Fluid flows over a smooth cylinder. The diameter of the cylinder is D and the length normal to the flow direction is L. The drag coefficient is defined as: The drag coefficient is essentially constant with a value of 1.1 in the range of Reynolds numbers of 103 to 105. In this range, at a velocity of 2 m/s the drag force is 3 N. When the velocity is doubled to 4 m/s the drag force is:

Answers

Answer 1

Answer:

Explanation:

Given

Coefficient of drag [tex]C_d=1.1[/tex]

Reynolds number [tex]Re.no.=103 to 105[/tex]

velocity [tex]v=2 m/s [/tex]

[tex]F_d=3 N[/tex]

if velocity if 2v i.e. [tex]4 m/s [/tex]

[tex]F_d=\frac{1}{2}C_d\rho A v^2----1[/tex]

keeping other factors as constant

[tex]F'_d=\frac{1}{2}C_d\rho A (2v)^2----2[/tex]

dividing  1 and 2

[tex]\frac{F_d}{F'_d}=\frac{v^2}{2v^2}[/tex]

[tex]F'_d=4F_d[/tex]

[tex]F'_d=4\times 3=12 N[/tex]

             


Related Questions

A continuous and aligned fiber-reinforced composite having a cross-sectional area of 1130 mm2 is subjected to an external tensile load. If the stresses sustained by the fiber and matrix phases are 156 MPa and 2.75 MPa, respectively, the force sustained by the fiber phase is 74,000 N and the total longitudinal strain is 1.25 x 10-3, what is the value of the modulus of elasticity of the composite material in the longitudinal direction?

Answers

Answer:

Ec=53.7×10⁹N/m² =53.7Gpa

Explanation:

To calculate the modulus of elasticity in the longitudinal direction.  This is possible realizing Ec=σ/ε where σ=(Fm+Ff)/Ac

[tex]Ec=Sigma/E\\Ec=\frac{(Fm+Ff)/E}{Ac}\\ Ec=\frac{1802+74,000}{(1.25*10^{-3})(1130)(1/1000)^{2}  }\\ Ec=53.7*10^{9}N/m^{2}\\or\\Ec=53.7GPa[/tex]

Final answer:

The modulus of elasticity of the composite material in the longitudinal direction is 124,800 MPa.

Explanation:

To find the modulus of elasticity of the composite material in the longitudinal direction, we can use the formula:

E = (stress sustained by the fiber phase)/(longitudinal strain)

Given that the stress sustained by the fiber phase is 156 MPa and the total longitudinal strain is 1.25 x 10^-3, we can plug in these values to calculate the modulus of elasticity:

E = 156 MPa / (1.25 x 10^-3) = 124,800 MPa

Therefore, the modulus of elasticity of the composite material in the longitudinal direction is 124,800 MPa.

In Bob Shaw's short story, "The Light of Other Days," he describes something called slow glass. In the story, a married couple buys a 4-foot-wide window of slow glass that has been out on a beautiful hillside in Ireland, collecting light for 10 years. The idea is that the light takes 10 years to pass through the glass, so if you mount the window in your house it will give a view of the Irish landscape for the next 10 years, slowly unveiling everything that happened there. You can read the full short story via the link below, if you are interested.

Link to Bob Shaw's short story: The Light of Other Days.

(a) In the short story, the couple buys a window that is one-quarter-inch thick, and takes light 10 years to pass through. Let's say that you were able to locate a supplier of slow glass, and you bought some glass that was 5.00 mm thick, with the light taking 7.00 years to pass through. Taking one year to be 365.24 days, calculate the index of refraction of your piece of slow glass.

In 1999, Lene Hau, a physicist at Harvard University, received quite a bit of attention for getting light to travel at bicycle speed (later, she was able to temporarily stop light completely). The speed of a bicycle is a lot faster than light travels through the slow glass from the story, but it is still orders of magnitude less than the speed at which light travels through vacuum. If you're interested, you can follow this link to learn more about Lene Hau.

(b) Lene Hau used something called a Bose-Einstein condensate to slow down light. If the light is traveling at a speed of 40.0 km/hr through the Bose-Einstein condensate, what is the effective index of refraction of the condensate?

Answers

Answer:

Consider the following calculations

Explanation:

a )  velocity of the glass is v = distance / time

= 5 X 10-3 / 7 X 365.24 X 24 X 60 X 60

v = 2.263 X 10-11 m/sec

the speed of the light in vaccum is C

C = 3 X 108 m/sec

n = C / v

n = 3 X 108 / 2.263 X 10-11

n = 1.32567 X 1019

b )  given is 40 km/hr

= 40 X 103 / 60 X 60

= 11.11 m/sec

n = C / v

n = 3 X 108 / 11.11

n = 27002700.27

The index of refraction for the 5.00 mm thick slow glass taking light 7.00 years to pass through is approximately 1.33 x 10^19. For a Bose-Einstein condensate where light travels at 40.0 km/hr, the effective index of refraction is about 2.70 x 10^7.

In Bob Shaw's short story 'The Light of Other Days', a fictional material called slow glass is described, which delays the passage of light. To calculate the index of refraction of a 5.00 mm thick piece of slow glass where light takes 7.00 years to pass through, we can use the formula n = c/v, where c is the speed of light in a vacuum (3.00 x 108 m/s), and v is the speed of light through the material.

To find v, we can calculate the total distance light travels in 7.00 years and divide it by the time it takes to travel through the slow glass. Since the slow glass is 5.00 mm thick, which is equivalent to 5.00 x 10-3 m, and one year is 365.24 days, we calculate the speed as follows:

v = distance/time = 5.00 x 10-3 m / (7.00 years x 365.24 days/year x 24 hours/day x 3600 seconds/hour) = 5.00 x 10-3 m / 220,937,280 seconds ≈ 2.263 x 10-11 m/s.

Then, the index of refraction, n, can be calculated as n = c/v ≈ 3.00 x 108 m/s / 2.263 x 10-11 m/s ≈ 1.33 x 1019.

For Lene Hau's experiment using a Bose-Einstein condensate with a light speed of 40.0 km/hr, the index of refraction can also be calculated using n = c/v. Converting 40.0 km/hr to m/s:

v = 40.0 km/hr x (1000 m/km) / (3600 s/hr) = 11.1 m/s.

Using this value for v, we calculate n as n = c/v ≈ 3.00 x 108 m/s / 11.1 m/s ≈ 2.70 x 107.

Suppose you are standing a few feet away from a bonfire on a cold fall evening. Your face begins to feel hot. What is the mechanism that transfers heat from the fire to your face? (Hint: Is the air between you and the fire hotter or cooler than your face?)

•A. convection
•B. radiation
•C. conduction
•D. none of the above

Answers

B. Radiation. It is not touching so it cannot be conduction

A cylinder with a movable piston contains 2.00 g of helium, He, at room temperature. More helium was added to the cylinder and the volume was adjusted so that the gas pressure remained the same. How many grams of helium were added to the cylinder if the volume was changed from 2.00 L to 4.10 L ? (The temperature was held constant.)

Answers

Answer:

0.358g

Explanation:

Density of Helium = 0.179g/L

ρ=m/v

m=ρv

when the volume was 2L

m1= 0.179*2

m1=0.358g

when the volume increased to 4L

m2= 0.179*4

m2=0.716g

gram of helium added = 0.716g-0.358g

=0.358g

Suppose that you lift four boxes individually, each at a constant velocity. The boxes have weights of 3.0 N, 4.0 N, 6.0 N, and 2.0 N, and you do 12 J of work on each. Match each box to the vertical distance through which it is lifted.

Answers

Answer:

The vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

Explanation:

Worked : work can be defined as the product of force and distance.

The S.I unit of work is Joules (J).

Mathematically it can be represented as,

W = F×d.................. Equation 1

d = W/F.............................. Equation 2

where W = work, F = force, d = distance.

Given: W = 12 J

(i) for the 3.0 N weight,

using equation 2

d = 12/3

d= 4 m.

(ii) for the 4.0 N weight,

d = 12/4

d = 3 m.

(iii) for the 6.0 N weight,

d = 12/6

d = 2 m.

(iv) for the 2.0 N weight,

d = 12/2

d = 6 m

Therefore vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blocks are placed in the water. One is a 50 g piece of copper at 75°C. The other sample has a mass of 66 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample. (Pick the answer closest to the true value.)A. 1950 joules Co/kgB. 975 joules Co/kgC. 3950 joules Co/kgD. 250 joules Co/kgE. 8500 joules Co/kg

Answers

Answer:

A. 1,950 J/kgºC

Explanation:

Assuming that all materials involved, finally arrive to a final state of thermal equilibrium, and neglecting any heat exchange through the walls of the calorimeter, the heat gained by the system "water+calorimeter" must be equal to the one lost by the copper and the unknown metal.

The equation that states how much heat is needed to change the temperature of a body in contact with another one, is as follows:

Q = c * m* Δt

where m is the mass of the body, Δt is the change in temperature due to the external heat, and c is a proportionality constant, different for each material, called specific heat.

In our case, we can write the following equality:

(cAl * mal * Δtal) + (cH₂₀*mw* Δtw) = (ccu*mcu*Δtcu) + (cₓ*mₓ*Δtₓ)

Replacing by the givens , and taking ccu = 0.385 J/gºC and cAl = 0.9 J/gºC, we have:

Qg= 0.9 J/gºC*100g*10ºC + 4.186 J/gºC*250g*10ºC  = 11,365 J(1)

Ql = 0.385 J/gºC*50g*55ºC + cₓ*66g*80ºC = 1,058.75 J + cx*66g*80ºC (2)

Based on all the previous assumptions, we have:

Qg = Ql

So, we can solve for cx, as follows:

cx = (11,365 J - 1,058.75 J) / 66g*80ºC = 1.95 J/gºC (3)

Expressing (3) in J/kgºC:

1.95 J/gºC * (1,000g/1 kg) = 1,950 J/kgºC

Final answer:

The specific heat of the unknown metal can be determined from the equilibrium of heat transfer in the system. The heat lost by the hot substances is equal to the heat gained by the cooler substances. Solving for the specific heat of the unknown substance involves calculating the heat gained and lost and equating their values.

Explanation:

The specific heat of a substance is a measure of the amount of heat energy required to raise the temperature of a certain mass of the substance by a certain amount. In this case, we're solving for the specific heat (c) of an unknown substance. As the system is in thermal equilibrium, the heat lost by hot substances (copper and unknown metal) is equal to the heat gained by the cooler substances (water and the calorimeter).

The specific heat (c) of the unknown substance can therefore be determined by setting the heat gained (Q_gained = m*c*ΔT) by the cooler substances equal to the heat lost (Q_lost = m*c*ΔT) by the hot substances and solving for the specific heat (c) of the unknown substance. Given that ΔT is the change in temperature, m is the mass, and c is the specific heat, and using the specific heat values for water, aluminum, and copper.

Learn more about Specific Heat here:

https://brainly.com/question/28852989

#SPJ3

A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e-0.2t T. What is the magnitude of the current induced in the coil at the time t = 2 s? A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e-0.2t T. What is the magnitude of the current induced in the coil at the time t = 2 s? 1.3 mA 7.5 mA 2.6 mA 4.2 mA 9.2 mA

Answers

Answer:

the question is incomplete, the complete question is

"A circular coil of radius r = 5 cm and resistance R = 0.2 ? is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e^-t T. What is the magnitude of the current induced in the coil at the time t = 2 s?"

2.6mA

Explanation:

we need to determine the emf induced in the coil and y applying ohm's law we determine the current induced.

using the formula be low,

[tex]E=-\frac{d}{dt}(BACOS\alpha )\\[/tex]

where B is the magnitude of the field and A is the area of the circular coil.

First, let determine the area using [tex]\pi r^{2} \\[/tex] where r is the radius of 5cm or 0.05m

[tex]A=\pi *(0.05)^{2}\\ A=0.00785m^{2}\\[/tex]

since we no that the angle is at [tex]0^{0}[/tex]

we determine the magnitude of the magnetic filed

[tex]B=0.5e^{-t} \\t=2s[/tex]

[tex]E=-(0.5e^{-2} * 0.00785)[/tex]

[tex] E=-0.000532v\\[/tex]

the Magnitude of the voltage is 0.000532V

Next we determine the current using ohm's law

[tex]V=IR\\R=0.2\\I=\frac{0.000532}{0.2} \\I=0.0026A[/tex]

[tex]I=2.6mA[/tex]

Final answer:

The magnitude of the induced current in the coil at t = 2s in the given scenario is 2.4 mA. This is calculated using Faraday's law of electromagnetic induction and Ohm's law.

Explanation:

To find the magnitude of the current induced in the coil, we need to consider Faraday's law of electromagnetic induction. This law states that the induced electromotive force (emf) in any closed circuit is equal to the rate of change of the magnetic flux through the circuit.

In this situation, we have: B = 0.5 e-0.2t T, and the time derivative of the magnetic field is dB/dt = -0.1 e-0.2t T/s. The area A of the coil is πr²= π(0.05)² m². The induced emf (ε) equals -A dB/dt. Thus, we have ε = -π(0.05)² × -0.1 e-0.2t = 0.0007875 e-0.2t V.

Now, according to Ohm's law, I = ε/R, where R is the resistance of the coil. Substituting the given values, we have I = 0.0007875 e-0.2t / 0.2 = 0.0039375 e-0.2t A. At t=2s, we can substitute into the equation to get I = 0.0039375 e-0.4 = 0.0024 A or 2.4 mA. Therefore, the magnitude of the induced current at t = 2s is 2.4 mA.

Learn more about Electromagnetic Induction here:

https://brainly.com/question/32444953

#SPJ3

A forward-biased silicon diode is connected to a 12.0-V battery through a resistor. If the current is 12 mA and the diode potential difference is 0.70 V, what is the resistance?

Answers

To solve this problem we will use the concepts related to Ohm's law for which voltage, intensity and resistance are related.

Mathematically this relationship is given as

[tex]V = IR \rightarrow R= \frac{V}{I}[/tex]

Where,

V= Voltage

I = Current

R = Resistance

The value of the given voltage is 12V, while the current is 12mA, therefore the resistance would be

[tex]R = \frac{12}{12*10^{-3}}[/tex]

[tex]R = 1000 \Omega[/tex]

Therefore the resistance is [tex]1000\Omega[/tex]

Recall that force is a change in momentum over a change in time, the force due to radiation pressure reflected off of a solar sail can be calculated as 2 times the radiative momentum striking the sail per second. What is the approximate magnitude of the pressure on the sail in the vicinity of Earth’s Orbit?

Answers

Answer:

magnitude of the pressure on the sail in the vicinity of Earth’s Orbit= [tex]\frac{2I}{c}[/tex]

Explanation:

The momentum of a photon is:

p = E/c

E = the photon energy

c = the speed of light.

take the time derivative (gives the force)

F = dp/dt = (dE/dt)/c

F = 2(dE/dt)/c (is doubled for complete reflection of the light)

Intensity has the units of energy per unit time per unit area

=  I

then,

Force/unit area = 2I/c

magnitude of the pressure on the sail in the vicinity of Earth’s Orbit= [tex]\frac{2I}{c}[/tex]

Why is it impossible for an astronaut inside an orbiting space station to go from one end to the other by walking normally?A. In an orbiting station, the gravitational force is too large and the astronaut can't take his feet off the floor.B. It is impossible to walk inside an orbiting space station because its rotation is too fast.C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut "jumps" on the same place.D. In an orbiting station, after one foot pushes off there isn't a force to bring the astronaut back to the "floor" for the next step.

Answers

Final answer:

An astronaut cannot walk normally in a space station because there's no frictional force to move forward in the near-weightless environment. To move, astronauts use handholds and walls, pushing against them to create a reaction force.

Explanation:

It is impossible for an astronaut inside an orbiting space station to go from one end to the other by walking normally because C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut would indeed "jump" in place due to the lack of friction between their feet and the floor of the space station, which is a result of the near-weightlessness they experience. In space, normal walking is ineffective because walking relies on gravity to pull the body back down to the floor after each step, which isn't present in the same way on a space station in orbit.

In order to move in such an environment, an astronaut must push against a solid object, creating a reaction force in the opposite direction according to Newton's third law of motion. This principle allows the astronaut to propel and steer themselves around the space station using handholds and walls. The environment inside the ISS is similar to that inside a freely falling box where gravity still exists, but occupants do not feel its effects because they are in free fall around Earth, which creates the sensation of weightlessness.

Final answer:

Astronauts cannot walk normally in an orbiting space station due to the lack of gravity and friction. They are in a state of free fall, creating a sensation of weightlessness. Movement can be achieved by utilizing the conservation of momentum and Newton's third law of motion. Therefore option C is the correct answer.

Explanation:

The reason it is impossible for an astronaut inside an orbiting space station to walk from one end to the other by walking normally is C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut cannot walk from one end to the other by walking normally because, in the microgravity environment of an orbiting spacecraft, traditional walking, which relies on the force of gravity and friction between the feet and the ground, does not work. Instead, astronauts move about by pushing off surfaces or floating through the air.

In orbit, the International Space Station (ISS) and everything inside it, including the astronauts, are in a state of free fall. They are falling around Earth at the same rate as the space station, creating a sensation of weightlessness. This is akin to the sensation of temporary weightlessness one experiences at the topmost point of a roller coaster ride or when an elevator suddenly descends.

Achieving locomotion for an astronaut stranded in the center of the station without contact with any solid surface would necessitate a method that does not rely on gravity or friction. The astronaut would have to utilize the principle of conservation of momentum. For instance, by throwing an object in one direction, the astronaut would move in the opposite direction, as described by Newton's third law of motion: for every action, there is an equal and opposite reaction.

Did you think about this over Christmas? I did (-: Before Christmas a 65kg student consumes 2500 Cal each day and stays at the same weight. For three days in a row while visiting her parents she eats 3500 Cal and, wanting to keep from gaining weight decides to "work off" the excess by jumping up and down at the Christmas tree. With each jump she accelerates to a speed of 3.2 m/s before leaving the ground. a) How high will she jump each jump? b) How many jumps must she do to keep her weight? Assume that the efficiency of the body in using energy is 25%. c) Do you suggest that is a reasonable way for the student not to gain weight over Christmas? d) Possible enhancement: What other way/ways would you suggest for the student to keep her weight?

Answers

Answer:

a)  Em = 332.8 J , b) # jump = 13, c)   It is reasonable since there are not too many jumps , d) lower the calories consumed

Explanation:

a) Let's use energy conservation

Initial. On the floor

             Em₀ = K = ½ m v²

Final. The highest point

             Emf = U = m g h

Energy is conserved

             Em₀ = Emf

             ½ m v² = m g h

             h = ½ v² / g

            h = ½ 3.2² /9.8

            h = 0.52 m

b) When he was at home he maintained his weight with 2500 cal / day. In his parents' house he consumes 3500 cal / day, the excess of calories is

            Q = 3500 -2500 = 1000cal / day

Let's reduce this value to the SI system

             Q = 1000 cal (4,184 J / 1 cal) = 4186 J / day

Now the energy in each jump is

               Em = K = ½ m v²

               Em = ½ 65 3.2²

               Em = 332.8 J

They indicate that the body can only use 25% of this energy

              Em effec = 0.25 332.8 J

              Em effec = 83.2 J

This is the energy that burns the body

Let's use a Proportion Rule (rule of three), if a jump spends 83.2J how much jump it needs to spend 1046 J

              # jump = 1046 J (1 jump / 83.2 J)

              # jump = 12.6 jumps / day

              # jump = 13  

c) It is reasonable since there are not too many jumps

d) That some days consume more vegetables to lower the calories consumed

The headlights of a car are 1.6 m apart and produce light of wavelength 575 nm in vacuum. The pupil of the eye of the observer has a diameter of 4.0 mm and a refractive index of 1.4. What is the maximum distance from the observer that the two headlights can be distinguished?

Answers

To solve this problem it is necessary to apply the concepts related to angular resolution, for which it is necessary that the angle is

[tex]\theta = 1.22\frac{\lambda}{nd}[/tex]

Where

d = Diameter of the eye

n = Index of refraction

D = Distance between head lights

[tex]\lambda[/tex]= Wavelength

Replacing with our values we have that

[tex]\theta = 1.22 \frac{(1.22)(575*10{-9})}{1.4(4*10^{-3})}[/tex]

[tex]\theta = 1.252*10^{-4}rad[/tex]

Using the proportion of the arc length we have to

[tex]L = \frac{D}{\theta}[/tex]

Where L is the maximum distance, therefore

[tex]L = \frac{1.6}{1.252*10^{-4}}[/tex]

[tex]L = 12.77km[/tex]

Therefore the maximum distance from the observer that the two headlights can be distinguished is 12.77km

The inductance in the drawing has a value of L = 9.4 mH. What is the resonant frequency f0 of this circuit?

Answers

Answer:

The resonant frequency of this circuit is 1190.91 Hz.

Explanation:

Given that,

Inductance, [tex]L=9.4\ mH=9.4\times 10^{-3}\ H[/tex]

Resistance, R = 150 ohms

Capacitance, [tex]C=1.9\ \mu F=1.9\times 10^{-6}\ C[/tex]

At resonance, the capacitive reactance is equal to the inductive reactance such that,

[tex]X_C=X_L[/tex]    

[tex]2\pi f_o L=\dfrac{1}{2\pi f_oC}[/tex]

f is the resonant frequency of this circuit  

[tex]f_o=\dfrac{1}{2\pi \sqrt{LC}}[/tex]

[tex]f_o=\dfrac{1}{2\pi \sqrt{9.4\times 10^{-3}\times 1.9\times 10^{-6}}}[/tex]

[tex]f_o=1190.91\ Hz[/tex]

So, the resonant frequency of this circuit is 1190.91 Hz. Hence, this is the required solution.

Car drag racing takes place over a distance of a mile (402 m) from a standing start. If a car (mass 1600 kg) could be propelled forward with a pulling force equal to that of gravity, what would be the change in kinetic energy and the terminal speed of the car (in mph) at the end of the race be? (For comparison, a modern, high-performance sports car may reach a terminal speed of just over 100 mph = 44.7 m/s.)

Answers

Answer:

v = 88.76 m / s ,  K = 6.30 10⁶ J

Explanation:

For this exercise the force that is applied is that necessary for the acceleration of the car to be the acceleration of gravity, they do not indicate that there is friction, we look for the final speed

       v² = v₀² + 2 a x

Since the car starts from rest, the initial speed is zero, vo = 0

       v = √ 2 a x

       v = √ (2 9.8 402)

       v = 88.76 m / s

Let's look for kinetic energy

       K = ½ m v²

       K = ½ 160kg 88.76²

       K = 6.30 10⁶ J

To understand the formula representing a traveling electromagnetic wave.Light, radiant heat (infrared radiation), X rays, and radio waves are all examples of traveling electromagnetic waves. Electromagnetic waves comprise combinations of electric and magnetic fields that are mutually compatible in the sense that the changes in one generate the other.The simplest form of a traveling electromagnetic wave is a plane wave. For a wave traveling in the x direction whose electric field is in the y direction, the electric and magnetic fields are given byE? =E0sin(kx??t)j^,B? =B0sin(kx??t)k^.This wave is linearly polarized in the y direction.1.a. In these formulas, it is useful to understand which variables are parameters that specify the nature of the wave. The variables E0 and B0are the __________ of the electric and magnetic fields.Choose the best answer to fill in the blank.1. maxima2. amplitudes3. wavelengths4. velocitiesb. The variable ? is called the __________ of the wave.Choose the best answer to fill in the blank.1. velocity2. angular frequency3. wavelengthc. The variable k is called the __________ of the wave.1. wavenumber
2. wavelength
3. velocity
4. frequency

Answers

Answer:

1) Eo and Bo. They are maximum amplitudes. Answer 1 and 2

2) .w is angular frequency. Answer 2

3) k  is wave number. Answer 1

Explanation:

The electromagnetic wave is given by

         [tex]E_{y}[/tex] = E₀ sin (kx –wt)

This is the equation of a traveling wave on the x axis with the elective field oscillating on the y axis

The terms represent E₀ the maximum amplitude of the electric field,

The wave vector

        k = 2π /λ

Angular velocity

       w = 2π f

To answer the questions let's use the previous definitions

1) Eo and Bo. They are maximum amplitudes. Answer 1 and 2

2) .w is angular frequency. Answer 2

3) k is wave number. Answer 1

A proton initially traveling at 50,000 m/s is shot through a small hole in the negative plate of a parallal-plate capacitor. The electric field strength inside the capacitor is 1,500 V/m. How far does the proton travel above the negative plate before temporarily coming to rest and reversing course? Assume the proton reverses course before striking the positive plate.

Answers

Answer:

x = 8.699 10⁻³ m

Explanation:

The proton feels an electric charge that is the opposite direction of speed, let's look for acceleration using Newton's second law

      F = m a

        F = q E

      a = q E / m

     

      a = 1.6 10⁻¹⁹ 1500 / 1.67 10⁻²⁷

      a = 1,437 10¹¹ m / s²

Now we can use kinematic relationships

      v² = v₀² - 2 a x

When at rest the speed is zero (v = 0)

      x = v₀² / 2 a

Let's calculate

     x = 50,000² / (2 1,437 10¹¹)

     x = 8.699 10⁻³ m

If a nucleus decays by gamma decay to a daughter nucleus, which of the following statements about this decay are correct? (There may be more than one correct choice.)

a)The daughter nucleus has fewer protons than the original nucleus.

b)The daughter nucleus has the same number of nucleons as the original nucleus.

c)The daughter nucleus has more protons than the original nucleus.

d)The daughter nucleus has fewer neutrons than the original nucleus. The daughter nucleus has more neutrons than the original nucleus

Answers

Answer: Option (b) is the correct answer.

Explanation:

A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.

Symbol of a gamma particle is [tex]^{0}_{0}\gamma[/tex]. Hence, charge on a gamma particle is also 0.

For example, [tex]^{234}_{91}Pa \rightarrow ^{234}_{91}Pa + ^{0}_{0}\gamma + Energy[/tex]

So, when a nucleus decays by gamma decay to a daughter nucleus then there will occur no change in the number of protons and neutrons of the parent atom but there will be loss of energy as a nuclear reaction has occurred.

Thus, we can conclude that the statement daughter nucleus has the same number of nucleons as the original nucleus., is correct about if  a nucleus decays by gamma decay to a daughter nucleus.

Answer: Option (b) is the correct answer.

Explanation:

A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.

8–4. The tank of the air compressor is subjected to an internal pressure of 90 psi. If the internal diameter of the tank is 22 in., and the wall thickness is 0.25 in., determine the stress components acting at point A. Draw a volume element of the material at this point, and show the results on the element.

Answers

Answer:

The stress S = 1935 [Psi]

Explanation:

This kind of problem belongs to the mechanical of materials field in the branch of the mechanical engineering.

The initial data:

P = internal pressure [Psi] = 90 [Psi]

Di= internal diameter [in] = 22 [in]

t = wall thickness [in] = 0.25 [in]

S = stress = [Psi]

Therefore

ri = internal radius = (Di)/2 - t = (22/2) - 0.25 = 10.75 [in]

And using the expression to find the stress:

[tex]S=\frac{P*D_{i} }{2*t} \\replacing:\\S=\frac{90*10.75 }{2*0.25} \\S=1935[Psi][/tex]

In the attached image we can see the stress σ1 & σ2 = S acting over the point A.

A rock of mass m is thrown straight up into the air with initial speed |v0 | and initial position y = 0 and it rises up to a maximum height of y = h. A second rock with mass 2m (twice the mass of the original) is thrown straight up with an initial speed of 2|v0 |. What maximum height does the second rock reach?

Answers

Answer:

Explanation:

Case 1:

mass = m

initial velocity = vo

final velocity = 0

height = y

Use third equation of motion

v² = u² - 2as

0 = vo² - 2 g y

y = vo² / 2g       ... (1)

Case 2:

mass = 2m

initial velocity = 2vo

final velocity = 0

height = y '

Use third equation of motion

v² = u² - 2as

0 = 4vo² - 2 g y'

y ' = 4vo² / 2g

y' = 4 y

Thus, the second rock reaches the 4 times the distance traveled by the first rock.

The maximum height the second rock reach is :

-4 times the distance traveled by the first rock.

"Mass"

Case 1:

mass = m

initial velocity = vo

final velocity = 0

height = y

using Third equation of motion

v² = u² - 2as

0 = vo² - 2 g y

y = vo² / 2g       ... (1)

Case 2:

mass = 2m

initial velocity = 2vo

final velocity = 0

height = y '

Use third equation of motion

v² = u² - 2as

0 = 4vo² - 2 g y'

y ' = 4vo² / 2g

y' = 4 y

Therefore, the second rock reaches the 4 times the distance traveled by the first rock.

Learn more about "Mass":

https://brainly.com/question/15959704?referrer=searchResults

Twist-on connectors without the spring-steel coils (plastic threads only) are suitable for making branch-circuit connections.

A. TrueB. False

Answers

Answer:

if it is a plastic connector it wont work but if there is metal or steel it will work

Explanation:

A navy seal of mass 80 kg parachuted into an enemy harbor. At one point while he was falling, the resistive force of air exerted on him was 520 N. What can you determine about the motion?

Answers

Answer:

The motion of the parachute = 3.3 m/s²

Explanation:

Weight of the parachute - Resistive force of air = ma

W - Fₐ  = ma.................... Equation 1

making a the subject of formula in equation 1

a = (W- Fₐ)/m.................. Equation 2

Where W = weight of the parachute, Fₐ = resistive force of air, m = mass of the parachute, a = acceleration of the parachute

Constant: g = 9.8 m/s²

Given: Fₐ = 520 N, m = 80 kg

W = mg = 80 × 9.8 = 784 N,

Substituting these values into equation 2

a = (784-520)/80

a = 264/80

a = 3.3 m/s²

Therefore the motion of the parachute = 3.3 m/s²

A block of mass m = 0.775 kg is fastened to an unstrained horizontal spring whose spring constant is k = 83.6 N/m. The block is given a displacement of +0.113 m, where the + sign indicates that the displacement is along the +x axis, and then released from rest. What is the force (magnitude) that the spring exerts on the block just before the block is released?

Answers

Answer:

F= 9.45 N

Explanation:

If the mass is fastened to an unstrained horizontal spring, this means that at this position, the spring doesn't exert any force, because it keeps his equilibrium length.

If then the block is given a displacement of +0.113m, this means that the spring has been stretched in the same length.

According to Hooke's Law, the spring exerts a restoring force (trying to return to his equilibrium state) that opposes to the displacement, and which is proportional (in magnitude) to it, being the proportionality constant, a quantity called spring constant, which depends on the type of spring.

We can write the Hooke's Law as follows:

F = - k * Δx

Just before the block is released, we can get the value of F as follows:

⇒ F = 83.6 N/m* 0.113 m = 9.45 N (in magnitude)

A projectile of mass m is fired straight upward from the surface of an airless planet of radius R and mass M with an initial speed equal to the escape speed vesc (meaning the projectile will just barely escape the planet's gravity -- it will asymptotically approach infinite distance and zero speed.) What is the correct expression for the projectile's kinetic energy when it is a distance 9R from the planet's center (8R from the surface). Ignore the gravity of the Sun and other astronomical bodies. KE (at r = 9R) is:a. GMm/9Rb. GMm/8Rc. 1/2mvesc^2d. -GMm/8Re. None of these

Answers

Answer:

K = G Mm / 9R

Explanation:

Expression for escape velocity V_e = [tex]\sqrt{\frac{2GM}{R} }[/tex]

Kinetic energy at the surface = 1/2 m V_e ²

= 1/2 x m x 2GM/R

GMm/R

Potential energy at the surface

= - GMm/R

Total energy = 0

At height 9R ( 8R from the surface )

potential energy

= - G Mm / 9R

Kinetic energy = K

Total energy will be zero according to law of conservation of mechanical energy

so

K  - G Mm / 9R = 0

K = G Mm / 9R

The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 598 nm, propagating in a vacuum in the z-direction is described by B =(B1sin(kz−ωt))(i^+j^) where B1 = 8.7 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. What is k, the wavenumber of this wave?

Answers

Answer:

For this given plane monochromatic electromagnetic wave with wavelength λ=598 nm, the wavenumber is [tex]k=0,0105\ x\ 10^{-9}\ m^{-1}[/tex] .

Explanation:

For a plane electromagnetic wave we have that the electrical and magnetic field are:

[tex]E(r,t)=E_{0}\ cos ( wt-kr)\\\ B(r,t)=B_{0}\ cos(wt-kr)[/tex]

In this case we have the data for the magnetic field. We are told that the magnetic field in a plane electromagnetic wave with wavelength λ=598 nm, propagating in a vacuum in the z direction ([tex]\hat k[/tex]) is described by

         [tex]B=8.7\ x\ 10^{-6}\ T sin(kz-wt) (\hat i+\hat j)[/tex]

([tex]\hat i,\hat j, \hat k[/tex] are the unit vectors in the x,y,z directions respectively)

The wavenumber k is a measure of the spatial frequency of the wave, is defined as the number of radians per unit distance:

          [tex]k=\frac{2\pi}{\lambda}[/tex]

where λ is the wavelength

So we get that

[tex]k=\frac{2\pi}{\lambda} \rightarrow k=\frac{2\pi}{598 nm}  \rightarrow k=0,0105\ x\ 10^{9}\ m^{-1}[/tex]

The wavenumber is

            [tex]k=0,0105\ x\ 10^{9}\ m^{-1}[/tex] .

I am standing next to the edge of a cliff. I throw a ball upwards and notice that 4 seconds later it is traveling downwards at 10 m/s. Where is the ball located at this time? (Pick the answer closest to the true value.)A. 120 meters above me B. 30 meters below meC. 30 meters above meD. 120 meters below meE. At the same height that it started

Answers

Answer:

Explanation:

Given

Velocity after t=4 sec is v=10 m/s downward

assuming u is the initial upward velocity

[tex]v=u+at[/tex]

[tex]-10=u-gt[/tex]

[tex]u=9.8\times 4-10=29.2 m/s[/tex]

[tex]v^2-u^2=2 as[/tex]

[tex](-10)^2-(29.2)^2=2\times (-9.8)\cdot s[/tex]

[tex]s=\frac{29.2^2-10^2}{2\times 9.8}[/tex]

[tex]s=38.4 m[/tex]

i.e. 38.4 m above the initial thrown Position  

A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per unit length of 0.01 Ω/m. If a current of 100 A flows through the wire and the convection coefficient is 500W/m2K, what is the steady state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature within 1-degC of the steady state value? The density of the wire is 8,000kg/m3, its heat capacity is 500 J/kgK and its thermal condu

Answers

To determine the steady state temperature of the wire, one can use the power dissipation formula and the convection heat transfer equation. The time for the wire to reach within 1-degree Celsius of steady state involves transient heat transfer calculations using the given material properties.

The student has asked about the steady state temperature of a 1-meter-long wire with a 1mm diameter submerged in an oil bath at 25 degrees Celsius when a current of 100A flows through it. We also need to calculate how long it takes for the wire to reach within 1-degree Celsius of the steady state temperature. To find the steady state temperature, we use the formula P = I2R, where P is the power, I is the current, and R is the resistance. Given that R = 0.01
Ω/m and I = 100A, we find P = (100A)2 x 0.01
Ω/m = 100W/m. Then, using the convection heat transfer equation Q = hA(Ts - T
bath), where Q is the heat transfer rate, h is the convection coefficient, A is the surface area, Ts is the wire surface temperature, and Tbath is the oil bath temperature, we equate Q to P since the wire is in steady state, and solve for Ts. The time to reach within 1-degree Celsius of steady state temperature requires calculating the transient heat transfer, which involves solving the heat transfer equation with the given material properties such as density, heat capacity, and thermal conductivity.

The steady-state temperature of the wire is approximately [tex]\(343.471 {°C}\)[/tex], and it takes approximately [tex]\(1.539[/tex],  for the wire to reach within 1°C of the steady-state value.

Steady-State Temperature Calculation:

  - Calculate the radius [tex](\(r\))[/tex] of the wire:

   [tex]\[ r = \frac{d}{2} = \frac{0.001 \, \text{m}}{2} = 0.0005 \, \text{m} \][/tex]

  - Calculate the surface area [tex](\(A\))[/tex] of the wire:

   [tex]\[ A = 2\pi r l = 2\pi \times 0.0005 \times 1 = 0.00314 \, \text{m}^2 \][/tex]

  - Calculate the heat transfer rate [tex](\(q\))[/tex]:

   [tex]\[ q = I^2 R = (100)^2 \times 0.01 = 1000 \, \text{W} \][/tex]

  - Calculate the steady-state temperature [tex](\(T_{\text{wire}}\))[/tex]:

    [tex]\[ T_{\text{wire}} = \frac{q}{hA} + T_{\text{fluid}} \][/tex]

    [tex]\[ T_{\text{wire}} \approx \frac{1000}{500 \times 0.00314} + 298.15 \][/tex]

    [tex]\[ T_{\text{wire}} \approx 343.471 \, \text{°C} \][/tex]

Time to Reach Within 1°C of Steady-State:

  - Calculate the volume [tex](\(V\))[/tex] of the wire:

    [tex]\[ V = \pi r^2 l = \pi \times (0.0005)^2 \times 1 = 7.854 \times 10^{-7} \, \text{m}^3 \][/tex]

  - Calculate the thermal time constant [tex](\(\tau\))[/tex]:

    [tex]\[ \tau = \frac{\rho V c}{hA} \][/tex]

   [tex]\[ \tau \approx \frac{8000 \times 7.854 \times 10^{-7} \times 500}{500 \times 0.00314} \][/tex]

    [tex]\[ \tau \approx 0.7854 \, \text{s} \][/tex]

  - Calculate the time [tex](\(t\))[/tex] it takes for the wire to reach within 1°C of the steady-state value:

    [tex]\[ t = \tau \ln\left(\frac{T_{\text{steady}} - T_{\text{initial}}}{T_{\text{steady}} - T_{\text{fluid}}}\right) \][/tex]

    [tex]\[ t \approx 0.7854 \times \ln\left(\frac{343.471 - 25}{343.471 - 298.15}\right) \][/tex]

   [tex]\[ t \approx 0.7854 \times \ln\left(\frac{318.471}{45.321}\right) \][/tex]

   [tex]\[ t \approx 0.7854 \times \ln(7.032) \][/tex]

   [tex]\[ t \approx 1.539 \, \text{s} \][/tex]

A 30 gram bullet is shot upward at a wooden block. The bullet is launched at the speed vi. It travels up 0.40 m to strike the wooden block. The wooden block is 20 cm wide and 10 cm high and its thickness gives it a mass of 500 g. The center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height. a. What is the launch speed of the bullet? b. How much mechanical energy does the bullet and the block system have before all of the processes? Use the surface the block rests on as the reference for where gravitational potential energy is zero. c. How much mechanical energy does the bullet and the block system have after all of the processes? d. How much mechanical energy was lost from beginning to end?

Answers

Answer:

Explanation:

Mass of bullet m = .03 kg

Mass of wooden block M = 0.5 kg

Since the center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height

Velocity of wooden block + bullet just after impact = √2gH

=√(2 x 9.8 x 0.6)

= 3.43 m / s

Let the launch velocity of bullet be v₁

If v₂ be the velocity with which bullet hits the block

Applying law of conservation of momentum

.03 x v₂ = .530 x 3.43

v₂ = 60.6 m /s

if v₁ be initial velocity

v₂² = v₁² - 2 gh

v₁² = v₂² + 2 gh

= 60.6 ² + 2 x 9.8 x 0.4

v₁ = 60.65 m /s this is launch speed.

b )

Initial kinetic energy of bullet

= 1/2 m v²

= .5 x .03 x 3680

= 55 J

Potential energy of bullet + block = 0

Total energy = 5 J

c)

Kinetic energy of bullet block system

1/2 m v²

= .5 x .53 x  3.43

= 3.11 J

d )

Loss of energy in the impact =  Total mechanical energy  lost from beginning to end?

3.11 J  - 5

= 1.89 J

Scientists are working on a new technique to kill cancer cells by zapping them with ultrahigh-energy (in the range of 1012 W) pulses of electromagnetic waves that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 4.6 μm in diameter, with the pulse lasting for 3.4 ns with an average power of 2.46×1012 W . We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse.

Part A

How much energy is given to the cell during the pulse?

Express your answer to two significant figures.

Answers

Final answer:

The energy given to each cell during the pulse can be calculated by multiplying the power of the pulse by its duration, and then dividing by the number of cells.

Explanation:

The energy supplied to the cell during the pulse is determined by the power multiplied by the duration of the pulse. In this scenario, the power is 2.46×1012 W and the duration is 3.4 ns (which is 3.4x10-9 s when converted to seconds for mathematical calculations).

We use the formula:
E = P * t
Where,
E is the Energy
P is the Power
t is the time (duration of the pulse)

Substituting the given values into the formula:
E = 2.46x1012 W * 3.4x10-9 s

This gives the total energy supplied. We know the energy is spread uniformly over the faces of 100 cells, so each cell will get 1/100 of the total energy. Using these calculations, we can determine the amount of energy given to each cell during the pulse.

Learn more about Energy Calculation here:

https://brainly.com/question/31994371

#SPJ12

The Earth’s radius is 6378.1 kilometers. If you were standing at the equator, you are essentially undergoing uniform circular motion with the radius of your circular motion being equal to the radius of the Earth. You are an evil mad scientist and have come up with the simultaneously awesome and terrifying plan to increase the speed of the Earth’s rotation until people at the Earth’s equator experience a centripetal (radial) acceleration with a magnitude equal to g, (9.81 m/s2 ), effectively making them experience weightlessness. If you succeed in your dastardly plan, what would be the new period of the Earth’s rotation?

a. 2.7 minutes b. 84 minutes c. 48 minutes d. 76 minutes

Answers

Answer:

b. 84 minutes

Explanation:

[tex]a_c=g[/tex] = Centripetal acceleration = 9.81 m/s²

r = Radius of Earth = 6378.1 km

v = Velocity

Centripetal acceleration is given by

[tex]a_c=\dfrac{v^2}{r}\\\Rightarrow v=\sqrt{a_cr}\\\Rightarrow v=\sqrt{9.81\times 6378100}\\\Rightarrow v=7910.06706\ m/s[/tex]

Time period is given by

[tex]T=\dfrac{2\pi r}{v60}\\\Rightarrow T=\dfrac{2\pi 6378.1\times 10^3}{7910.06706\times 60}\\\Rightarrow T=84.43835\ minutes[/tex]

The time period of Earth’s rotation would be 84.43835 minutes

The new period of the Earth’s rotation is mathematically given as

T=84.43835 min

What would be the new period of the Earth’s rotation?

Question Parameter(s):

The Earth’s radius is 6378.1 kilometers.

g= (9.81 m/s2 ),

Generally, the equation for the   is mathematically given as
[tex]a_c=\dfrac{v^2}{r}[/tex]

Therefore

[tex]v=\sqrt{a_cr}\\\\v=\sqrt{9.81*6378100}[/tex]

v=7910.06706 m/s

In conclusion

[tex]T=\dfrac{2\pi r}{v60}[/tex]

Hence

[tex]T=\dfrac{2\pi 6378.1*10^3}{7910.06706*60}[/tex]

T=84.43835 min

Read more about Time

https://brainly.com/question/4931057

Calculate the rotational inertia of a meter stick, with mass 0.71 kg, about an axis perpendicular to the stick and located at the 18 cm mark. (Treat the stick as a thin rod.)

Answers

To solve this problem we will use the parallel axis theorem for which the inertia of a point of an object can be found through the mathematical relation:

[tex]I = I_{cm} +mx^2[/tex]

Where

[tex]I_{cm}[/tex] = Inertia at center of mass

m = mass

x = Displacement of axis.

Our mass is given as 0.71kg,

m = 0.71kg

Para a Stick with length (L) the Moment of Inertia of the stick about and axis passing through the center and perpendicular to stick is

[tex]I_{cm} = \frac{1}{12} mL^2[/tex]

[tex]I_{cm} = \frac{1}{12} (0.71)(1)^2[/tex]

[tex]I_{cm} = 0.05916Kg\cdot m^2[/tex]

The distance between center of mass to the specific location is  

[tex]x = 50cm - 18cm[/tex]

[tex]x = 38cm = 0.38m[/tex]

So, from parallel axis theorem ,

[tex]I = I_{cm} + mx^2[/tex]

[tex]I =0.05916Kg\cdot m^2+ (0.71kg)(0.38m)^2[/tex]

[tex]I = 0.161684Kg\cdot m^2[/tex]

Therefore the rotational inertia is [tex]0.161684Kg\cdot m^2[/tex]

Other Questions
Which of the following is the term Erik Erikson uses to describe the gap between childhood security and adult autonomy?a) Psychosocial moratoriumb) Sociological amnestyc) Societal moratoriumd) Behavioral reprieve If discriminant (b^2 -4ac>0) how many real solutions What are other names for convex mirrors? Joe is the owner of the 7-11 Mini Mart, Sam is the owner of the Super America Mini Mart, and together they are the only two gas stations in town. Currently, they both charge $3 per gallon, and each earns a profit of $1,000. If Joe cuts his price to $2.90 and Sam continues to charge $3, then Joe's profit will be $1,350, and Sam's profit will be $500. Similarly, if Sam cuts his price to $2.90 and Joe continues to charge $3, then Sam's profit will be $1,350, and Joe's profit will be $500. If Sam and Joe both cut their price to $2.90, then they will each earn a profit of $900. If both players choose their dominated strategy they will each earn______, and if both players choose their dominant strategy they will each earn___ 1. $900; $1,000 2. $500; $1,350 3. $900; $1,350 4. $1,000; $900 Where is this energy stored in glucose Hexene, Inc. produces a specialized machine part used in forklifts. For last year's operations, the following data were gathered: Units produced 40,000 Direct labor 32,000 hours @ $10.00 Actual variable overhead $140,000 Hexene employs a standard costing system. During the year, a variable overhead rate of $6.00 was used. The labor standard requires 0.75 hours per unit produced. The variable overhead spending and efficiency variances are____________.a.$45,000 U and $6,500 U.b.$52,000 F and $12,000 U.c.$9,600 U and $45,000 F.d.$16,000 F and $8,400 F.e.None of these choices are correct. Kerri is licensed as a non-resident broker in Virginia, and she only sells residential property. When is she required to complete her continuing education? 5. Reggie picked 3 3/4 quarts of blueberries and 4 1/4 quarts of raspberries at a fruit farm. How many total quarts of berries did he pick? Show your work or explain your reasoning. In this mansion of gloom I now proposed to myself a sojourn of some weeks. Its proprietor, Roderick Usher, had been one of my boon companions in boyhood; but many years had elapsed since our last meeting. A letter, however, had lately reached me in a distant part of the countrya letter from himwhich, in its wildly importunate nature, had admitted of no other than a personal reply. The MS. gave evidence of nervous agitation. The writer spoke of acute bodily illnessof a mental disorder which oppressed himand of an earnest desire to see me... What can the reader infer to be true of Roderick Usher's character based on how his letter to the narrator is described? A)Roderick Usher is planning to die soon. B)Roderick Usher is trying to start a new life. C)Roderick Usher is struggling both mentally and physically. D)Roderick Usher is eager to show off his house to the narrator. Parent Plant ones gametes are as follows:Gamete 1: PRGamete 2: PrGamete 3: pRgamete 4: prParent Plant Two:Gamete 1: PRGamete 2: PrGamete 3: pRGamete 4: prCreate a Punnett square to calculate the possible genotypes that can result from a cross between the two parent plants. In a dihybrid cross, the alleles of the gametes of each parent are written along the left side and top of the Punnett square, just as they are for a monohybrid cross. Fill in the squares with the predicted genotypes. A firm produces and sells two products, Plus and Max. The following information is available relating to setup costs (a part of factory overhead): Plus Max Units produced 200 16,000Batch size (units) 10 400Number of setups 20 40Direct labor hours per unit 5 5Total direct labor hours 1,000 80,000Cost per setup $1,080 Total setup cost $64,800 Using number of setups as the activity base, the amount of setup cost allocated to each unit of product for Plus and Max, respectively is:______- what is exactly half of 14 and 77 Soar Incorporated is considering eliminating its mountain bike division, which reported an operating loss for the recent year of $2,000. The division sales for the year were $1,040,000, and the variable costs were $850,000. The fixed costs of the division were $183,000. If the mountain bike division is dropped, 30% of the fixed costs allocated to that division could be eliminated. The impact on operating income for eliminating this business segment would be:A. $54,900 decrease B. $135,100 decrease C. $52,900 decrease D. $190,000 increase E. $190,000 decrease Which of the following techniques would surgeons use in mapping the areas of the brain? There are 7.11 x1024molecules in 100.0 cm3of a certain substance.a. What is the number of molecules in 1.09 cm3of the substance?7.75 x 1022moleculesb.What is the number of molecules in 2.24 x 104cm3of the substance?1.59 x 10 27moleculesc. What number of molecules would be in 9.01 x 10-6cm3?6.41 x 1017molecules Why do you think the humanistic approach is important Which of state of matter has no definite shape but does have a definite volume? A. Liquid B. Gas C. Solid D. Element Larry is the CEO of a chain of fast food restaurants that operates all over the U.S. It comes to his notice that one of the branches in Boston has received a lot of complaints from customers who claim that the staff is rude and the service is delayed. Larry arranges to get feedback from customers of the branch in question. In the context of the incremental decision model, Larry is in the _____ phase of the decision sequence. Why did the Provisional Government declare itself to be the Republic of Hawaii? a. the Blount Report ruled in their favor b. they were afraid the American President would remove them from power c. they wanted to be independent of the United States d. they were happy about the Blount Report's conclusions e. none of the above I know this is not homework/classwork, but i could not find a place to ask for an answer to my problem anywhere else. I have a stylus on my lenovo chromebook, it came with it. It does not use a battery. Every once ans a while, if i hold my stylus a max of 1 inch away from the screen, it still draws/scrolls/ whatever the stylus is supposed to do, even though it is far away and not touching the screen. Does anyone know how to fix this? All the answers i found online were for battery-operated styluses, and mine does not have a battery.