Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
V₁T₂ = V₂T₁
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
∴ V₂ = V₁T₂/T₁ = (6193.0 mL)(311.1 K)/(335.3 K) = 5746.0 mL.
Which of the following BEST describes the size of an asteroid?
Comparable to a moon
Small
Varied
Massive
I just put chemistry cuz there's no astronomy.
Answer:
Massive
Explanation: some astroids are so large they can destroy planets.
Answer:
The answer is Varied
Explanation:
Can nonrenewable resources be used sustainably?
Answer: No
Explanation:
A non-renewable resource is the one which cannot be replenish when once used. They are expected to short out of supply because of the fact that with the increasing population worldwide the demand for the resources will also increase. As a result of this the population may face scarcity of resources in future. Such resources cannot be expected to be used sustainably as they get completely used up in a single use. For example fossil fuels like coal, petroleum and natural gas.
No, the nonrenewable resources can be used sustainably because the nonrenewable resources are the limited.
The renewable resources the resources which are naturally replenish themselves and the nonrenewable resources will not replenish. The nonrenewable resources are have limit in the supply and which cannot be used sustainably. The not all the renewable energy is the sustainable energy.
The non-renewable resources of the energy are release the harmful greenhouse gases to atmosphere, this will cause the global warming. The non-renewable sources of the energy are very harmful pollutants and will cause the habitat destruction. Therefore, the nonrenewable resources can not be used as sustainably.
To learn more about nonrenewable resources here
https://brainly.com/question/2141299
#SPJ6
A hypothesis is tested by ___.
A.) conducting an experiment
B.) making further observations
C.) proposing a theory
D.) talking with other scientists
A hypothesis is tested by conducting an experiment.
Answer: The correct answer would be A. Conducting Observation
Explanation:
Because....
If you don't conduct an experiment then how will you know if your hypothesis was true or not. So a hypothesis is tested by Conducting Observation.
* Hopefully this helps:) Mark me the brainliest:)!!
Which statement is true about the substances in a mixture?
They change their composition
They retain their chemical properties
They always consist of the same element
They are always in the same state of matter
Answer:
They retain their chemical properties
Explanation:
Answer: They retain their chemical properties
Explanation:
Mixture is a substance which has two or more components which do not combine chemically and do not have any fixed ratio in which they are present.
For example: Air is a mixture which consists of various gases, water vapors and various particles in solid form which are not present in any fixed ratio, do not combine chemically and thus retain their chemical properties.
Thus the only true statement about substances in a mixture is that they retain their chemical properties
Sort the sentences based on whether the attributes they describe belong to planets or an object that isn't a planet.
The object orbits the
The object is a satellite
Sun
The regions surrounding
the object are free from
debris
The object is triangular
in shape.
Planet
Not a Planet
2019 Edmentum All rights
Answer:
Planet: The object orbits the sun
Not planet: The object is a satellite
Planet: The regions surrounding the object are free from debris
Not Planet: The object is triangular in shape.
Explanation:
A planet is characterized as:
Spheroidal (or at least big enough to be round-ish)
It should orbit the sun (not other planets, so satellites like the moon is not considered as a planet)
It should have no debris, or cleared of debris around its orbit
Although there is now the dwarf planet category, it satisfies almost all charateristics to be considered a planet, except the cleared of debris part.
Answer:
Planet: The object orbits the sun
Not planet: The object is a satellite
Planet: The regions surrounding the object are free from debris
Not Planet: The object is triangular in shape.
The balanced equation for combustion in an acetylene torch is shown below:
2C2H2 + 5O2 → 4CO2 + 2H2O
The acetylene tank contains 35.0 mol C2H2, and the oxygen tank contains 84.0 mol O2.
How many moles of CO2 are produced when 35.0 mol C2H2 react completely?
mol CO2
Answer:
70mol
Explanation:
The equation of the reaction is given as:
2C₂H₂ + 5O₂ → 4CO₂ + 2H₂O
Given parameters:
Number of moles of acetylene = 35.0mol
Number of moles of oxygen in the tank = 84.0mol
Unknown:
Number of moles of CO₂ produced = 35.0mol
Solution:
From the information given about the reaction, we know that the reactant that limits this combustion process is acetylene. Oxygen is given in excess and we don't know the number of moles of this gas that was used up. We know for sure that all the moles of acetylene provided was used to furnish the burning procedure.
To determine the number of moles of CO₂ produced, we use the stoichiometric relationship between the known acetylene and the CO₂ produced from the balanced chemical equation:
From the equation:
2 moles of acetylene produced 4 moles of CO₂
∴ 35.0 mol of acetylene would produced:
[tex]\frac{35 x 4}{2}[/tex] = 70mol
Answer:
70 mol
the next one is 67.2
Explanation:
:) have a great day
how many grams of oxygen would be needed to produce 54g of water?
107.904 grams of O2. I believe this is correct.
What is the empirical formula for a compound that contains 79.86 % iodine and 20.14 % oxygen by mass?
Answer:
IO₂
Explanation:
We have been given the mass percentages of the elements that makes up the compound:
Mass percentage given are:
Iodine = 79.86%
Oxygen = 20.14%
To calculate the empirical formula which is the simplest formula of the compound, we follow these steps:
> Express the mass percentages as the mass of the elements of the compound.
> Find the number of moles by dividing through by the atomic masses
> Divide by the smallest and either approximate to nearest whole number or multiply through by a factor.
> The ratio is the empirical formula of the compound.
Solution:
I O
% of elements 79.86 20.14
Mass (in g) 79.86 20.14
Moles(divide by
Atomic mass) 79.86/127 20.14/16
Moles 0.634 1.259
Dividing by
Smallest 0.634/0.634 1.259/0.634
1 2
The empirical formula is IO₂
To find the empirical formula of a compound, we calculate the moles of each element using their atomic masses. Dividing the moles by the smallest value gives us the ratio of the elements, which represents the empirical formula. For the compound containing 79.86% iodine and 20.14% oxygen, the empirical formula is IO2.
Explanation:To find the empirical formula, we need to determine the simplest whole-number ratio between the elements in the compound. To do this, we first assume we have 100g of the compound, which allows us to convert the percentages to grams. We can then calculate the moles of each element using their atomic masses. The ratio of moles gives us the empirical formula.
For the given compound that contains 79.86% iodine and 20.14% oxygen by mass:
Assuming 100g of the compound, we have 79.86g of iodine and 20.14g of oxygen. The moles of iodine can be calculated using its atomic mass (126.9 g/mol), which gives us 0.628 moles. The moles of oxygen can be calculated using its atomic mass (16.0 g/mol), which gives us 1.259 moles. Dividing both moles by the smaller value (0.628 moles) gives us the ratio of 1:2. Therefore, the empirical formula for the compound is IO2.
When sugar is burned, water vapor and carbon dioxide are produced.
A sugar molecule has a specific number of carbon, hydrogen, and oxygen atoms. Use the balanced chemical equation to identify the number of carbon, hydrogen, and oxygen atoms in sugar.
sugar + 12O2 → 11H2O + 12CO2
Sugar has carbon atoms.
Sugar has hydrogen atoms.
Sugar has oxygen atom
Answer;
12 carbon atoms, 22 hydrogen atoms and 11 oxygen atoms.
Explanation:
Using a balanced chemical equation we can identify the number of carbon, hydrogen, and oxygen atoms in sugar.
CxHyOn + 12O₂ → 11 H₂O + 12CO₂
When an equation is completely balanced, then the number of each atom of an element is equal on the reactant side and the product side.
Therefore;
For carbon; x = 12
For Hydrogen; y = (11×2) = 22
For Oxygen; n + (12×2) = 11 + (12×2)
= n + 24 = 11 + 24
n = 11
Therefore the sugar has, 12 carbon atoms, 22 hydrogen atoms and 11 oxygen atoms.
Thus the balanced equation would be;
C₁₂H₂₂O₁₁ + 12O₂ → 11 H₂O + 12CO₂
Answer:
122211Explanation: .
The reactant atoms are copper, hydrogen, nitrogen, and oxygen. Which reactant atom was oxidized in the reaction?
Answer:
C. copper.
Explanation:
The atom which loses electrons (its oxidation sate be more positive) is the atom that is oxidized.While, the atom which gains electrons (its oxidation sate be more negative) is the atom that is reduced.Nitrogen:It is oxidation sate is changed from (+5) in the reactants (NO₃⁻) to (+4) in the products (NO₂). N gains 1 electron
So, it is reduced.
Oxygen:
It is oxidation sate is the same (-2) in the reactants (NO₃⁻) and (-2) in the products (NO₂).
So, it is neither be oxidized nor reduced.
Copper:
It is oxidation sate is changed (0) in the reactants (Cu) to (+2) in the products (Cu²⁺). Cu loses 2 electrons.
So, it is oxidized.
Hydrogen:
It is oxidation sate is the same (+1) in the reactants (H⁺) and (+1) in the products (H₂O).
So, it is neither be oxidized nor reduced.
A sample taken from a layer of mica in a canyon has 2.10 grams of potassium-40. A test reveals it to be 2.6 billion years old. How much potassium-40 was in the sample originally if the half-life of potassium-40 is 1.3 billion years?
Answer:
[tex]\boxed{ \text{8.40 g}}[/tex]
Explanation:
The half-life of K-40 (1.3 billion years) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction
half-lives t/yr Remaining
0 0 1
1 1.3 billion ½
2 2.6 ¼
3 3.9 ⅛
We see that after 2 half-lives, ¼ of the original mass remains.
Conversely, if two half-lives have passed, the original mass must have been four times the mass we have now.
Original mass = 4 × 2.10 g = [tex]\boxed{ \text{8.40 g}}[/tex]
Answer:
8.40 is correct
Explanation:
What is a chemical bond and why do atoms bond
Answer:
Explanation:
A chemical bond is a lasting attraction between atoms, ions molecules that enables the formation of chemical compound.
The number of co atoms in 2.2 mil of co
Answer:
1.325 x 10²⁴ Co atoms
Explanation:
1 mol of any substance is made of 6.022 x 10²³ units, these units could be atoms making up elements of molecules making up a compound.
Therefore 1 mol of the element cobalt is made of 6.022 x 10²³ atoms of Co
so if 1 mol of Co contains - 6.022 x 10²³ atoms of Co
then 2.2 mol of Co contains - 6.022 x 10²³ /mol x 2.2 mol
number of Co atoms in 2.2 mol of Co is - 1.325 x 10²⁴ Co atoms
when baking soda and vinegar react, the product includes bubbles. what mostly likely occurred?
When baking soda, (a base) and vinegar (a acid) are mixed together, there is a chemical reaction, taking place, making the two diferent substances, one substance, that is now neutral.
A balloon contains 0.218mol of gas and has volume of 4.8 L. If an additional 0.075 mil of gas is added to the ballon, what is the final volume and how many molecules of gas are in the cylinder?
Answer:
1. 6.45 L
2. 1.76 x 10²³ molecules
Explanation:
1. Avagadros law states that volume of gas at constant temperature and pressure is directly proportional to the amount / number of moles of that gas
we can use the following equation
v1/n1 = v2/n2
where v1 is volume and n1 is number of moles at first instance
and v2 is volume and n2 is number of moles at second instance
at the first instance - n1 = 0.218 mol
second instance - n2 = 0.218 mol + 0.075 mol = 0.293 mol
substituting the values
4.8 L / 0.218 mol = v2 / 0.293 mol
v2 = 6.45 L
new volume is 6.45 L
2. 1 mol of any substance is made of 6.022 x 10²³ units. These units could be atoms making up elements or molecules making up a compound.
therefore if 1 mol consists of 6.022 x 10²³ molecules
then 0.293 mol consists of - 6.022 x 10²³ molecules/mol x 0.293 mol = 1.76 x 10²³ molecules
therefore there are 1.76 x 10²³ molecules now in the cylinder
Select the true statement:
Select one:
Bonds are broken and new bonds are formed during chemical reactions only.
Bonds are broken and new bonds are formed during both chemical reactions and physical changes.
Bonds are broken and new bonds are formed during physical changes only.
Bonds do not change in either chemical reactions or physical changes.
Answer:
Bonds are broken and new bonds are formed during chemical reactions only.
Explanation:
A physical change in a substance doesn't change what the substance is.In a chemical change where there is a chemical reaction, a new substance is formed and energy is either given off or absorbed. Physical changes can be reversed, chemical changes cannot be reversed with the substance changed back without extraordinary means, if at all. For example, a cup of water can be frozen when cooled and then can be returned to a liquid form when heated.So, the right choice is:
Bonds are broken and new bonds are formed during chemical reactions only.
Final answer:
Bonds are broken and new bonds are formed during chemical reactions only, not during physical changes. A chemical reaction reorganizes atoms into new substances, which involves breaking old bonds and forming new ones, fundamentally changing the composition of the reactants.
Explanation:
The true statement is that bonds are broken and new bonds are formed during chemical reactions only. During a chemical reaction, reactants undergo a transformation where their chemical bonds are broken, atoms are rearranged, and new substances with new bonds are formed, called products. This process involves energy changes, where breaking bonds requires an input of energy while forming bonds releases energy.
Conversely, physical changes involve a change in the form or physical properties of a substance, without altering the chemical composition or the bonds within molecules. Thus during chemical reactions, old bonds are broken, and new bonds form to create new substances with different chemical and physical properties; this is essential in defining a chemical change. Physical changes, on the other hand, do not involve changes in the bonds that hold atoms together within a molecule.
What are the best note taking styles for high school?
Answer:
cornell noted
Explanation:
used in middle school and can be helpful for subjects like ela history and science
Answer:
Cornell notes
(picture attached)
Explanation:
out of the 5 methods the most popular and efficient is Cornell notes :)
↓methods↓
1)The Cornell Method.
2)The Outlining Method.
3)The Mapping Method.
4)The Charting Method.
5)The Sentence Method
×║hope this helps║×
** ANSWER FAST I WILL MARK YOU BRAINLIEST AND GIVE 20 POINTS * * THIS IS A CHEMISTRY QUESTION SO PLEASE ONLY ANSWER IF YOU ARE GOOD AT CHEMISTRY *
A certain reaction is endothermic in the forward direction and has a greater number of molecules on the product side. Which set of conditions should be used to maximize the yield of the products?
A. Decrease the temperature and decrease the pressure.
B. Increase the temperature and decrease the pressure.
C. Decrease the temperature and increase the pressure.
D. Increase the temperature and increase the pressure.
Answer:
[tex]\boxed{\text{ B. Increase the temperature and decrease the pressure.}}[/tex]
Explanation:
Let's say the reaction is
R ⇌ 2P; endothermic
I like to consider heat as if it were a reactant or a product in a chemical equilibrium.
Another way to write the equilibrium would be
heat + R ⇌ 2P
According to Le Châtelier's Principle, when a stress is applied to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
Let's consider each of the stresses in turn.
(i) Changing the temperature
If you want to increase the amount of product, you increase the temperature. The system will try to get rid of the added heat by shifting to the right, thus forming more product.
(ii) Changing the pressure
If R and P are liquids or solids or in aqueous solution, changing the pressure will have no effect. Something must be in the gas phase for a change in pressure to affect the position of equilibrium.
If P is a gas, the equilibrium is
heat + R ⇌ 2P(g)
Then, decreasing the pressure will produce more P. If you reduce the pressure, the system will respond by shifting to the right (the side with more gas molecules) to produce more P and bring the pressure back up
Answer:
above is wrong
Explanation:
This chart represents four famous scientists and an aspect of their contributions
Answer:
What is the question?
Explanation:
Answer:
Gutenberg
Explanation: inventor, printer
What statement BEST describes weathering by a glacier?
A. constructive,involves gravity
B. constructive, builds up earth
C. destructive, wears down earth
D. destructive, moves sediment one place to another
Answer:
D
Explanation:
Because is other stuff can form from sediments then why can't glaciers
What is the molarity of a solution made by dissolving 5.5 g of KI in enough water to make 150 ml of solution?
Answer:
Explanation:
molarity is moles of solute/L solution
5.5 g 1 moles Kl 1000 mL
_____ * __________ * ________ = 0.22088 M
150 ml of solution 166 grams 1 L
(39 grams K+ 127 grams I) ^
Answer:
[tex]\boxed{\text{0.22 mol/L}}[/tex]
Explanation:
[tex]\text{Molar concentration} = \dfrac{\text{moles}}{\text{litres}}\\\\\text{c} = \dfrac{n}{V}[/tex]
1. Convert grams to moles.
[tex]\text{Moles KI = 5.5 g KI} \times \dfrac{\text{1 mol KI}}{\text{166.0 g KI}} = \text{0.0331 mol KI}[/tex]
2. Convert millilitres to litres
[tex]\text{V = 150 mL} \times \dfrac{\text{1 L}}{\text{1000 mL}} = \text{0.1500 L}[/tex]
3. Calculate the molar concentration
[tex]c = \dfrac{\text{0.0331 mol}}{\text{0.1500 L}} = \text{0.22 mol/L}[/tex]
The molar concentration of KI is [tex]\boxed{\textbf{0.22 mol/L}}[/tex].
How many moles of hydrogen, H2, are needed to react with 4.0 moles of nitrogen, N2
6 moles because you start with a balanced equation and with the balanced equation it means that regardless of how many miles of nitrogen gas you have, the reaction will always consume twice as many miles if hydrogen gas.
which statement accurately describes the molecule Br2?
there are no choices of statements
The molecule Br2 is a diatomic molecule made up of two bromine atoms, which exists as a liquid at room temperature due to its size and number of electrons.
Explanation:The molecule Br2, which stands for Bromine molecule consists of two bromine atoms. This molecule is unique in that it is one of the few elements that exist as a liquid at room temperature.
The bromine molecule, Br2, is a simple diatomic molecule with a single, covalent bond holding the two bromine atoms together. Due to its size and number of electrons, Br2 is heavier than many other diatomic molecules, which is why it exists as a liquid at room temperature while other diatomic molecules like O2 and N2 are gases.
This specific behavior plays a significant role in understanding the trend of molecular states. For instance, Bromine's state as a liquid at room temperature, as opposed to I2 (a solid) and Cl2 (a gas) informs us about the impact of the physical state on a molecule's entropy.
Learn more about Br2 molecule here:https://brainly.com/question/12023751
#SPJ3
how many atoms of phosphorous are in 4.90 mol of copper(ii) phosphate? the formula for copper(ii) phosphate is Cu3(PO4)2.
Final answer:
To find the number of phosphorus atoms in 4.90 mol of copper(II) phosphate, first calculate the number of moles of phosphorus atoms in copper(II) phosphate follow by using Avogadro's number to convert moles to atoms. The total number of phosphorus atoms in 4.90 mol of copper(II) phosphate is 5.90 x 10²⁴ atoms.
Explanation:
To find the number of phosphorus atoms in 4.90 mol of copper(II) phosphate, first calculate the number of moles of phosphorus atoms in copper(II) phosphate: 2 mol of phosphorus atoms per 1 mol of Cu₃(PO₄)₂. So, 4.90 mol of Cu₃(PO₄)₂ would contain 2 * 4.90 = 9.80 mol of phosphorus atoms. Then, use Avogadro's number to convert moles to atoms: 9.80 mol * 6.022 x 10²³ atoms/mol = 5.90 x 10²⁴ atoms of phosphorus.
explain heat transfer in your own words
Answer: thermal conductivity
Explanation:
What is the difference between Arrhenius acids-base and bronsted-lowry acids bases? Justify your answer.
Answer:
A Bronsted-Lowry acid like and Arrhenius acid is a compound that breaks down to give an H+ in solution. The only difference is that the solution does not have to be water. ... An Arrhenius base is a molecule that when dissolved in water will break down to yield an OH- or hydroxide in solution.
Explanation:
an object float or sink when placed on the surface of water science answer
im not quite understanding your question but, What you place in water depends on the mass of the object and its boincy. some rocks have so much air in them they can actually float but usally all rocks sink to the bottem. Thinks like plastics, styrofoams and paper can usally float on the surface of the water.
volume of carbon dioxide gas evolved at STP by heating 7.3 gram of Mg(Hco3)2 will be
Answer:
1.12dm³
Explanation:
The reaction is a decompositon reaction. It is expressed below:
Mg(HCO₃)₂ + Heat → MgCO₃ + H₂O + CO₂
This is the balanced reaction equation.
We have 1 mole of Mg, 2 mole of H, 2 mole of C, 6 mole of O on both sides of the reaction.
To calculate the volume of CO₂ gas evolved at S.T.P:
We work from the known to the unknown.
The known is Mg(HCO₃)₂ and the unknown is CO₂
1. Find the number of moles of Mg(HCO₃)₂ from the given mass
2. Since we know that chemical reactions obey the law of conservation of mass. The balanced chemical reaction shows that, 1 mole of Mg(HCO₃)₂ would give 1 mole of CO₂
3. We use information from (2) to find the number of moles of CO₂. With the number of moles of CO₂ found, we use the formula below to find the volume evolved at S.T.P
Volume evolved =
number of moles of CO₂ x 22.4dm³mol⁻¹
Solution:
Given/known parameters:
Mass of Mg(HCO₃)₂ = 7.3g
Step 1:
Number of moles
of Mg(HCO₃)₂ = mass/molar mass
Molar mass of Mg(HCO₃)₂ :
Atomic mass of Mg = 24gmol⁻¹
H = 1gmol⁻¹
C = 12gmol⁻¹
O = 16gmol⁻¹
Molar Mass Mg(HCO₃)₂
= [24 + 2{1 + 12 + (16 x3)} ]
= 24 + 2(1 +12 + 48)
= 24 + 122
= 146gmol⁻¹
Number of moles of
Mg(HCO₃)₂ = 7.3g/126gmol⁻¹ = 0.05mol
Step 2:
We know from the balanced equation that:
1mole of Mg(HCO₃)₂ = 1 mole of CO₂
So: 0.05mol of Mg(HCO₃)₂ = ?
This would also produce 0.05mol of CO₂
Step 3:
Volume of CO₂ evolved =
number of moles of CO₂ x 22.4dm³mol⁻¹
= 0.05 x 22.4
= 1.12dm³
The volume of CO₂ gas evolved at S. T. P is 1.12dm³
The volume of carbon dioxide gas evolved at STP by heating 7.3 gram of Mg(HCO3)2 will be 1.12 L or 1120 ml
Further Explanation: Molar gas volume Molar gas volume states that one mole of a gas occupies a volume of 24 liters when the gas is at room temperature and pressure (rtp), while one mole of a gas will occupy a volume of 22.4 liters at standard temperature and pressure (STP).Decomposition reactions These are reactions that involve break down of a compound to small molecules or atoms. Decomposition may be carried using heat (thermal decomposition) or using a catalyst (catalytic decomposition).An example;The reaction is a decomposition reaction;
Mg(HCO₃)₂ + Heat → MgCO₃ + H₂O + CO₂From the reaction
1 mole of Mg(HCO₃)₂ produces 1 mole of CO₂ after decomposition.
Therefore, to determine the volume of CO₂ produced by 7.3 grams of Mg(HCO₃)₂
Step 1: Moles of Mg(HCO₃)₂ in 7.3 gNumber of moles = Mass/relative formula mass
RFM of Mg(HCO₃)₂ =146.33868 g/mol
Therefor;
Number of moles = 7.3 g/146.33868 g/mol
= 0.04988
= 0.05 moles
Step 2: Moles of Carbon dioxide
From the equation;
1 mole of Mg(HCO₃)₂ produces 1 mole of CO₂ after decomposition.
Therefore;
Moles of carbon dioxide produced is 0.05 moles
Step 3: Volume of Carbon dioxide
From molar gas volume;
1 mole of CO₂ at STP occupies 22.4 L
Thus;
0.05 moles will occupy;
= 0.05 × 22.4 L
= 1.12 L or 1120 mL
Therefore; volume of carbon dioxide gas evolved at STP by heating 7.3 gram of Mg(Hco3)2 will be 1.12 L or 1120 ml
Keywords; Decomposition reactions, molar gas volume, relative formula mass, moles
Learn more about:
Relative Formula mass: https://brainly.com/question/5592681Moles calculation: https://brainly.com/question/5592681Molar mass: https://brainly.com/question/5592681Level: High school
Subject: Chemistry
Topic: Moles
Sub-topic: Molar gas volume
The toy car in the picture is propelled forward by A) The weight of the car. B) The force of the car on the air. C) The friction of the wheels on the car. D) The reaction force of the air on the car.
Answer:
the answer is d :)
Explanation:
Answer:
Its D
Explanation:
What happens in a nuclear reaction?
A nuclear reaction is at its most basic nothing more than a reaction process that occurs in an atomic nucleus. They typically take place when a nucleus of an atom gets smacked by either a subatomic particle (usually a "free neutron," a short-lived neutron not bound to an existing nucleus) or another nucleus
but alot of things happen to be honest to much to put down but the basic is a blast of energy that is super heated by friction that is followd by nuclear after fall and this can be very deadly even miles away
hope this helps
Final answer:
In a nuclear reaction, the nucleus of an atom undergoes a change, often transforming into a different element or isotope and releasing tremendous amounts of energy. This energy, derived from the nuclear binding energy, is much greater than energy changes in chemical reactions.
Explanation:
A nuclear reaction is a process where the nucleus of an atom changes. This change can result in the transformation of elements through a process known as transmutation or the conversion of atoms into various isotopes. Unlike chemical reactions, where electrons are transferred or shared between atoms, nuclear reactions involve changes in the nucleus and typically release far greater amounts of energy. This energy comes from the nuclear binding energy, which binds protons and neutrons in the nucleus.
Two primary types of nuclear reactions are nuclear decay reactions and nuclear transmutation reactions. In decay reactions, an unstable nucleus emits radiation to form a more stable nucleus, while transmutation reactions occur when nuclei or subatomic particles collide and transform into a different element or isotope. These processes often produce energy orders of magnitude greater than that produced by chemical reactions, highlighting the immense power of nuclear changes.