Answer:
Part 1) The volume of the composite figure is [tex]620.7\pi\cm^{3}[/tex]
Part 2) The surface area of the composite figure is [tex]273\pi\ cm^{2}[/tex]
[tex]V=620.7\pi\cm^{3}, S=273\pi\ cm^{2}[/tex]
Step-by-step explanation:
Part 1) Find the volume of the composite figure
we know that
The volume of the figure is equal to the volume of a cone plus the volume of a hemisphere
Find the volume of the cone
The volume of the cone is equal to
[tex]V=\frac{1}{3} \pi r^{2} h[/tex]
we have
[tex]r=7\ cm[/tex]
Applying Pythagoras Theorem find the value of h
[tex]h^{2}=25^{2} -7^{2} \\ \\h^{2}= 576\\ \\h=24\ cm[/tex]
substitute
[tex]V=\frac{1}{3} \pi (7)^{2} (24)[/tex]
[tex]V=392 \pi\cm^{3}[/tex]
Find the volume of the hemisphere
The volume of the hemisphere is equal to
[tex]V=\frac{4}{6}\pi r^{3}[/tex]
we have
[tex]r=7\ cm[/tex]
substitute
[tex]V=\frac{4}{6}\pi (7)^{3}[/tex]
[tex]V=228.7\pi\cm^{3}[/tex]
therefore
The volume of the composite figure is equal to
[tex]392 \pi\cm^{3}+228.7\pi\cm^{3}=620.7\pi\cm^{3}[/tex]
Part 2) Find the surface area of the composite figure
we know that
The surface area of the composite figure is equal to the lateral area of the cone plus the surface area of the hemisphere
Find the lateral area of the cone
The lateral area of the cone is equal to
[tex]LA=\pi rl[/tex]
we have
[tex]r=7\ cm[/tex]
[tex]l=25\ cm[/tex]
substitute
[tex]LA=\pi(7)(25)[/tex]
[tex]LA=175\pi\ cm^{2}[/tex]
Find the surface area of the hemisphere
The surface area of the hemisphere is equal to
[tex]SA=2\pi r^{2}[/tex]
we have
[tex]r=7\ cm[/tex]
substitute
[tex]SA=2\pi (7)^{2}[/tex]
[tex]SA=98\pi\ cm^{2}[/tex]
Find the surface area of the composite figure
[tex]175\pi\ cm^{2}+98\pi\ cm^{2}=273\pi\ cm^{2}[/tex]
Which characteristic is correct for the function f(x) = −2x^3 + 3x^2 ?
A. even
B. neither even nor odd
C. odd
D.both even and odd
Answer:
B
Step-by-step explanation:
The function is cubic (the highest power is 3), so it can't be even. It's either odd or neither.
We can either graph the function, or we can test that it's symmetrical about the origin by seeing if f(x) = -f(-x).
f(x) = -2x³ + 3x²
f(-x) = -2(-x)³ + 3(-x)²
f(-x) = 2x³ + 3x²
f(x) ≠ -f(-x), so the function is neither even nor odd.
The answer is B because if you add the negative sign it will change
Peter knows that pentagon DEFGH has 5 congruent sides. How can he determine if the pentagon,has 5 congruent angles without measuring?
To determine if pentagon DEFGH has 5 congruent angles, Peter needs to consider if it is a regular pentagon. Regular pentagons have 5 congruent sides and angles. In such pentagons, each angle measures 108°.
Explanation:Peter can determine if the pentagon has 5 congruent angles by checking if it is a regular pentagon. A regular pentagon is defined as having all its sides and angles equal. If the pentagon DEFGH is regular, it will have 5 congruent sides and 5 congruent angles.
The Pythagorean theorem would apply if DEFGH were a triangle, where D and L are sides with hypotenuse s. For pentagons, the theorem is not applicable. It's important to remember that the angles of any pentagon add up to 540°. So, in a regular pentagon, each angle measures 108° because 540°/5=108°.
Learn more about Regular Polygon here:https://brainly.com/question/29722724
#SPJ3
Identify one characteristic of exponential decay
A. A common ratio between 0 & 1
B. A common ratio greater than 1
C. A common difference less than 0
D. A graph that is an increasing curve
Answer: A
Hope this helps you out!
A common ratio between 0 and 1
Which of the following expressions are equivalent to 48a^3-75a? Select all that apply.
Answer 1) 3(48a^3-75a).
Answer 2) 3a(16a^2-25)
Answer 3)3a(4a+5)(4a+5)
Answer 4) 3a(4a+5)(4a-5)
Answer 5) -3a(25-16a^2)
Answer 6) -3a(5-4a)(5+4a)
Answer:
Answer 2) 3a(16a^2-25)Answer 4) 3a(4a+5)(4a-5)Answer 5) -3a(25-16a^2) Answer 6) -3a(5-4a)(5+4a)Step-by-step explanation:
The factors of each term are ...
2·2·2·2·3·a·a·a3·5·5·aSo, the greatest common factor is 3a. Factoring that out gives ...
3a(16a^2 -25) . . . . . . matches answer 2
The factor in parentheses is the difference of squares, so it can be factored. You have memorized the form for the difference of squares ...
p^2 -q^2 = (p -q)(p +q)
so you know the factoring of this with p=4a and q=5 will be ...
3a(4a -5)(4a +5) . . . . . . matches answer 4
__
Any pair of factors can be multiplied by -1 without changing the value of the expression. So, two more answers are equivalent:
(-3a)(-(16a^2 -25) = -3a(25 -16a^2) . . . . . . matches answer 5
(-3a)(-(4a -5)(4a +5) = -3a(5 -4a)(5 +4a) . . . . . . matches answer 6
Answer:
2 4 5 6
Step-by-step explanation:
The highest common factor is 3a That means that 48a^3 must be divided by 3a which means 48a^3 / 3a = 16a^2. Notice what happened. 48/3 = 16. a^3/a = a^2.
Now you have to pull out 3a from 75a. That wasn't done to Answer 1. So answer one is incorrect.
75a/3a = 25
So far what you answer looks like is
3a(16a^2 - 25) which is answer 2
===========================================
Answer 3 is wrong because one of the factor has to be - 5. Neither one is.
===========================================
Answer 4 is correct
16a^2 - 25 factors into (4a - 5)(4a + 5)
So what is written reflects those factors + the 3a
==============================================
Now we come to the brutal ones.
If you take out a minus sign from the brackets, it has the effect of turning the two terms inside the brackets around.
-3a(25 - 16a^2) is what the above sentence means. so 5 is correct
==============================================
The two terms inside the brackets still factor
-3a ( 5 - 4a)(5 + 4a) It is just that they are turned around.
6 is correct.
===============================================
True or False?
When researchers incorrectly interpret the responses to a survey question,
this is poor analysis.
Answer:
I think it would be true
The provided statement "When researchers incorrectly interpret the responses to a survey question, this is poor analysis" is true.
What is an analysis of a survey?The practice of assessing client insights is known as survey analysis. It could be customer satisfaction scores or other customer experience measures.
We have a statement:
When researchers incorrectly interpret the responses to a survey question,
this is a poor analysis.
The above statement is true because when we have survey data that is incorrectly interpreted, it will create a problem in the final phase or implementation phase.
Thus, the provided statement "When researchers incorrectly interpret the responses to a survey question, this is poor analysis" is true.
Learn more about the analysis of a survey here
https://brainly.com/question/15414876
#SPJ2
What is the value of x in this triangle? Enter your answer as a decimal in the box. Round only your final answer to the nearest hundredth. x = °
A vertical align right triangle. The perpendicular is labeled as 32. The hypotenuse is labeled as 58. The alternate base angles are labeled as right angle and x degrees, respectively.
Answer:
x = 48.37
Step-by-step explanation:
x^2 = 58^2 - 32^2
x^2 = 3364 - 1024
x^2 = 2340
x = 48.37
Answer:
48.37
Step-by-step explanation:
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
Find S5 for the sequence 3, 13, 23, 33, 43, 53, 63, 73.
Answer: B) 115
Step-by-step explanation:
S₅ means the sum of the first 5 numbers in the sequence.
3 + 13 + 23 + 33 + 43 = 115
You have 5 different trophies to arrange on the top shelf of a bookcase. How many ways are there to arrange the trophies?
A. 120
B. 24
C. 720
D. 25
Answer:
120
Step-by-step explanation:
5x4x3x2x1 =120
The number of ways to arrange the trophies is 120. The correct answer is option A.
What is the combination?The arrangement of the different things or numbers in a number of ways is called the combination.
Given that:-
You have 5 different trophies to arrange on the top shelf of a bookcaseThe number of the ways will be calculated as:-
N = 5!
N = 5 x 4 x 3 x 2 x 1
N = 120 ways
Therefore the number of ways to arrange the trophies is 120.
To know more about combinations follow
https://brainly.com/question/11732255
#SPJ2
Ava is solving a geometry problem. The length of a side of a triangle is 36. A line parallel to that side divides the triangle into two equal area parts. She solved for the length of the segment dividing the triangle and got 25.455. How did Ava get that answer?
The ratio of areas of similar triangles is the square of the ratio of their linear dimensions. If the smaller triangle is 1/2 the area of the larger, then its linear dimensions are √(1/2) those of the larger triangle.
smaller side length = √(1/2) × larger side length
= (√2)/2×36 = 18√2 ≈ 25.4558
Find the volume of the pyramid, if The base is a rectangle with sides of 3 in and 5 in while the height of the pyramid is 10 in
Answer:
50 inches cubed
Step-by-step explanation:
To solve the volume of a rectangular pyramid, the equation l×w×h divided by 3 can be used. Plug in the numbers given to you in the question- the length of the base is 3, width of base is 5, and height of pyramid is 10 so the equation becomes 3×5×10 divided by 3. When solved, you get 50.
Solve the equation by completing the square. Round to the nearest hundredth if necessary. x^2 – 2x = 24
Answer:
x=6,-4
Step-by-step explanation:
Use the formula (b/2)^2 in order to create a new term. Solve for x by using this term to complete the square.
x=6,-4
Kelly took a quiz on decimals that had 151515 questions. She got \dfrac45 5 4 ? start fraction, 4, divided by, 5, end fraction of those questions correct. She took another quiz on fractions that had 121212 questions. She got \dfrac56 6 5 ? start fraction, 5, divided by, 6, end fraction of those questions correct. On which quiz did Kelly get more questions correct?
Answer:
She had more correct answers on the first quiz
Explanation:
1- For the first quiz:
We know that the quiz had a total of 15 questions and that Kelly had [tex]\frac{4}{5}[/tex] of those correct
This means that:
Number of correct answers = [tex]\frac{4}{5}*15 = 12[/tex] answers
2- For the second quiz:
We know that the quiz had a total of 12 questions and that Kelly had [tex]\frac{5}{6}[/tex] of those correct
This means that:
Number of correct answers = [tex]\frac{5}{6}*12=10[/tex] answers
3- Comparing the number of correct answers:
From the above calculations, we know that she had 12 correct answers on the first quiz and 10 on the second
This means that she had more correct answers on the first quiz
Hope this helps :)
Kelly got more questions correct on the first quiz with 12 correct answers compared to 10 correct answers on the second quiz.
To figure out on which quiz Kelly got more questions correct, we need to calculate the number of correct answers for each quiz.
First Quiz (Decimals): Kelly answered 4/5 of 15 questions correctly.
To find the number of correct answers, multiply:
(4/5) × 15 = 12
So, Kelly got 12 questions correct in the first quiz.
Second Quiz (Fractions): Kelly answered 5/6 of 12 questions correctly.
To find the number of correct answers, multiply:
(5/6) × 12 = 10
So, Kelly got 10 questions correct in the second quiz.
Therefore, Kelly got more questions correct on the first quiz with 12 correct answers compared to 10 on the second quiz.
A Package of 10 pens cost $5. Ms.Jackson spent $45 on pens for her office. How many pens did she buy?
Each pack costs 5 dollars so you take 5 times 8 to get 45 dollars. Then you take to 8 and times it by 10 to get a total of 80 pens
gymnastics incline mat is shaped like a wedge two sides of the matter shaped like right triangles how much vinyl is needed to cover both of triangular sides. 15in. and 33in.
Vinyl is = 15 in. * 33 in. = 495 in.²
Vinyl is needed 495 inches² to cover both of triangular sides
We have to given that,
Gymnastics incline mat is shaped like a wedge two sides of the matter shaped like right triangles.
Now, We know that,
Area of triangle is,
⇒ A = 1/2 x base x height
Here, base = 33 inches
Height = 15 inches
Since, Vinyl needed to cover both of the triangular sides.
Hence, Area is,
A = 2 (Area of triangle)
A = 2 (1/2 x base x height)
A = base x height
A = 15 x 33
A = 495 inches²
Thus, Vinyl is needed 495 inches² to cover both of triangular sides.
Learn more about the triangle visit;
brainly.com/question/1058720
#SPJ2
A card is randomly selected from the standard deck. What is the probability of selecting a red card, the king of spades, or the ace of clubs?
A: 1/2
B: 7/13
C: 27/52
D: 15/52
Answer:
d
Step-by-step explanation:
13 red, 1 king of spade, 1 ace of club
What is the approximate value of 2π -√ 3 ?
Answer:
Step-by-step explanation:
2*pi - sqrt(3)
pi = 3.14159
2pi = 6.283184
sqrt(3) = 1.73205
Answer
6.283184 - 1.73205
4.51133
Answer:
Sorry about being so late, but the answer is
4.55
OR
4.55113449961
Step-by-step explanation:
Adalyn drove 12 miles from her home to her school and then drove back. Graph A shows her distance from home during the trip. Graph B will show her distance from the school during the trip. Complete each statement about Graph B.
a. On Graph B, at 0 minutes, the height of the graph will be 12 miles.
b. Then, the graph will decrease linearly until 15 minutes, when Adalyn reaches the school.
Certainly, let's delve a bit deeper into each part of Graph B in relation to Adalyn's journey from home to school and back:
a. Initial Point at 0 Minutes:
On Graph B, the vertical axis represents the distance from the school, while the horizontal axis represents time. At the start of her journey (0 minutes), Adalyn is at her home, which is 12 miles from the school. This is the farthest point from the school she will be during her trip. Therefore, the height of Graph B at 0 minutes must be the full distance to the school, which is 12 miles. This is the starting point for the graph on the vertical axis.
b. Graph Behavior from 0 to 15 Minutes:
As time progresses from 0 to 15 minutes, Adalyn is driving towards the school, getting closer every minute. On the graph, this is represented by a decreasing line, since the vertical distance from any point on the line to the horizontal axis represents her distance from the school, which is getting smaller. The rate of decrease is constant because we're assuming she's driving at a steady pace.
At exactly 15 minutes, Adalyn reaches the school. Since she is now at the school, her distance from it is 0 miles. On Graph B, this is represented by the graph touching the horizontal axis. At this point, the height of the graph is 0 miles, indicating that there is no distance between Adalyn and the school.
After 15 minutes, the graph would stay at 0 miles (the line would run along the horizontal axis) until she begins her journey back home. Once she starts the return trip, the graph would begin to increase linearly from 0, reflecting her increasing distance from the school as she drives back home.
If we were to continue completing Graph B based on Graph A, after the 15-minute mark, we'd see a flat line at 0 miles until 60 minutes when Adalyn starts her journey back home, at which point the line would ascend back to 12 miles by 75 minutes, mirroring the initial descent but in the opposite direction.
The word which completes the statement are,
12 miles,
Steady,
Decrease
Complete each statement about Graph B.
On graph B, at 0 minutes, the height of the graph will be 12 miles.
Then, the graph will remain steady until 15 minutes, the height of graph B will be decreased.
Therefore, graph B is the reverse of graph A which is the distance from the school to her home.
The ages of Hari and Harry are in the ratio 5:7. Four years from now the ratio of their ages will be 3:4. Find their present ages
Answer:
Hari is 20; Harry is 28
Step-by-step explanation:
The ratio in 4 years is equivalent to the ratio 6:8, which has each of the original ratio unit numbers increased by 1. That means each of those ratio units stands for 4 years, and the present ages are ...
Hari: 5·4 = 20
Harry: 7·4 = 28
_____
Conventional method of solution
If you like, you can write equations for the ages of Hari (x) and Harry (y):
x/y = 5/7
(x+4)/(y+4) = 3/4
These can be solved a variety of ways. For some methods, it may be useful to write them in standard form:
7x -5y = 04x -3y = -4These have solution (x, y) = (20, 28).
Find the zeros of the following polynomial.
3x3 + 9x2 - 12x
If you factor 3x from the expression, you have
[tex]3x^3+9x^2-12x=3x(x^2+3x-4)[/tex]
So, we have
[tex]3x(x^2+3x-4)=0 \iff 3x=0\lor x^2+3x-4=0[/tex]
We easily have
[tex]3x=0\iff x=0[/tex]
So, one solution is x=0.
The other solutions depend on the quadratic equation:
[tex]x^2+3x-4=0 \iff x=-4 \lor x=1[/tex]
So, the solutions are [tex]x=-4,\ 0,\ 1[/tex]
Let u = <-7, -2>. Find 4u.
a. <-28, -8>
b. <-28, 8>
c. <28, -8>
d. <28, 8>
Answer:
a. <-28, -8>
Step-by-step explanation:
The given vector is
u = <-7, -2>.
To find 4u, we multiply the given vector by the scalar 4.
4u =4 <-7, -2>.
4u =<-7\times4, -2\times4>.
We multiply out to get;
4u =<-28, -8>.
The correct choice is a. <-28, -8>
The answer is <-28 or >8
Where does the parentheses go and equation 7 + 16 -8 / 2 + 2 * 25 divided by 5 to get the total number of 21?
Answer:
Through trial and error:
7 + (16 - 8) / 2 + (2 * 25 / 5)
A board game uses the deck of 20 cards shown to the right. two cards are selected at random from this deck. calculate the probability that the first card selected has a red bird and the second card selected has a lion, both with and without replacement.
The probability with replacement is [tex]= 1 \div 16[/tex]
The probability without replacement is [tex]= 5 \div 16[/tex]
Calculation of probability with or without replacement:(a)
With replacement
Since cards should be replaced, 5 lions or 5 legs
So, the probability is
[tex]= 5\div 20 \times 5\div 20\\\\= 1 \div 16[/tex]
(b)
Without replacement
Since cards should not be put back, for the second draw only 19 cards are left
So, the probability is
[tex]= 5\div 20 \times 5\div 19\\\\= 5 \div 16[/tex]
Learn more about the card here: https://brainly.com/question/24754151
To calculate probability with and without replacements, we adjust the number of total outcomes depending on whether the card is replaced or not after each draw. For this specific scenario, when there is no replacement, the probability of drawing a red bird and then a lion is (5/20)*(5/19), while with replacement it is (5/20)*(5/20).
Explanation:Your question involves the concepts of probability and specifically the difference between sampling with and without replacement. Let's assume, for the sake of this example, that there are 5 red bird cards and 5 lion cards in the deck of 20 cards.
1. Sampling without replacement: After the first card (a red bird) is taken out, it is not added back into the deck. So the deck now only has 19 cards. So, the probability of drawing a red bird card first is 5/20 or 1/4. Then, the probability of drawing a lion card second is 5/19.
2. Sampling with replacement: After the first card (a red bird) is pulled out, it is replaced back into the deck. So the deck continues to have 20 cards. So, the probability of drawing a red bird first is still 5/20 or 1/4 and the probability of drawing a lion card second is still 5/20 or 1/4.
Learn more about Probability here:
https://brainly.com/question/32117953
#SPJ11
The sum of the first 12 terms of an arithmetic progression is 156. What is the sum of the first and twelfth terms?
[tex]\bf \qquad \qquad \textit{sum of a finite arithmetic sequence} \\\\ S_n=\cfrac{n}{2}(a_1+a_n)\quad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\[-0.5em] \hrulefill\\ n=12\\ S_{12}=156 \end{cases}\implies 156=\cfrac{12}{2}(a_1+a_{12}) \\\\\\ 156=6(a_1+a_{12})\implies \cfrac{156}{6}=a_1+a_{12}\implies 26=a_1+a_{12}[/tex]
Final answer:
The sum of the first and twelfth terms of an arithmetic progression, whose first 12 terms sum to 156, is 26. This is determined by using the arithmetic progression sum formula and understanding that the sum of equidistant terms from the beginning and end of the series is constant.
Explanation:
To determine the sum of the first and twelfth terms of an arithmetic progression (AP) given the sum of the first 12 terms, we can use the properties of AP. The sum of an arithmetic progression can be expressed using the formula Sn = n/2(2a + (n-1)d), where Sn is the sum of the first n terms, a is the first term, n is the number of terms, and d is the common difference.
For this question, the sum of the first 12 terms (S12) is given as 156, and we want to find the sum of the first and twelfth terms. By properties of AP, the sum of equidistant terms from the beginning and end (first and last terms in this case) is the same. So the sum of the first and twelfth terms is equal to the sum of the second and eleventh terms, and so on. This sum is consistent and equals a + a + 11d, which simplifies to 2a + 11d.
Since S12 = 12/2(2a + 11d) and we know S12 = 156, we can simplify the formula to get 156 = 6(2a + 11d). However, to solve for 2a + 11d directly, we do not need the value of d; we only need the fact that the sum of the first and last terms will be constant and equal to the sum of 2a + 11d. Therefore, the sum of the first and twelfth terms is 156/6, which equals 26.
Please help me with this please
The sum of two numbers is 27. The larger number is 6 more than twice the smaller number. What is the number?
Answer:
Step-by-step explanation:
Let's say the numbers are x and y, and y is larger than x.
x + y = 27
y = 6 + 2x
Substitute:
x + (6 + 2x) = 27
3x + 6 = 27
3x = 21
x = 7
So x = 7 and y = 20.
An artist is creating a mosaic that cannot be larger than the space allotted which is 4 feet tall and 6 feet wide. The mosaic must be at least 3 feet tall and 5 feet wide. The tiles in the mosaic have words written on them and the artist wants the words to all be horizontal in the final mosaic. The word tiles come in two sizes: The smaller tiles are 4 inches tall and 4 inches wide, while the large tiles are 6 inches tall and 12 inches wide. If the small tiles cost $3.50 each and the larger tiles cost $4.50 each, how many of each should be used to minimize the cost? What is the minimum cost?
Calculate the cost per square foot for each size tile.
1 square foot = 144 square inches.
Small tile = 4 x 4 = 16 square inches.
16 / 144 = 1/9 square foot.
Cost per square foot = 3.50 / 1/9 = $31.50 per square foot.
Large tile = 6 x 12 = 72 square inches.
72 / 144 = 1/2 square foot.
Cost per square foot = 4.50 / 1/2 = $9 per square foot.
The minimum area of the mosaic is 3 feet x 5 feet = 15 square feet.
The large tiles are cheaper per square foot.
Total tiles needed = 15 sq. ft. / 1/2 sq. ft = 30 tiles.
30 tiles x 4.50 each = $135
The equation y=15x+30 describes the relationship between the number of months since a customer began renting a storage unit and the total amount of money, in dollars, the customer has paid to the storage facility. Which statement describes a solution of the equation based on the number of months of customer has rented the storage unit
This function starts at 30 where x=0, and then gains 15 units each time x is increased by 1.
So, we deduce that renting the storage has a fixed price of 30, and then you have to pay 15 each month.
It will add 15 dollar for each month.
Write an equation that represents Boyle’s law (the volume of air varies inversely with the pressure). Use k for the variation constant.
[tex]\bf \qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}}\qquad \qquad y=\cfrac{k}{x}\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{\underline{v}olume varies inversely with \underline{p}ressure}}{V=\cfrac{k}{p}}~\hfill[/tex]
I need help with this please
Answer:
D
Step-by-step explanation:
The difference in the x-coordinates is Δx = 6 - 3 = 3.
The difference in the y-coordinates is Δy = 8 - 2 = 6.
One third the difference is Δx/3 = 3/3 = 1 and Δy/3 = 6/3 = 2.
So the one-third point is at (3 + 1, 2 + 2) = (4, 4).
In general the segment from A to B has parametric equation
X = (1-t)A + tB
t=0 gives point A, t=1 gives point B, and in between we move linearly with t from A to B.
So if we want AX:BX=1:3, that's 1/(1+3)=1/4 of the way along from A to B, so corresponds to t=1/4. So the point we seek is
X = (1 - 1/4)(3, 2) + (1/4)(6,8) = ((9+6)/4, (6+8)/4)=(15/4, 7/2)
Answer: Choice C
someone please help me
i’ll give brainliest
Answer:
[tex]x^{1/4} y^{1/2}[/tex]
Step-by-step explanation:
When you have a power then a root like that, you have to divide the power by the root.
So, in this case, you have (x^2y^4) and a 8th root (8√).
So, you take your exponents from (x^2y^4) and divide them by the root (8), to get new powers of 2/8, or 1/4, and 4/8 or 1/2
As I already explained you in other questions, that leaves a fractional exponent that is equivalent to the regular exponent then rooted.
Answer is then: [tex]x^{1/4} y^{1/2}[/tex]