For waht values of x do the vectors -1,0,-1), (2,1,2), (1,1, x) form a basis for R3?

Answers

Answer 1
Answer:

The values of x for which the given vectors are basis for R³ is:

                        [tex]x\neq 1[/tex]

Step-by-step explanation:

We know that for a set of vectors are linearly independent if the matrix formed by these set of vectors is non-singular i.e. the determinant of the matrix formed by these vectors is non-zero.

We are given three vectors as:

(-1,0,-1), (2,1,2), (1,1, x)

The matrix formed by these vectors is:

[tex]\left[\begin{array}{ccc}-1&2&1\\0&1&1\\-1&2&x\end{array}\right][/tex]

Now, the determinant of this matrix is:

[tex]\begin{vmatrix}-1 &2 & 1\\ 0& 1 & 1\\ -1 & 2 & x\end{vmatrix}=-1(x-2)-2(1)+1\\\\\\\begin{vmatrix}-1 &2 & 1\\ 0& 1 & 1\\ -1 & 2 & x\end{vmatrix}=-x+2-2+1\\\\\\\begin{vmatrix}-1 &2 & 1\\ 0& 1 & 1\\ -1 & 2 & x\end{vmatrix}=-x+1[/tex]

Hence,

[tex]-x+1\neq 0\\\\\\i.e.\\\\\\x\neq 1[/tex]


Related Questions

How is this equation completed? I cannot find any examples in the book.

Answers

Answer: Option D

[tex]t_{max} =19\ s[/tex]

Step-by-step explanation:

Note that the projectile height as a function of time is given by the quadratic equation

[tex]h = -12t ^ 2 + 456t[/tex]

To find the maximum height of the projectile we must find the maximum value of the quadratic function.

By definition the maximum value of a quadratic equation of the form

[tex]at ^ 2 + bt + c[/tex] is located on the vertex of the parabola:

[tex]t_{max}= -\frac{b}{2a}[/tex]

Where [tex]a <0[/tex]

In this case the equation is: [tex]h = -12t ^ 2 + 456t[/tex]

Then

[tex]a=-12\\b=456\\c=0[/tex]

So:

[tex]t_{max} = -\frac{456}{2*(-12)}[/tex]

[tex]t_{max} =19\ s[/tex]

The probability that a student graduating from Suburban State University has student loans to pay off after graduation is .60. If two students are randomly selected from this university, what is the probability that neither of them has student loans to pay off after graduation?

Answers

Answer: 0.16

Step-by-step explanation:

Given: The probability that a student graduating from Suburban State University has student loans to pay off after graduation is =0.60

Then the probability that a student graduating from Suburban State University does not have student loans to pay off after graduation is =[tex]1-0.6=0.4[/tex]

Since all the given event is independent for all students.

Then , the probability that neither of them has student loans to pay off after graduation is given by :-

[tex](0.4)\times(0.4)=0.16[/tex]

Hence, the probability that neither of them has student loans to pay off after graduation =0.16

The AWP for a gallon (3785 ml) of antihistamine/ antitussive cough syrup is $18.75, with an additional 20% discount from the wholesaler. What is the cost of 1 pint of the medication?

Answers

Answer:

The cost of 1 pint of the medication would be $1.875.

Step-by-step explanation:

The AWP of 3785 ml ( 1 gallon ) cough syrup = $18.75

After an additional 20% discount from wholesaler the price would be

New price = 18.75 - (0.20 × 18.75)

                 = 18.75 - 3.75

                 = $15.00

Since 1 gallon ( 3785 ml) = 8 pints

Therefore, the price for 1 pint = [tex]\frac{15}{8}[/tex] = $1.875

The cost of 1 pint of the medication would be $1.875.

Problem Page
A delivery truck is transporting boxes of two sizes: large and small. The combined weight of a large box and a small box is 80 pounds. The truck is transporting 55 large boxes and
70 small boxes. If the truck is carrying a total of 4850 pounds in boxes, how much does each type of box weigh?

Answers

For this case we propose a system of equations:

x: Variable representing the weight of large boxes

y: Variable that represents the weight of the small boxes

So

[tex]x + y = 80\\55x + 70y = 4850[/tex]

We clear x from the first equation:

[tex]x = 80-y[/tex]

We substitute in the second equation:

[tex]55 (80-y) + 70y = 4850\\4400-55y + 70y = 4850\\15y = 450\\y = 30[/tex]

We look for the value of x:

[tex]x = 80-30\\x = 50[/tex]

Large boxes weigh 50 pounds and small boxes weigh 30 pounds

Answer:

Large boxes weigh 50 pounds and small boxes weigh 30 pounds

Answer: A large box weighs 50 pounds and a small box weighs 30 pounds.

Step-by-step explanation:

Set up a system of equations.

Let be "l" the weight of a large box and "s" the weight of a small box.

Then:

[tex]\left \{ {{l+s=80} \atop {55l+70s=4,850}} \right.[/tex]

You can use the Elimination method. Multiply the first equation by -55, then add both equations and solve for "s":

[tex]\left \{ {{-55l-55s=-4,400} \atop {55l+70s=4,850}} \right.\\.............................\\15s=450\\\\s=\frac{450}{15}\\\\s=30[/tex]

Substitute [tex]s=30[/tex] into an original equation and solve for "l":

[tex]l+(30)=80\\\\l=80-30\\\\l=50[/tex]

A square pyramid is 6 feet on each side. The height of the pyramid is 4 feet. What is the total area of the pyramid?

60 ft2
156 ft2
96 ft2
120 ft2

Answers

Answer:

Option C

Step-by-step explanation:

96ft2

Answer:

Area of pyramid = [tex]96[/tex]. square feet.

Step-by-step explanation:

Given : A square pyramid is 6 feet on each side. The height of the pyramid is 4 feet.

To find:  What is the total area of the pyramid.

Solution : We have given

Each side of square pyramid = 6 feet .

Height = 4 feet .

Area of pyramid = [tex](side)^{2} + 2* side\sqrt{\frac{(side)^{2}}{4} +height^{2}}[/tex].

Plug the values side =  6 feet  , height = 4 feet .

Area of pyramid = [tex](6)^{2} + 2* 6\sqrt{\frac{(6)^{2}}{4} + 4^{2}}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{\frac{36}{4} + 16}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{9 +16}[/tex].

Area of pyramid = [tex]36+ 12\sqrt{25}[/tex].

Area of pyramid = [tex]36+ 12 *5[/tex].

Area of pyramid = [tex]36+ 60[/tex].

Area of pyramid = [tex]96[/tex]. square feet.

Therefore, Area of pyramid = [tex]96[/tex]. square feet.

PLEASE HELP!!!!!!!!!!!!!!!

Answers

Answer:

  d.  (1, 5, 2)

Step-by-step explanation:

A suitable calculator can find the reduced row-echelon form for you. Some scientific calculators and many graphing calculators have this capability, as do on-line calculator. The one below is supported by ads.

In terms of x, find an expression that represents the area of the shaded region. The outer square has side lengths of (x+5) and the inner square has side lengths of (x-2), as shown.

Answers

Answer:

Area = 14x + 21 square units

Step-by-step explanation:

The formula of an area of a square with side length a:

[tex]A=a^2[/tex]

The big square:

[tex]a=x+5[/tex]

Substitute:

[tex]A_B=(x+5)^2[/tex]           use  [tex](a+b)^2=a^2+2ab+b^2[/tex]

[tex]A_B=x^2+2(x)(5)+5^2=x^2+10x+25[/tex]

The small square:

[tex]a=x-2[/tex]

Substitute:

[tex]A_S=(x-2)^2[/tex]       use  [tex](a-b)^2=a^2-2ab+b^2[/tex]

[tex]A_S=x^2-2(x)(2)+2^2=x^2-4x+4[/tex]

The area of a shaded region:

[tex]A=A_B-A_S[/tex]

Substitute:

[tex]A=(x^2+10x+25)-(x^2-4x+4)=x^2+10x+25-x^2+4x-4[/tex]

combine like terms

[tex]A=(x^2-x^2)+(10x+4x)+(25-4)=14x+21[/tex]

All Seasons Plumbing has two service trucks that frequently need repair. If the probability the first truck is available is .73, the probability the second truck is available is .59, and the probability that both trucks are available is .43: What is the probability neither truck is available

Answers

Answer: .11

Step-by-step explanation:

Let F be the event that the first truck is available and S be the event that the second truck is available.

The probability of neither truck being available is expressed as P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex]) , where P([tex]F^{C}[/tex]) is the probability that the event F doesn't happen and P([tex]S^{C}[/tex]) is the probability that the event S doesn't happen.

P([tex]F^{C}[/tex])= 1-P(F) = 1-0.73 = 0.27

P([tex]S^{C}[/tex])=1-P(S) = 1-0.59 = 0.41

Since  [tex]F^{C}[/tex] and [tex]S^{C}[/tex] aren't mutually exclusive events, then:

P([tex]F^{C}[/tex]∪[tex]S^{C}[/tex]) = P([tex]F^{C}[/tex]) + P([tex]S^{C}[/tex]) - P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex])

Isolating the probability that interests us:

P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex])= P([tex]F^{C}[/tex]) + P([tex]S^{C}[/tex])- P([tex]F^{C}[/tex]∪[tex]S^{C}[/tex])

Where P([tex]F^{C}[/tex]∪[tex]S^{C}[/tex]) = 1 - 0.43 = 0.57

Finally:

P([tex]F^{C}[/tex]∩[tex]S^{C}[/tex]) = 0.27+ 0.41 - 0.57 = 0.11

Suppose that we have a sample space S = {E 1, E 2, E 3, E 4, E 5, E 6, E 7}, where E 1, E 2, ..., E 7 denote the sample points. The following probability assignments apply: P(E 1) = 0.1, P(E 2) = 0.15, P(E 3) = 0.15, P(E 4) = 0.2, P(E 5) = 0.1, P(E 6) = 0.05, and P(E 7) = 0.25.
A= {E1, E4, E6}
B= {E2, E4, E7}
C= {E2, E3, E5, E7}
(a) Find P(A), P(B), and P(C). (b) What is P(A ∩ B)? (c) What is P(A ∪ B)? (d) Are events A and C mutually exclusive?

Answers

Answer:

(a) The probability of P(A), P(B), and P(C) are 0.35, 0.6 and 0.65 respectively.

(b) The probability of P(A ∩ B) is 0.2.

(c) The probability of P(A ∪ B) is 0.75.

(d) Events A and C mutually exclusive because the intersection of set A and C is null set or ∅.

Step-by-step explanation:

The given sample space is

[tex]S=\{E_1,E_2,E_3,E_4,E_5,E_6,E_7\}[/tex]

[tex]P(E_1)=0.1, P(E_2)=0.15,P(E_3)=0.15,P(E_4)=0.2,P(E_5)=0.1,P(E_6)=0.05, P(E_7)=0.25[/tex]

It is given that

[tex]A=\{E_1,E_4,E_6\}[/tex]

[tex]B=\{E_2,E_4,E_7\}[/tex]

[tex]C=\{E_2,E_3,E_5,E_7\}[/tex]

(a)

[tex]P(A)=P(E_1)+P(E_4)+P(E_6)=0.1+0.2+0.05=0.35[/tex]

[tex]P(B)=P(E_2)+P(E_4)+P(E_7)=0.15+0.2+0.25=0.6[/tex]

[tex]P(C)=P(E_2)+P(E_3)+P(E_5)+P(E_7)=0.15+0.15+0.1+0.25=0.65[/tex]

Therefore the probability of P(A), P(B), and P(C) are 0.35, 0.6 and 0.65 respectively.

(b)

A ∩ B represent the common elements of set A and set B.

[tex]A\cap B=\{E_4\}[/tex]

[tex]P(A\cap B)=P(E_4)=0.2[/tex]

The probability of P(A ∩ B) is 0.2.

(c)

A ∪ B represent all the elements of set A and set B.

[tex]A\cup B=\{E_1,E_2,E_4,E_6,E_7\}[/tex]

[tex]P(A\cup B)=P(E_1)+P(E_2)+P(E_4)+P(E_6)+P(E_7)[/tex]

[tex]P(A\cup B)=0.1+0.15+0.2+0.05+0.25=0.75[/tex]

The probability of P(A ∪ B) is 0.75.

(d)

Set A and C has no common element. So, the intersection of set A and C is empty set.

Yes, events A and C mutually exclusive because the intersection of set A and C is null set or ∅.

Final answer:

The probability of events A, B, and C are calculated by summing the individual probabilities of their constituent sample points. The probability of the intersection of events A and B is equal to the probability of the common sample point. The probability of the union of events A and B is obtained by subtracting the probability of the intersection from the sum of their individual probabilities. Events A and C are not mutually exclusive because they have common sample points.

Explanation:

(a) Probability of events A, B, and C:

P(A) = P(E1) + P(E4) + P(E6) = 0.1 + 0.2 + 0.05 = 0.35P(B) = P(E2) + P(E4) + P(E7) = 0.15 + 0.2 + 0.25 = 0.6P(C) = P(E2) + P(E3) + P(E5) + P(E7) = 0.15 + 0.15 + 0.1 + 0.25 = 0.65

(b) Probability of intersection of events A and B:

P(A ∩ B) = P(E4) = 0.2

(c) Probability of union of events A and B:

P(A ∪ B) = P(A) + P(B) - P(A ∩ B) = 0.35 + 0.6 - 0.2 = 0.75

(d) Mutually exclusive events A and C:

No, events A and C are not mutually exclusive because they have common sample points in E2 and E7.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

50 Points Please show graph
Solve the equation by graphing.

x^2+14x+45=0

First, graph the associated parabola by plotting the vertex and four additional points, two on each side of the vertex.
Then, use the graph to give the solution(s) to the equation.
If there is more than one solution, separate them with commas.

Answers

Answer:

The solutions are x = -9 , x = -5

Step-by-step explanation:

* Lets find the vertex of the parabola

- In the quadratic equation y = ax² + bx + c, the vertex of the parabola

 is (h , k), where h = -b/2a and k = f(h)

∵ The equation is y = x² + 14x + 45

∴ a = 1 , b = 14 , c = 45

∵ h = -b/2a

∴ h = -14/2(1) = -14/2 = -7

∴ The x-coordinate of the vertex of the parabola is -7

- Lets find k

∵ k = f(h)

∵ h = -7

- Substitute x by -7 in the equation

∴ k = (-7)² + 14(-7) + 45 = 49 - 98 + 45 = -4

∴ The y-coordinate of the vertex point is -4

∴ The vertex of the parabola is (-7 , -4)

- Plot the point on the graph and then find two points before it and

 another two points after it

- Let x = -9 , -8 and -6 , -5

∵ x = -9

∴ y = (-9)² + 14(-9) + 45 = 81 - 126 + 45 = 0

- Plot the point (-9 , 0)

∵ x = -8

∴ y = (-8)² + 14(-8) + 45 = 64 - 112 + 45 = -3

- Plot the point (-8 , -3)

∵ x = -6

∴ y = (-6)² + 14(-6) + 45 = 36 - 84 + 45 = -3

- Plot the point (-6 , -3)

∵ x = -5

∴ y = (-5)² + 14(-5) + 45 = 25 - 70 + 45 = 0

- Plot the point (-5 , 0)

* To solve the equation x² + 14x + 45 = 0 means find the value of

  x when y = 0

- The solution of the equation x² + 14x + 45 = 0 are the x-coordinates

 of the intersection points of the parabola with the x-axis

∵ The parabola intersects the x-axis at points (-9 , 0) and (-5 , 0)

∴ The solutions of the equation are x = -9 and x = -5

* The solutions are x = -9 , x = -5

The principle of redundancy is used when system reliability is improved through redundant or backup components. Assume that a​ student's alarm clock has a 15.7​% daily failure rate. Complete parts​ (a) through​ (d) below. a. What is the probability that the​ student's alarm clock will not work on the morning of an important final​ exam? b. If the student has two such alarm​ clocks, what is the probability that they both fail on the morning of an important final​ exam? c. What is the probability of not being awakened if the student uses three independent alarm​ clocks?d. Do the second and third alarm clocks result in greatly improved​ reliability? (A) Yes, because you can always be certain that at least one alarm clock will work. (B) No, because the malfunction of both is equally or more likely than the malfunction of one. (C) ​Yes, because total malfunction would not be​ impossible, but it would be unlikely. (D) No, because total malfunction would still not be unlikely.

Answers

Step-by-step answer:

Given:

alarm clocks that fail at 15.7% on any day.

Solution

Probability of failure of a single clock = 15.7% = 0.157

(a)

probability of failure of a single clock on any given day (final exam or not)

= 15.7%  (given)

(b)

probability of failure of two independent alarm clocks on the SAME day

= 0.157^2

= 0.024649  (from independence of events)

(c)

probability of failure of three independent alarm clocks on the SAME day

= 0.157^3

= 0.00387  (from independence of events)

(d)

Since the probability of failure has been reduced from 0.157 to 0.00387, we can conclude that yes, even though malfunction of all three clocks is not impossible, it is unlikely at a probability of 0.00387 (less than 1 %)

Using the binomial distribution, it is found that:

a) 15.7% probability that the​ student's alarm clock will not work on the morning of an important final​ exam.

b) 0.0246 = 2.46% probability that they both fail on the morning of an important final​ exam.

c) 0.0039 = 0.39% probability of not being awakened if the student uses three independent alarm​ clocks.

d)

(C) ​Yes, because total malfunction would not be​ impossible, but it would be unlikely.

---------------------------

For each alarm clock, there are only two possible outcomes. Either it works, or it does not. The probability of an alarm working is independent of any other alarm, which means that the binomial distribution is used to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of a success on a single trial.

---------------------------

Item a:

15.7% probability of the alarm clock falling each day, thus, the same probability on the day of the final exam.

---------------------------

Item b:

Two clocks, thus [tex]n = 2[/tex]Each with a 100 - 15.7 = 84.3% probability of working, thus [tex]p = 0.843[/tex].

The probability of both falling is the probability that none works, thus P(X = 0).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{2,0}.(0.843)^{0}.(0.157)^{2} = 0.0246[/tex]

0.0246 = 2.46% probability that they both fail on the morning of an important final​ exam.

---------------------------

Item c:

Same as item b, just with 3 clocks, thus [tex]n = 3[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{3,0}.(0.843)^{0}.(0.157)^{3} = 0.0039[/tex]

0.0039 = 0.39% probability of not being awakened if the student uses three independent alarm​ clocks.

---------------------------

Item d:

Each extra clock, the probability of malfunctions become increasingly smaller, thus very unlikely, which means that the correct option is:

(C) ​Yes, because total malfunction would not be​ impossible, but it would be unlikely.

A similar problem is given at https://brainly.com/question/23576286

You are playing with a standard deck of 52 playing cards. Each time you draw one card from the deck, and then you put the card back, and reshuffle the deck before choosing another card. What is the probability of selecting a number less than (but not including) 4? Count aces as equal to 1. (report a number rounded to the nearest two decimal places, but not a fraction)

Answers

Answer:

0.23

Step-by-step explanation:

A standard deck has 4 suits (spade, club, diamond, and heart), and each suit has 13 ranks (ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, and king).

We want to know the probability of drawing an ace, a 2, or a 3.  There are four aces, four 2's, and four 3's in a deck (one for each suit).  That's a total of 12 cards.  So the probability is:

12 / 52 ≈ 0.23

Using the probability concept, it is found that there is a 0.2308 = 23.08% probability of selecting a number less than 4.

--------------------------

A probability is the division of the number of desired outcomes by the number of total outcomes.In a standard deck, there are 52 cards, and thus, the number of total outcomes is [tex]T = 52[/tex]Of those, 12 are less than 4, and thus, the number of desired outcomes is [tex]D = 4[/tex].

Thus, the probability of selecting a number less than 4 is:

[tex]p = \frac{D}{T} = \frac{12}{52} = 0.2308[/tex]

0.2308 = 23.08%

A similar problem is given at https://brainly.com/question/13484439

a(12) = 50- 1.25x

how do I solve it​

Answers

Answer:

a(12) = 35

Step-by-step explanation:

Given

a(12) = 50- 1.25x

Value of x is 12

50 - 1.25(12)

Simplify

50 - 15

Solve

a(12) = 50 - 15

a(12) = 35

Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0∘ and the coefficient of rolling friction is 0.30. How long the ramp should be to stop a truck of 15000 kg having a speed of 35 m/s.

Answers

The length of the ramp required can be determined by using conservation

of energy principle.

The length of the ramp should be approximately 154.97 meters.

Reasons:

Given parameters are;

The angle of inclination of the ramp, θ = 6.0°

Coefficient of friction, μ = 0.30

Mass of the truck, m = 15,000 kg

Speed of the truck, v = 35 m/s

Required;

The length of the ramp to stop the truck

Solution:

From the law of conservation of energy, we have;

Kinetic energy = Work done against friction + Potential energy gained by the truck at height

K.E. = [tex]W_f[/tex] + P.E.

Kinetic energy of the truck, K.E. = [tex]\frac{1}{2} \cdot m \cdot v^2[/tex]

Therefore;

K.E. = [tex]\frac{1}{2} \times 15,000 \times 35^2 = 9,187,500[/tex]

The kinetic energy of the truck, K.E. = 9,187,500 J

Friction force,[tex]F_f[/tex] = m·g·cos(θ)·μ

Therefore;

[tex]F_f[/tex] = 15,000 × 9.81 × cos(6) × 0.30 = 43,903.169071

Friction force,[tex]F_f[/tex] = 43,903.169071 N

Work done against friction = [tex]F_f[/tex] × d

Therefore;

Work done against friction, [tex]W_f[/tex] = 43,903.169071·d

Potential energy gained, P.E. = m·g·h

The height, h = d × sin(6.0°)

P.E. = 15,000 × 9.81 × d × sin(6.0°) = 147150 × d × sin(6.0°)

Which gives;

9,187,500 J = 43,903.169071·d + 147150 × d × sin(6.0°)

[tex]d = \dfrac{9187500}{43,903.169071 + 147150 \times sin(6.0^{\circ})} \approx 154.97[/tex]

The length of the ramp, d ≈ 154.97 m.

Learn more here:

https://brainly.com/question/20166060

if the probability of an event happening is 65% then the probability this event does not occur?

Answers

You must know that percent are ALWAYS taken out of 100. This means that 100 subtracted by 65 will give the percent that this event won't happen:

100 - 65 = 35

This event has 65% probability of happening and a 35% of NOT happening

Hope this helped!

~Just a girl in love with Shawn Mendes

The lengths of plate glass parts are measured to the nearest tenth of a millimeter. The lengths are uniformly distributed with values at every tenth of a millimeter starting at 590.2, and continuing through 590.8. Determine the mean and variance of the lengths. (a) mean (in tenths of millimeters) Round your answer to two decimal places (e.g. 98.76). (b) variance (in tenths of millimeters2) Round your answer to three decimal places (e.g. 98.765).

Answers

Answer:     [tex]\text{Mean length}=590.5\ mm\\\\\text{Variance of the lengths}=0.03\ mm[/tex]

Step-by-step explanation:

The mean and variance of a continuous uniform distribution function with parameters m and n is given by :-

[tex]\text{Mean=}\dfrac{m+n}{2}\\\\\text{Variance}=\dfrac{(n-m)^2}{12}[/tex]

Given : [tex] m=590.2\ \ \ n=590.80[/tex]

[tex]\text{Then, Mean=}\dfrac{590.2+590.8}{2}=590.5\ mm\\\\\text{Variance}=\dfrac{(590.8-590.2)^2}{12}=0.03\ mm[/tex]

Please Explain and Show your work! Thank you!

Answers

Answer:

  344 ft²

Step-by-step explanation:

The area of the square is (40 ft)² = 1600 ft².

The area of the four circles is ...

  4×(πr²) = 4×3.14×(10 ft)² = 1256 ft²

Then the area that is not covered by the circles is ...

  1600 ft² -1256 ft² = 344 ft²

The area not sprinkled is 344 ft².

A student answers a multiple-choice examination question that offers four possible answers. Suppose the probability that the student knows the answer to the question is 0.9 and the probability that the student will guess is 0.1. Assume that if the student guesses, the probability of selecting the correct answer is 0.25. If the student correctly answers a question, what is the probability that the student really knew the correct answer? (Round your answer to four decimal places.)

Answers

Answer: 0.9730

Step-by-step explanation:

Let A be the event of the answer being correct and B be the event of the knew the answer.

Given: [tex]P(A)=0.9[/tex]

[tex]P(A^c)=0.1[/tex]

[tex]P(B|A^{C})=0.25[/tex]

If it is given that the answer is correct , then the probability that he guess the answer [tex]P(B|A)= 1[/tex]

By Bayes theorem , we have

[tex]P(A|B)=\dfrac{P(B|A)P(A)}{P(B|A)P(A)+P(C|A^c)P(A^c)}[/tex]

[tex] =\dfrac{(1)(0.9)}{(1))(0.9)+(0.25)(0.1)}\\\\=0.972972972973\approx0.9730[/tex]

Hence, the student correctly answers a question, the probability that the student really knew the correct answer is 0.9730.

If f(x)=3x^2-2 and g(x)=4x+2, what is the value of (f+g)(2)

Answers

[tex](f+g)(x)=3x^2-2+4x+2=3x^2+4x\\\\(f+g)(2)=3\cdot2^2+4\cdot2=12+8=20[/tex]

Combine the following expressions.



Answer right pls, thanks

Answers

a and c  both have √x  , so they will both be in brackets multiplied by √x.

b is the only term with √y  so it will be outside of the brackets.

So the answer will be:

(a - c)√x  + b√y

We can check this by expanding the brackets:

  (a - c)√x  + b√y

= a√x  - c√x  + b√y

We can rearrange this to get the same original expression:

a√x  - c√x  + b√y

= a√x  + b√y  - c√x

____________________________________

Answer:

Last option: (a - c)√x  + b√y

Answer:

choice 3 is correct  √x(a - c) + b√y

explanation:

You simplify by looking for the common multiplier which is √x

meaning it will be

√x(a - c)  + b√y

In a survey of 520 likely voters in a certain city, 307 said that they planned to vote to reelect the incumbent mayor. What is the probability that a surveyed voter plans to vote to reelect the mayor? Write only a number as your answer. Round to two decimal places (for example: 0.43).

Answers

Answer: 0.59

Step-by-step explanation:

Probability is a measure that quantifies the likelihood that events will occur.

Probabilities can be numerically described by the number of desired outcomes divided by the total number of all outcomes .

In this case, the number of desired outcomes is 307 (surveyed voters who plan to vote to reelect the mayor), and the total number of all outcomes is 520 (total of surveyed voters) .

Then, the probability that a surveyed voter plans to vote to reelect the mayor is calculated as:

[tex]\frac{307}{520}=0.59[/tex]

Final answer:

The probability that a surveyed voter plans to vote to reelect the mayor is 0.59.

Explanation:

To find the probability that a surveyed voter plans to vote to reelect the mayor, we divide the number of surveyed voters who plan to reelect the mayor by the total number of surveyed voters.


Given that 307 out of 520 likely voters plan to reelect the incumbent mayor, the probability is:


Probability = Number of surveyed voters who plan to reelect the mayor / Total number of surveyed voters


Probability = 307 / 520 = 0.59 (rounded to two decimal places)

You pick 7 digits (0-9) at random without replacement, and write them in the order picked. What is the probability that you have written the first 7 digits of your phone number

Answers

Final answer:

The probability of writing the first 7 digits of your phone number is 1/60480.

Explanation:

To determine the probability of choosing the first 7 digits of your phone number in the given scenario, we need to calculate the probability of choosing each digit correctly and in order. Since there are 10 digits to choose from, the probability of choosing the first digit correctly is 1/10. The probability of choosing the second digit correctly is 1/9, since one digit has already been chosen. Continuing this pattern, the probability of choosing all 7 digits correctly and in order is:



P(choosing all seven numbers correctly) = P(choosing 1st number correctly) * P(choosing 2nd number correctly) * ... * P(choosing 7th number correctly)



So, the probability is:



1/10 * 1/9 * 1/8 * 1/7 * 1/6 * 1/5 * 1/4 = 1/60480

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ2

Final answer:

The probability of writing the first 7 digits of your phone number is 1/604,800.

Explanation:

The probability of writing the first 7 digits of your phone number depends on the specific digits in your phone number. However, assuming that all digits are equally likely to be chosen, the probability can be calculated by multiplying the probabilities of choosing each digit correctly. Since there are 10 digits to choose from and you are picking 7, the probability would be:

Probability of choosing the first digit correctly: 1/10Probability of choosing the second digit correctly: 1/9 (since you are picking without replacement)Probability of choosing the third digit correctly: 1/8Probability of choosing the fourth digit correctly: 1/7Probability of choosing the fifth digit correctly: 1/6Probability of choosing the sixth digit correctly: 1/5Probability of choosing the seventh digit correctly: 1/4

To calculate the overall probability, you multiply these individual probabilities together:

1/10 * 1/9 * 1/8 * 1/7 * 1/6 * 1/5 * 1/4= 1/(10*9*8*7*6*5*4)= 1/604,800

So, the probability of writing the first 7 digits of your phone number is 1/604,800.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ12

1.What’s the least common multiple (LCM) for each group of numbers?
a. 6 and 15
b. 4 and 11
c. 6, 9, and 12
d. 8, 10, and 20

2.What’s the least common denominator (LCD) for each group of fractions?
a. 1⁄6 and 7⁄8
b. 3⁄4 and 7⁄10
c. 7⁄12, 3⁄8 and 11⁄36
d. 8⁄15, 11⁄30 and 3⁄5

3.Insert the “equal” sign or the “not equal” sign ( = or ≠) to make each statement true.
a. 18/36 _____ 1/2
b. 13/15 _____ 7/10
c. 3/5 _____ 5/9
d. 3/8 _____ 10/16

4.On a hot summer day, John drank 5⁄11 of a quart of iced tea; Gary drank 7⁄10 of a quart; and Carter drank 3⁄5 of a quart. Which man was the most thirsty?

5.What’s the largest fraction in each group?
a. 5⁄6 and 29⁄36
b. 5⁄12 and 3⁄8
c. 2⁄5 and 19⁄45
d. 5⁄7, 13⁄14, and 19⁄21
e. 7⁄11 and 9⁄121
f. 1⁄2, 3⁄18, and 4⁄9

6.Reduce each of the following fractions to its simplest form.
a. 12⁄18
b. 48⁄54
c. 27⁄90
d. 63⁄77
e. 24⁄32
f. 73⁄365

7.What is the next fraction in each of the following patterns?
a. 1⁄40, 4⁄40, 9⁄40, 16⁄40, 25⁄40 . . .?
b. 3⁄101, 4⁄101, 7⁄101, 11⁄101, 18⁄101, 29⁄101. . .?
c. 5⁄1, 10⁄2, 9⁄2, 18⁄4, 17⁄8, 34⁄32, 33⁄256. . .?

8.In each pair, tell if the fractions are equal by using cross multiplication.
a. 5⁄30 and 1⁄6
b. 4⁄12 and 21⁄60
c. 17⁄34 and 41⁄82
d. 6⁄9 and 25⁄36

9.This year, a baseball player made 92 hits out of 564 times at bat. Another player made 84 hits out of 634 times at bat. Did the two players have the same batting average?

10.On a test with 80 questions, Bob got 60 correct. On another test with 100 questions, he got 75 correct. Did Bob get the same score on both tests?

11.Find the missing numerators in each of the following problems.
a. 10⁄15 = ⁄60
b. ⁄108 = 4⁄9
c. 7⁄11 = ⁄121
d. ⁄144 = 2⁄6

12.This handy application of LCMs is used by astronomers.

All the planets in our solar system revolve around the sun. The planets occasionally line up together in their journeys, as shown in the illustration. The chart shows the time it takes each planet to make one trip around the sun.

Now, imagine that the planets Earth, Mars, Jupiter, Saturn, Uranus, and Neptune aligned last night. How many years will pass before this happens again? (Hint—Find the LCM of the planets’ revolution times.)
Solar System
Planet Revolution Time
Earth 1 year
Mars 2 years
Jupiter 12 years
Saturn 30 years
Uranus 84 years
Neptune 165 years

Answers

1.

a. 30

b. 44

c. 36

d. 40

2. I don't really remember how to do these but if you cant make the denominator smaller then I belive it's

a. 24

b. 20

c. 4

d. 5

3.

a. =

b. not =

c. not =

d. not =

4. Gary

5.

a. 5/6

b. 5/12

c. 19/45

d. 13/14

e. 7/11

f. 1/2

6.

a. 2/3

b. 8/9

c. 3/10

d. 9/11

e. 3/4

f. 1/5

7.

a. 36/40

b.

c.

8.

a. yes

b. no

c. no

d. no

9. no

10. yes

11.

a. 40

b. 48

c. 77

d. 48

12. 4,620

c. 27⁄90

d. 63⁄77

e. 24⁄32

f. 73⁄365

7.What is the next fraction in each of the following patterns?

a. 1⁄40, 4⁄40, 9⁄40, 16⁄40, 25⁄40 . . .?

b. 3⁄101, 4⁄101, 7⁄101, 11⁄101, 18⁄101, 29⁄101. . .?

c. 5⁄1, 10⁄2, 9⁄2, 18⁄4, 17⁄8, 34⁄32, 33⁄256. . .?

8.In each pair, tell if the fractions are equal by using cross multiplication.

a. 5⁄30 and 1⁄6

b. 4⁄12 and 21⁄60

c. 17⁄34 and 41⁄82

d. 6⁄9 and 25⁄36

1.

a. 30

b. 44

c. 36

d. 40

2.

a. 24

b. 20

c. 4

d. 5

3.

a. =

b. not =

c. not =

d. not =

4. Gary

5.

a. 5/6

b. 5/12

c. 19/45

d. 13/14

e. 7/11

f. 1/2

6.

a. 2/3

b. 8/9

c. 3/10

d. 9/11

e. 3/4

f. 1/5

7.

a. 36/40

b.

c.

8.

a. yes

b. no

c. no

d. no

9. no

10. yes

11.

a. 40

b. 48

c. 77

d. 48

12. 4,620

Step-by-step explanation:

A theater group made appearances in two cities. The hotel charge before tax in the second city was $500 lower than in the first. The tax in the first city was 6.5% and the tax in the second city was 4.5% The total hotel tax paid for the two cities was $582.50
. How much was the hotel charge in each city before tax?

Answers

Answer:

First city: $5,500

Second city: $5,000

Step-by-step explanation:

Let's define x as the hotel price in the first city and y the hotel price in the second city.  We can start with this equation:

y = x - 500 (The hotel before tax in the 2nd city was $500 lower than in the 1st.)

Then we can say

0.065x + 0.045y = 582.50  (the sum of the tax amounts were $582.50)

We place the value of y from the first equation in the second equation:

0.065x + 0.045 (x - 500) = 582.50

0.065x + 0.045x - 22.50 = 582.50 (simplifying and adding 22.5 on each side)...

0.11x = 605

x = 5,500

The cost of the first hotel was $5,500

Thus, the cost of the second hotel was $5,000 (x - 500)

You're using your meter to make voltage measurements in the circuit shown in the figure above. Your meter is connected between points A and C, and you're getting a reading of 6 V on the display. What can you conclude from this reading? A. Switch S1 is open. B. Resistors R1 and R2 have equal resistance values. C. Resistor R2 has a resistance value that's twice the value of either R1. D. Switch S1 is closed.

Answers

Answer:

A. Switch S1 is Open

Step-by-step explanation:

I attach the missing figure in the image below

Since you are getting a reading of 6V which is the maximum voltage of your circuit, you can conclude that

A. Switch S1 is Open

- If the Switch S1 was closed, we would be getting a reading of 0V. This is not the case.

- Because the switch is open, there is no current going through the circuit and therefore there is not any voltage drop across the resistors. This is why their values don't affect the reading.

The probability of winning something on a single play at a slot machine is 0.11. After 4 plays on the slot machine, what is the probability of winning at least once

Answers

Step-by-step explanation:

The probability of winning at least once is equal to 1 minus the probability of not winning any.

P(x≥1) = 1 - P(x=0)

P(x≥1) = 1 - (1-0.11)^4

P(x≥1) = 1 - (0.89)^4

P(x≥1) = 0.373

The probability is approximately 0.373.

Answer:

37.26% probability of winning at least once

Step-by-step explanation:

For each play, there are only two possible outcomes. Either you win, or you do not win. The probability of winning on eah play is independent of other plays. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

The probability of winning something on a single play at a slot machine is 0.11.

This means that [tex]p = 0.11[/tex]

After 4 plays on the slot machine, what is the probability of winning at least once

Either you do not win any time, or you win at least once. The sum of the probabilities of these events is decimal 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

We want [tex]P(X \geq 1)[/tex]. So

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 4) = C_{4,0}.(0.11)^{0}.(0.89)^{4} = 0.6274[/tex]

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.6274 = 0.3726[/tex]

37.26% probability of winning at least once

You want to have $600,000 when you retire in 10 years. If you can earn 8% interest compounded monthly, how much would you need to deposit now into the account to reach your retirement goal?

Answers

Answer:

  $270,314.08

Step-by-step explanation:

The multiplier each month is 1+0.08/12 ≈ 1.0066667, so after 120 months, the amount is multiplied by (1.0066667)^120 ≈ 2.2196402. The amount needed is ...

  $600,000/2.2196402 ≈ $270,314.08

Final answer:

To reach a retirement goal of $600,000 in 10 years with an 8% interest rate compounded monthly, you would need to deposit approximately $277,002.66 now.

Explanation:

In this case, we're using a formula to determine the amount needed to deposit today (P) for a future goal ($600,000) using an interest rate (r) of 8% compounded monthly for ten years. The formula to use is P = F / (1 + r/n)^(nt), where:

F is the future value of the investment ($600,000) r is the annual interest rate (8% or 0.08 as a decimal) n is the number of times that interest is compounded per unit t (12 times a year for our case) t is the time the money is invested for in years (10 years).

So, you need to plug these figures into the equation: P = 600,000 / (1 + 0.08/12)^(12*10). After doing the math, you would need to deposit around $277,002.66 now to reach your retirement goal of $600,000 in ten years given an 8% annual interest rate compounded monthly.

Learn more about Compound Interest here:

https://brainly.com/question/34614903

#SPJ2

Last​ year, a person wrote 126 checks. Let the random variable x represent the number of checks he wrote in one​ day, and assume that it has a Poisson distribution. What is the mean number of checks written per​ day? What is the standard​ deviation? What is the​ variance?

Answers

Answer:  The mean number of checks written per​ day  [tex]=0.3452[/tex]

Standard deviation[tex]=0.5875[/tex]

Variance  [tex]=0.3452[/tex]

Step-by-step explanation:

Given : The total number of checks wrote by person in a year = 126

Assume that the year is not a leap year.

Then  1 year = 365 days

Let the random variable x represent the number of checks he wrote in one​ day.

Then , the mean number of checks wrote by person each days id=s given by :-

[tex]\lambda=\dfrac{126}{365}\approx0.3452[/tex]

Since , the distribution is Poisson distribution , then the variance must equal to the mean value i.e. [tex]\sigma^2=\lambda=0.3452[/tex]

Standard deviation : [tex]\sigma=\sqrt{0.3452}=0.5875372328\approx0.5875[/tex]

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative. f(t) = sqrt 9-x

Answers

Answer:The derivative of the function is:

       [tex]f'(x)= \dfrac{-1}{2\sqrt{9-x}}[/tex]

The domain of the function is:  [tex]x\leq 9[/tex]and the domain of the derivative function is: [tex]x\leq 9[/tex]Step-by-step explanation:

The function f(x) is given by:

   [tex]f(x)=\sqrt{9-x}[/tex]

The domain of the function is the possible values of x where the function is defined.

We know that the square root function [tex]\sqrt{x}[/tex] is defined when x≥0.

Hence, [tex]\sqrt{9-x}[/tex] will be defined when [tex]9-x\geq 0\\\\i.e.\\\\x\leq 9[/tex]

Hence, the domain of the function f(x) is: [tex]x\leq 9[/tex]

Also, the definition of derivative of x is given by:

[tex]f'(x)= \lim_{h \to 0}  \dfrac{f(x+h)-f(x)}{h}[/tex]

Hence, here by putting the value of the function we get:

[tex]f'(x)= \lim_{h \to 0} \dfrac{\sqrt{9-(x+h)}-\sqrt{9-x}}{h}\\\\i.e.\\\\f'(x)= \lim_{h \to 0} \dfrac{\sqrt{9-(x+h)}-\sqrt{9-x}}{h}\times \dfrac{\sqrt{9-(x+h)}+\sqrt{9-x}}{\sqrt{9-(x+h)}+\sqrt{9-x}}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{(\sqrt{9-(x+h)}-\sqrt{9-x})(\sqrt{9-(x+h)}+\sqrt{9-x})}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{9-(x+h)-(9-x)}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}[/tex]

Since,

[tex](a-b)(a+b)=a^2-b^2[/tex]

Hence, we have:

[tex]f'(x)= \lim_{h \to 0} \dfrac{-h}{(\sqrt{9-(x+h)}+\sqrt{9-x})\times h}\\\\\\f'(x)= \lim_{h \to 0} \dfrac{-1}{(\sqrt{9-(x+h)}+\sqrt{9-x})}\\\\\\i.e.\\\\\\f'(x)= \dfrac{-1}{2\sqrt{9-x}}[/tex]

Since, the domain of the derivative function is equal to the derivative of the square root function.

Also, the domain of the square root function is: [tex]x\leq 9[/tex]

Hence, domain of the derivative function is:  [tex]x\leq 9[/tex]

Answer:

-1/sqrt(1-9x)

Step-by-step explanation:

This is the answer

Find the sum of the sequence 46+47+48+49+...+137

Answers

Answer:

8418

Step-by-step explanation:

1 + 2 + ... + n is (n^2 + n)/2

46 + 47 + ... + 137

is the same as

1 + 2 + ... + 137 - (1 + 2 + ... + 45)

or

(137^2 + 137)/2 - (45^2 + 45)/2

= 8418

Other Questions
At a cost of 200, your club bought 175 frisbees to sell at the pep rally. You plan on selling them for $5 each. What is the domain of the function? (25x) (45x) (54x) what is x? PLEASE HELP ME PLEASE AS FAST AS POSSIBLE What is the degree of the following polynomial?2x5 + x4 + x3 + x - 28A) 3B) 4C) 5D) 6 The number of moles of a given mass of a substance can be found without knowing its molecular formula or molar mass.True False A cooling tower for a nuclear reactor is to be constructed in the shape of a hyperboloid of one sheet. The diameter at the base is 260 m and the minimum diameter, 500 m above the base, is 220 m. Find an equation for the tower. (Assume the position of the hyperboloid is such that the center is at the origin with its axis along the z-axis, and the minimum diameter at the center.) How did the Russian revolution impact World War I?A) the Russians required the allied powers to come to their aid and defeat the radical groups.B) the Russians pulled out from the war, enabling the Germans to focus on the western front.C) the Russians created new technological advancements that were used by the allied powers to win.D) the Russians created a new communist government that aligned with the central powers instead. Name five essential components of a reflex arc. Question 3(Multiple Choice Worth 5 points)(03.03 LC) How does the graph of g(x) = (x 2)3 + 7 compare to the parent function f(x) = x3? g(x) is shifted 7 units to the right and 2 units up. g(x) is shifted 2 units to the right and 7 units up. g(x) is shifted 7 units to the right and 2 units down. g(x) is shifted 2 units to the left and 7 units up. How does the graph of g(x) = 3x 2 compare to the graph of f(x) = 3x? i need help simplifying this thesis and making it easier to understand for the reader (more concise) ..... "No matter how religious one may be, ones faith tends to change under unexpected and challenging circumstances." Which town changed its name in 2005 to get free tv? Given the two Fibonacci numbers below, which number would follow?(17) - 1597 and F(18) = 2584 Find the surface area of the right prism. Round to the nearest whole number. Annette, who is a toddler, first started crawling, then standing, and is now taking her first steps. This aspect of Annette's development is best categorized as _____. Where is the energy in a sucrose molecule stored?OA. Inside the hydrogen atomsOB. Inside the carbon atomsOc. In the bonds between the atomsOD. Inside the protons please help !!!Use the parabola tool to graph the quadratic function. f(x)= -2(x+4)^2-3.Graph the parabola by first plotting its vertex and then plotting a second point on the parabola I don't understand how to do question c, d and f. Can someone please help me? The measure of arc QR is _____ When they laughed at my feet, they did not realize that I had put on two different shoes because Id had to dress in the dark that morning. They did not realize that I had dressed in the dark so I wouldnt wake my father, who works nights to put food on our table. They did not realize that I had dressed in the dark to not disturb my mother, who had been up all night with the newborn twins. They just laughed. How does the passage develop the conflict? It introduces the narrator as a student who is laughed at by others because of her clothing and her father's employment. It explains how the narrator resolves the conflict by telling the kids why her shoes do not match. It explains the details of the conflict by telling how the kids treat her and explaining why her shoes don't match. To find 45% of 72, multiply 45/10072. Study the model: 45/10072=3,240/100=32.4. Find 35% of 12.