by

τ = N i A B SinФ

Where, A be the area of the coil.

Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²

τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°

τ = 9.25 x 10^-4 Nm

thus, the torque is 9.25 x 10^-4 Nm.

The magnitude of the torque on the coil is 9.25 x 10⁻⁴ Nm

Torque:

According to the question we have the following data:

Number of turns of the coil N = 8

Semi-major axis of the ellipse a = 40/2 cm = 0.2 m

Semi-minor axis, b = 30/2 cm = 0.15 m

Current in the coil, i = 6.2 A

Magnetic field, B = 1.98 x 10⁻⁴ T

The angle between the normal and the magnetic field is 90°.

So the torque on the coil is given by:

τ = NiABsinθ

Now, the area of ellipse:

A = πab

A = 3.14 x 0.20 x 0.15 = 0.0942 m²

Thus,

τ = 8 x 6.20 x 0.0942 x 1.98 x 10⁻⁴ x sin 90°

τ = 9.25 x 10⁻⁴ Nm

Learn more about torque:

https://brainly.com/question/6855614?referrer=searchResults

Suppose the mass is pulled down to where the spring's length is 72 cm . When it is released, it begins to oscillate. What is the amplitude of the oscillation?

Answers

The question is incomplete. This is the complete question: A spring has an unstretched length of 22 cm. A 150 g mass hanging from the spring stretches it to an equilibrium length of 30 cm. Suppose the mass is pulled down to where the spring's length is 38 cm. When it is released, it begins to oscillate. What is the amplitude of the oscillation?

Answer:

The amplitude of the oscillation is 8 cm.

Explanation:

The amplitude of the oscillation, which is the maximum displacement of the stretched spring from equilibrium or rest, can be calculated by subtracting the spring’s length at equilibrium (when being stretched by 150g mass) from the spring’s length when it was pulled down.

Amplitude = A = the spring’s length when it was pulled down before oscillating (i.e., 38cm) — the spring’s length at equilibrium (i.e., 30cm)

Therefore, A = 38cm — 30cm = 8cm.

If He gas has an average kinetic energy of 5930 J/mol under certain conditions, what is the root mean square speed of F2 gas molecules under the same conditions

Answers

To solve this problem we will apply the concept related to kinetic energy based on the ideal gas constant and temperature. From there and with the given values we will find the temperature of the system. As the temperature is the same it will be possible to apply the root mean square speed formula that is dependent on the element's molar mass, the ideal gas constant and the temperature, this would be:

[tex]KE = \frac{3}{2} RT[/tex]

Where,

KE = Average kinetic energy of an ideal gas

[tex]R = 8.314JK^{-1}mol^{-1}[/tex]= Ideal gas constant

T = Temperature

Replacing we have,

[tex]KE = \frac{3}{2} RT[/tex]

[tex]5930J/mol = \frac{3}{2}(8.314JK^{-1}mol^{-1})T[/tex]

[tex]T = 475.503K[/tex]

Therefore the temperature is 475.5K

RMS velocity of [tex]F_2[/tex] gas is

[tex]v_{rms} = \sqrt{\frac{3RT}{M}}[/tex]

Where,

M = Molar mass of [tex]F_2[/tex]

[tex]M = 38.00g/mol[/tex]

[tex]M = 38.00*10^{-3} kg/mol[/tex]

[tex]T = 475.5K[/tex]

[tex]R = 8.314JK^{-1}mol^{-1}[/tex]

Replacing we have,

[tex]v_{rms} = \sqrt{\frac{3RT}{M}}[/tex]

[tex]v_{rms} = \sqrt{\frac{3(8.314JK^{-1}mol^{-1})(475.5K )}{38.00*10^{-3} kg/mol}}[/tex]

[tex]v_{rms} = 558.662m/s[/tex]

Therefore, the RMS velocity of [tex]F_2[/tex] gas is 558.6m/s

Other Questions
How does heat travel from the sun to a plant in a greenhouse? Ella is teaching her parrot a new word. Every time the parrot says a sound that is close to the new word, she gives it a treat. But the parrot keeps repeating other words it has learned in the past, trying to get a treat that way. The parrot is exhibiting ________________. The electric force between two identical positively charged ions is 33 10 9 N when they are 0.50 nm apart. How many electrons are missing from each ion? Macy doesnt have any money in her bank account, but she saves $12.50 each week. Robby has $20 in his bank account, and he saves $7.50 each week. After how many weeks will Macy and Robby have the same amount in their accounts? PLEASE HELPRead the speech and answer the question.Voluntourism: An Opportunity Too Good to be TrueA Speech to the Student Body of Evergreen High[1] Picture this: It's Spring Break, and you fly off to some country where there's lush rainforests and beautiful, blue coastlines to explore. There's also people in need, so you decide to blend your vacation with volunteering. Volunteering as a tourist, or voluntourism, seems like a great way to explore new regions and help people at the same time. However, this "volunteer plus travel" experience can actually harm local communities. While many teens might view traveling and volunteering abroad as a worthwhile adventure, there are more genuine and effective ways to make a difference.[2] Most would agree that volunteering in general is a worthy use of time. However, what if you found out the children you are "helping" are actually being kept in poor conditions so voluntourists will spend money to come to the local area? Dale Rolfe, a supporter of ethical voluntourism, explains the shocking reality that "Animal sanctuaries and orphanages are often manufactured for the voluntourist...encouraging a cycle of exploiting the very animals and children the volunteers are trying to help."[3] Proponents of the "volunteer plus travel" experience also argue that traveling to new places builds character and is a valuable way to learn about different cultures. With voluntourism, however, participants often pursue experiences that are all about them. For example, they sign up to build a school for a gold star on their resume, but they have no real building skills and take jobs away from local construction workers (Schulten). Or, they arrive to teach English but instead take selfies with the locals. One world traveler and ethical voluntourist believes voluntourism "can perpetuate small minded views of the world by taking insulated, fake, and structured experiences and selling them as unabridged and eye opening" (Carlos). The voluntour experience is a mirage. The voluntourist's eyes are not opened to real life at the destination, and lasting change is not achieved.[4] If you want a genuine experience where you can see a lasting impact, there are better options than voluntourism. You can volunteer in your local community. Give an hour every week to your town's animal rescue. Serve monthly dinners to the homeless. Be a reliable, positive influence on a child who needs a mentor. Studies show that volunteering and forming lasting relationships with those you help has a positive impact on your physical and emotional health. In fact, blood pressure is reduced, memory is improved, and rates of depression are reduced (Michaels).[5] There is another reason to look into alternatives to voluntourism. Did you know the average "voluntour" travel package costs $3,400 (Rolfe)? Could that travel money be better spent? If the world's citizens are your passion, it could go to an international organization. If you care about education, your funds can be used to buy books for students in faraway lands. If you want villagers to have clean water, contribute funds to local efforts to dig wells. If you want to experience a different culture, travel to the country as a guest, and learn from the locals how you can best help them after you've returned home. But do not voluntour.[6] In reality, there are better ways to make a difference. Voluntourism might appear to be an adventure that blends travel and helping others, but it does little except provide a costly, superficial experience that might actually do more harm than good. So, volunteer where you are most needed-at home, where you can stay to see the job through and form genuine, lasting relationships. Choose a beautiful coastline closer to home and send the travel money you saved to an international organization that will put it to good use. Whatever you do, don't turn someone else's hardship into your vacation.What are two strategies the speaker uses to develop the point that voluntour opportunities are not legitimate ways to learn about other cultures? Expert testimony Metaphor Personification Repetition Statistics possibility attracting attention in a vulgar manner one who acts without moral restraint difficult or impossible to explain or account for to travel or pass across or over close observation a large inn to dissuade or correct a vague statement substituted for one considered blunt or offensive 1. meretricious 2. euphemisms 3. caravansary 4. contingency 5. inexplicable 6. libertine 7. expostulation 8. traversed 9. scrutiny PLEASE HELP ME ...........Julie was looking at the architect's blueprint of her house. The scale on blueprint was 1/4 inch = 1 foot. On the blueprint, what are the dimensions of her bedroom if the actual dimensions of her bedroom are 12 feet by 16 feet? 5.PART A: How does Harry's repetition of the phrase "I'll be in my bedroom, making homeand pretending I'm not there" impact the tone of the passage?A. It shows how much Harry loves sitting in his room all by himself so he canpractice magic.B. It shows how much the Dursleys love Harry and respect his privacy.It highlights the contrast between Harry's love for quiet time and Dudley'shatred of it.It highlights the contrast between the Dursley's excitement for the dinner andHarry's loneliness. Nearly 144 million Americans have general purpose credit cards. Approximately how many of them pay off their bill in full each month?a) 55 million.b) 90 million.c) 115 million. what is the path of H+ions through the thylakoids A toy train rolls around a horizontal 1.0-m-diameter track.The coefficient of rolling friction is 0.10.a) What is the magnitude of the trains angular acceleration afterit is released?b)How long does it take the train to stop if it's released with anangular speed of 30 rpm?In step one of the question, the solution supplied states thattangential acceleration is the coefficient of rolling frictionmultiplied by gravity. Why is this so? Which statement is the correct interpretation of the confidence interval in this illustration? The probability the true mean is between 76.08 and 83.92 is 0.95 or 95%. We are 95% confident that the true mean is between 76.08 and 83.92. Hawkins company has owned 10 percent of Larker Inc., for the past several years. This ownership did not allow Hawkins to have significant influence over Larker. Recently, Hawkins acquired an additional 30 percent of Larker and now will use the equity method. How will the investor report change?a. a cumulative effect of an accounting change is shown in the current income statementb. a retrospective adjustment is made to restate all prior years presented using the equity methodc. no change is recorded; the equity method is used from the date of the new acquisitiond. Hawkins will report the change as a component of accumulated other comprehensive income What was most common in churches in the South?.A. Churches lost membership as people grew wealthy.OB. Members of a church encouraged people of different races toattend.OC. Members of a church were of the same social class.D. Churches were centers for people who wanted social reform. find the value of sin100.sin120.sin140.sin160 4x + 5 - 5x x=12PLEASE ANSWER THIS ASAPPPP -2x+9=9 solved y substitute Josh, Inc. is faced with the choice of either producing a newly designed product, XX-30, to stock in anticipation of demand or to customer order. The demand for the product is expected to be 5,000 units per week. Josh decided to produce XX-30 in lots of 500 units. The cost of holding the average unit in inventory per year is $50 times the average inventory level. If Josh, Inc. produces to order, it must discount its unit price on all sales $5 for each week that the first customer to order has to wait before the product is delivered. Should Josh, Inc. produce to stock or to order? Web beacons are tiny graphics files embedded in email messages and web pages that are designed to monitor online Internet user behavior.A. TrueB. False How many points of intersection are there between line A and line B if they contain the points listed?Line A: (2,8) and (-2,-4)Line B: (4, 10) and (-3, -11)A.)zeroB.)oneC.)twoD.)infinite Steam Workshop Downloader