Find the surface area of the tool box. Round your answer to the nearest tenth and explain your answer. ​Pls I NEED THE ANSWER NOW ASAP!!!

Find The Surface Area Of The Tool Box. Round Your Answer To The Nearest Tenth And Explain Your Answer.

Answers

Answer 1

Answer:

807.8 in^2

Step-by-step explanation:

The total area of the box is the sum of the areas of all faces of the box. The top, bottom, front, and back faces are rectangles 18 in long. The end faces each consist of a rectangle and a triangle. We can compute the sum of these like this:

The areas of top, bottom, front, and back add up to be 18 inches wide by the length that is the perimeter of the end: 2·5in +2·8 in + 9.6 in = 35.8 in. That lateral area is ...

(18 in)(35.6 in) = 640.8 in^2

The area of the triangle on each end is equivalent to the area of a rectangle half as high, so we can compute the area of each end as ...

(9.6 in)(8.7 in) = 83.52 in^2

Then the total area is the lateral area plus the area of the two ends:

640.8 in^2 + 2·83.52 in^2 = 807.84 in^2 ≈ 807.8 in^2


Related Questions

A spinner has 4 equal-sized sections with different colors. You spin the spinner 60 times. Find the theoretical and experimental probabilities of spinning blue.
RESULTS HERE
Red: 13 Blue: 14 Yellow:18 Green:15

Answers

Answer:

theoretical is 15 each

experimental is Red: 13 Blue: 14 Yellow:18 Green:15

Step-by-step explanation:

the theoretical probability is what should statisticly happen when you do it so if there are for outcomes with an equal chance of occurring then 1 out of every 4 or 1/4 of the time each one should happen so divide 60 by 4 and you get 15

the experimental probability is what happens when someone actually spins it 60 times and in your scenario

RESULTS HERE

Red: 13 Blue: 14 Yellow:18 Green:15

is what happened so that is the experimental probability

I need help with Precal asap !!!! I’ll mark u as brainliest, please if you don’t know the correct answer don’t write down.

Answers

Answer:

Equation 1: r = -5 * cos theta

Equation 2: r = 1 – ( 4 * sin theta  )

Step-by-step explanation:

Graph 1:

This graph is a circle along negative x- axis.

General equation for graph:

R = a cos theta          ∴ a =  diameter of circle

From given graph, it is included that:

a = -5  

a/2 = -2.5 (center of circle)

Equation 1: r = -5 cos theta

Graph 2:

This graph is an inner-loop limacon.

The inner-loop limacon is in the downward direction along the negative y-axis

The general equation for the graph will be :

r = a – b sin theta  

a will represent x – intercept, from graph it is included that:

a = { +1, -1  }

For inner-loop on y-axis, b - a = 3     ………….1  

For outer-loop on y-axis, a + b = 5    …………2

Adding both 1 and 2 to find values of a and b

b – a = 3

a + b = 5

2b     = 8     ⇒      b = 4

Putting value of b in 2

a + 4 = 5       ⇒       a = 1

substituting values of a and b in general equation:

Equation 2: r = 1 – 4 sin theta

ples help will mark brainliest if 2 answers.

Answers

Answer:

see below

Step-by-step explanation:

Choose a couple of values for x. Figure out the corresponding values for y. Plot those points and draw a line through them.

Let's choose x=0 and x=4. Then the corresponding y-values are ...

y = 2·0 = 0 . . . . . point (x, y) = (0, 0)

y = 2·4 = 8 . . . . . point (x, y) = (4, 8)

These are graphed below.

For which intervals is the function positive?


(−∞,−2)

(0,4)

(4,∞)

(−1.5,−1)

(2,2.5)

(−2, 0)

Answers

Answer:

(−∞,−2) and (0,4)

Step-by-step explanation:

The function is positive when it is above the x-axis.  This is when x is less than -2 and when x is between 0 and 4.

Final answer:

This question is asking about the intervals in which a given function is positive. Without knowing the exact function, one would typically evaluate the function in the given intervals to decide whether the result is positive or negative.

Explanation:

The question is asking in which intervals a given mathematical function is positive. Without more specific information about the function, it is impossible to definitively say which of the intervals the function is positive in. Normally, you would evaluate the function at multiple points within the given intervals and analyze the output to determine if the function is positive or negative within those ranges.

For example, if you had the function f(x) = x^2 - 3x + 2, you could plug in a couple of values in the intervals (−∞,−2), (0,4), (4,∞), (−1.5,−1), (2,2.5), (−2, 0) and see whether the output is positive.

Again, without the specific function this exercise is theoretical and is based on your understanding of intervals and their relationship with function values.

Learn more about Function Intervals here:

https://brainly.com/question/37543233

#SPJ2

Find the area of the sector below. Round your answer to two decimal places. PLEASE HELP PIC ATTACHED (pls explain how to solve it!!)

Answers

Answer:

  88.49 units²

Step-by-step explanation:

Use the formula for the area of a sector.

  A = (1/2)r²·θ

where θ is the central angle of the sector in radians, and r is the radius.

Here, the central angle of the sector is 360°-300° = 60° = π/3 radians. Then the area is ...

  A = (1/2)(13)²(π/3) = 169π/6 ≈ 88.49 . . . . units²

Final answer:

To find the area of a sector, use the formula A = (θ/360) × πr². Plug in the provided values for the central angle and the radius. The final answer should carry the same number of significant figures as the radius provided.

Explanation:

To find the area of the sector (A), we will use the formula: A = (θ/360) × πr², where θ represents the sector's central angle in degrees and r the radius of the circle. Suppose you are given that the central angle (θ) is 90° (or π/2 in radians) and the radius (r) is 0.0500 m, as suggested in the provided information.

Plugging these values into the formula, we get A = (90/360) × 3.14(0.0500 m)² = 7.85 × 10-3 m² rounded to two decimal places. Even though the output from the calculator is a number with more digits, [1.11] , we need to make sure our final answer is limited to two significant figures to match the given radius value.

If the radius of the circle was given as 0.800 m (or 80.0 cm), then going through the same process produces an area of 1.26 m² for a one meter length along the curve of the mirror, for instance.

Learn more about Area of a sector here:

https://brainly.com/question/29055300

#SPJ3

Please help asap!!!!!!!!

Answers

ANSWER

A=16

EXPLANATION

The radius of the circle is r=4 units.

The area of a triangle is

[tex] \frac{1}{2} bh[/tex]

Both the height and the base of the triangle are radii, which is 4 units.

The area of the two isosceles right triangle is

[tex] 2(\frac{1}{2} \times 4 \times 4) = 16[/tex]

Answer:

Area of combined triangle = 2 * 8 = 16 square units

Step-by-step explanation:

Points to remember

Area of triangle = bh/2

b - Base and h - Height

From the figure we can see that a circle and two right angled triangles.

To find the combined area of triangles

Here base and height of two triangles is equals to radius of circle

Therefore b = 4 and h = 4

Area of one triangle = bh/2

 = (4 * 4)/2 = 8 square units

Area of combined triangle = 2 * 8 = 16 square units

Which of the following equations is represented by the given graph?

Answers

Answer:

A

Step-by-step explanation:

A ball is launched from a sling shot. Its height, h(x), can be represented by a quadratic function in terms of time, x, in seconds.

After 1 second, the ball is 121 feet in the air; after 2 seconds, it is 224 feet in the air.

Find the height, in feet, of the ball after 3 seconds in the air.

Answers

Answer:

309 ft

Step-by-step explanation:

In order to solve this I have to assume that the sling shot is ground level.  Since you did not provide an initial height, without making the assumption that it is 0, we cannot solve the problem at all.

The standard form of a quadratic function is

[tex]f(x)=ax^2+bx+c[/tex]

c is the initial height for which we are going to sub in a 0.  Given 2 points, we are going to plug in the y and the x, one point each into 2 quadratic functions, to find the model.  The first coordinate is (1, 121):

[tex]121=a(1)^2+b(1)+0[/tex] and 121 = a + b

The second coordinate is (2, 224):

[tex]224=a(2)^2+b(2)+0[/tex] and 224 = 4a + 2b

Solve the first equation for a:

a = 121 - b

and sub it in for a in the second equation:

224 = 4(121 - b) + 2b and

224 = 484 - 4b + 2b and

-260 = -2b so b = 130.

Now we can sub that in for b and solve for a:

a = 121 - 130 so a = -9.

The equation then that models the motion is

[tex]f(x)=-9x^2+130x[/tex]

Now that we know that, all we have to do now is to find f(3):

[tex]f(3)=-9(3)^2+130(3)[/tex] and

f(3) = 309 ft

someone please help, can’t seem to get the problems

Answers

Answer:

A) 525,500

B) decreasing by 0.995% per year

C) 430,243

D) After 20 years, the population can be expected to be about 20% smaller.

E) 2009

Step-by-step explanation:

A) t=0 represents the year 2000, so put 0 where t is in the expression and evaluate it. Of course, e^0 = 1, so the y-value is 525.5 thousand, or 525,500.

__

B) Each year, the population is multiplied by e^-0.01 ≈ 0.99004983, or about 1 - 0.995%. That is, the population is decreasing by 0.995% per year.

__

C) t represents the number of years since 2000, so the year 2020 is represented by t=20. Put that value in the equation and do the arithmetic.

y = 525.5·e^(-0.01·20) = 525.5·e^-0.2 ≈ 430.243 . . . . thousands

The population in 2020 is predicted to be 430,243.

__

D) The decrease is about 1% per year, so a rough estimate of the decrease over 20 years is 20%. The population of about 500,000 will decrease by about 100,000 in that time period, so will be about 400,000. The value we calculated is in that ballpark. (The actual decrease is about 18.13%; or about 95.2 thousand.)

__

E) Your working shows the general idea, but you need to remember the numbers in the equation are thousands:

480 = 525.5·e^(-0.01t)

0.913416 = e^(-0.01t) . . . . divide by 525.5

ln(0.913416) = -0.01·t . . . . take the natural log

-100ln(0.913416) = t ≈ 9.06

The population will be 480 thousand after 9 .06 years, in the year 2009.

Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 56 hours and a standard deviation of 3.3 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 61 ​hours? ​(b) What proportion of light bulbs will last 53 hours or​ less? ​(c) What proportion of light bulbs will last between 57 and 62 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts less than 46 ​hours?

Answers

Final answer:

To solve this problem, we need to use the z-score formula to standardize the values and then look up the corresponding probabilities in the standard normal distribution table.

Explanation:

To solve this problem, we need to use the z-score formula to standardize the values and then look up the corresponding probabilities in the standard normal distribution table. The z-score formula is given by (X - μ) / σ, where X is the given value, μ is the mean, and σ is the standard deviation. Here are the calculations for each question:

(a) What proportion of light bulbs will last more than 61 hours?

First, we need to calculate the z-score for 61 hours:

z = (61 - 56) / 3.3 = 1.52

Next, we can look up the probability corresponding to a z-score of 1.52 in the standard normal distribution table. The probability of getting a value greater than 1.52 is approximately 0.0655, or 6.55%.

(b) What proportion of light bulbs will last 53 hours or less?

First, we need to calculate the z-score for 53 hours:

z = (53 - 56) / 3.3 = -0.9091

Next, we can look up the probability corresponding to a z-score of -0.9091 in the standard normal distribution table. The probability of getting a value less than or equal to -0.9091 is approximately 0.1814, or 18.14%.

(c) What proportion of light bulbs will last between 57 and 62 hours?

First, we need to calculate the z-scores for 57 hours and 62 hours:

z1 = (57 - 56) / 3.3 = 0.303

z2 = (62 - 56) / 3.3 = 1.82

Next, we can look up the probabilities corresponding to z1 and z2 in the standard normal distribution table. The probability of getting a value between z1 and z2 is approximately 0.1988, or 19.88%.

(d) What is the probability that a randomly selected light bulb lasts less than 46 hours?

First, we need to calculate the z-score for 46 hours:

z = (46 - 56) / 3.3 = -3.03

Next, we can look up the probability corresponding to a z-score of -3.03 in the standard normal distribution table. The probability of getting a value less than -3.03 is approximately 0.00123, or 0.123%.

Learn more about Calculating probabilities in a normal distribution here:

https://brainly.com/question/32682488

#SPJ12

Final answer:

The question involves the computation and interpretation of Z-scores in a normally distributed data, which in this case is the lifetime of light bulbs. The probabilities are found by calculating the Z-scores and then looking up these scores in a Z-table or using a calculator. About 6.4% of bulbs will last more than 61 hours, 18.1% will last 53 hours or less, approximately 34.1% will last between 57 and 62 hours, and only about 0.1% will last less than 46 hours.

Explanation:

The question is about using the properties of a normal distribution to find probabilities related to the lifetime of light bulbs. To do this, we use the mean and standard deviation to compute Z-scores, which give us the number of standard deviations away from the mean a certain value is.

(a) To find the proportion of light bulbs that will last more than 61 hours, we calculate the Z-score for 61 hours: Z = (61 - 56)/3.3 = 1.52. We look this Z-score up in a Z-score table or use a calculator to find that the probability of getting a Z-score of 1.52 is about 0.064. Therefore, about 6.4% of light bulbs will last more than 61 hours.

(b) For finding the proportion of light bulbs that will last 53 hours or less, we calculate the Z-score for 53 hours: Z = (53 - 56)/3.3 = -0.91. Looking this up, we find that about 18.1% of light bulbs will last less than or equal to 53 hours.

(c) To find the proportion of light bulbs that will last between 57 and 62 hours, we calculate the Z-scores and find the probabilities for both, then subtract the smaller from the larger. The Z-score for 57 hours is 0.30 (probability about 37.5%) and for 62 hours is 1.82 (probability about 3.4%). Thus, about 34.1% of all light bulbs will last between 57 and 62 hours.

(d) Finally, to find the probability that a light bulb lasts less than 46 hours, we again calculate the Z-score: Z = (46 - 56)/3.3 = -3.03. This Z-score is quite small, suggesting this is unlikely: indeed, only about 0.1% of all light bulbs last less than 46 hours.

Learn more about Z-scores here:

https://brainly.com/question/15016913

#SPJ11

It takes 2 1/4 kilometers of thread to make 3 1/2 boxes of shirts. How many kilometers of thread would it take to make 8 boxes?

Answers

[tex]5\frac{3}{7}[/tex] Kilometers of thread.

The key to solve this problem is using the rule of three.

We have to change mixed number to improper fraction in order to solve the problem.

A mixed number is a number formed by an integer and a proper fraction (one whose quotient is less than 1).

An improper fraction  is one whose denominator is less than its numerator.

To change a mixed number to an improper fraction:

1. Multiply the whole number by the denominator and add to the numerator.

2. The denominator of the mixed number is unchanged.

It takes [tex]2\frac{1}{4}[/tex] kilometers of thread to make [tex]3\frac{1}{2}[/tex] boxes of shirts. How many kilometers of thread would it take to make 8 boxes?

We need to change [tex]2\frac{1}{4}[/tex] and [tex]3\frac{1}{2}[/tex] to an improper franctions:

[tex]2\frac{1}{4}=\frac{(2)(4)+1}{4}=\frac{9}{4}[/tex]

[tex]3\frac{1}{2}=\frac{(3)(2)+1}{2}=\frac{7}{2}[/tex]

To calculate how many kilometers of thread would it take to make 8 boxes, we use the rule of three:

9/4 Km of thread -------------> 7/2 boxes of shirts

                    x     <-------------  8 boxes of shirts

[tex]x = \frac{(\frac{9}{4})(8)}{\frac{7}{2}}= \frac{19}{\frac{7}{2}}\\x=\frac{38}{7}[/tex]

Convert the improper fraction 38/7 to a mixed number:

1. Divide the numerator by the denominator.

38÷7 = 5 and a remainder of 3

2.  5 become the whole number, the remainder is the numerator, and the denominator is unchanged.

38/7 = 5 3/7

It would take 5 3/7 kilometers of thread make 8 boxes of shirts.

Find a parametric representation for the surface. The part of the sphere x2 + y2 + z2 = 16 that lies between the planes z = −2 and z = 2. (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of θ and/or ϕ.)

Answers

To  answer this question, we should make use of spherical coordinates.

Solution is:

S = (  4×cosθ ×sinΦ , 4 ×sinθ× sinΦ, 4 × cosΦ)

0 ≤ θ ≤ 2×π     ;  π/2  ≤ Ф ≤ (3/2)×π

In Analitic Geometry we have different way of determine, and identify  the position of objects, we have rectangular coordinates, cylindrical coordinates and spherical coordinates. The use of each of these system depends on de geometry of the problem.

In this particular case and according to the problem statement we should use spherical coordinates

x = ρ×cosθ ×sinΦ           y = ρ ×sinθ× sinΦ         z = ρ× cosΦ

In our particular case

ρ = 4   then   x = 4×cosθ ×sinΦ     y = 4 ×sinθ× sinΦ   z = 4 × cosΦ

0 ≤ θ ≤ 2×π     ;   π/2  ≤ Ф ≤ ( 3/2)×π

So the solution in terms of θ and/or  Φ

S = (  4×cosθ ×sinΦ , 4 ×sinθ× sinΦ, 4 × cosΦ)

Related Link: https://brainly.com/question/4465072?

Final answer:

To find a parametric representation for the surface of the part of the sphere x² + y² + z² = 16 between the planes z = -2 and z = 2, use spherical coordinates with r = 4, θ ranging from 0 to π, and ϕ ranging from 0 to 2π.

Explanation:

To find a parametric representation for the surface of the part of the sphere x² + y² + z² = 16 that lies between the planes z = -2 and z = 2, we can use spherical coordinates.

Letting x = r sinθ cosϕ, y = r sinθ sinϕ, and z = r cosθ, where r is the radius of the sphere, θ is the polar angle, and ϕ is the azimuthal angle, we can rewrite the equation of the sphere as r² = 16.

Simplifying, we have r = 4.

Now we can write the parametric equations as x = 4 sinθ cosϕ, y = 4 sinθ sinϕ, and z = 4 cosθ, where θ ranges from 0 to π, and ϕ ranges from 0 to 2π.

Learn more about Parametric representation of a surface here:

https://brainly.com/question/33853288

#SPJ11

For number 7 I need an explanation with steps for why is true or false
Thank you

Answers

Answer:

Part 1) The statement is false

Part 2) The statement is false

Part 3) The statement is true

Step-by-step explanation:

Let

h(t)-----> the height of an object launched to the air

t ----> the time in seconds after the object is launched

we have

[tex]h(t)=-16t^{2} +72t[/tex]

Verify each statement

case 1) The factored form of the equation is h(t)=-16(t-4.5)

The statement is false

Because

The factored form is equal to

[tex]h(t)=-16t(t-4.5)[/tex]  

case 2) The object will hit the ground at t=72 seconds

The statement is false

Because

we know that

The object will hit the ground when h(t)=0

substitute in the equation and solve for t

[tex]0=-16t(t-4.5)[/tex]  

so

[tex](t-4.5)=0[/tex]  

[tex]t=4.5\ sec[/tex]  

case 3) The t-value for the maximum of the function is 2.25

The statement is true

Because

Convert the quadratic equation in vertex form

[tex]h(t)=-16t^{2} +72t[/tex]

[tex]h(t)=-16(t^{2} -4.5t)[/tex]

[tex]h(t)-81=-16(t^{2} -4.5t+2.25^{2})[/tex]

[tex]h(t)-81=-16(t-2.25)^{2}[/tex]

[tex]h(t)=-16(t-2.25)^{2}+81[/tex] ---> quadratic equation in vertex form

The vertex is a maximum

The vertex is the point (2.25,81)

Graph the function by first finding its zeroes.
y = x3- 2x2 + x

Answers

Answer:

The zeros of the function are;

x = 0 and x = 1

Step-by-step explanation:

The zeroes of the function simply imply that we find the values of x for which the corresponding value of y is 0.

We let y be 0 in the given equation;

y = x^3 - 2x^2 + x

x^3 - 2x^2 + x = 0

We factor out x since x appears in each term on the Left Hand Side;

x ( x^2 - 2x + 1) = 0

This implies that either;

x = 0 or

x^2 - 2x + 1 = 0

We can factorize the equation on the Left Hand Side by determining two numbers whose product is 1 and whose sum is -2. The two numbers by trial and error are found to be -1 and -1. We then replace the middle term by these two numbers;

x^2 -x -x +1 = 0

x(x-1) -1(x-1) = 0

(x-1)(x-1) = 0

x-1 = 0

x = 1

Therefore, the zeros of the function are;

x = 0 and x = 1

The graph of the function is as shown in the attachment below;

Find the value of f(–3) and g(3) if f(x) = –6x + 3 and g(x) = 3x + 21x–3.

f(–3) = 21
g(3) = 9.78

f(–3) = –18
g(3) = –9.78

f(–3) = –3
g(3) = 30.04

f(–3) = 15
g(3) = 8.22

Answers

Final answer:

The value of f(-3) for the function f(x) = -6x + 3 is 21. The value of g(3) for the function g(x) = 3x + 21x - 3 is 66.

Explanation:

To find the value of f(-3), you substitute -3 in place of x in the function f(x) = -6x + 3. You get f(-3) = -6(-3) + 3 = 18 + 3 = 21.

To find the value of g(3), we substitute 3 in place of x in the function g(x) = 3x + 21x - 3. This gives g(3)= 3(3) + 21*(3)-3 = 9 + 57 = 66.

So, f(-3) = 21 and g(3) = 66.

To find the value of f(–3) and g(3), we need to substitute the given values into the respective functions.

For f(x) = –6x + 3, substituting x = –3 into the function, we get:

f(–3) = –6(–3) + 3 = 18 + 3 = 21

For g(x) = 3x + 21x – 3, substituting x = 3 into the function, we get:

g(3) = 3(3) + 21(3) – 3 = 9 + 63 – 3 = 69

Learn more about Functions here:

https://brainly.com/question/30721594

#SPJ12

WH
A cylinder measures 10 inches in
diameter and has a height of 6
inches. What is its volume?

Answers

Answer:

  150π in³ ≈ 471.24 in³

Step-by-step explanation:

The formula for the volume of a cylinder is ...

  V = πr²h

The radius is half the diameter, so you have a volume of ...

  V = π(5 in)²(6 in) = 150π in³ ≈ 471.24 in³

please help me asap

afraid to fail

Answers

Answer: 311.25

Step-by-step explanation: Take 52.50 and multiply by 4.5. Then add the $75 service fee.

Answer:

$311.25

Step-by-step explanation:

This is your correct answer because 52.50 x 4.5 plus 75 equals 311.25.

Tatiana wants to give friendship bracelets to her 32 classmates. She already has 5 bracelets, and she can buy more bracelets in packages of 4.
Will Tatiana have enough bracelets if she buys 5 packages?

PLEASE ANSWER ASAP!
TWENTY POINTS!!
THANKSSS

Answers

Answer:

No.

Step-by-step explanation:

First, subtract 32-5= 27

Then multiply 5 * 4=20

since 20 is less than 27, she will not have enough.

Answer:

No

Step-by-step explanation:

She already has 5 and the total is 32 so she has to make 28 friendship bracelets.

Bracelets in packages of 4 and she buys 5 packages which is 20 so no, she doesn't have enough bracelets if she buys 5 packages.

41,692.58


What place is the 6 in, in the number above?

Answers

Answer:

  6 is in the "hundreds" place

Step-by-step explanation:

The value of the 6 can be found by setting the other digits to zero:

  00,600.00 = 600

The 6 represents six hundred, hence is in the hundreds place.

How do you find the exact value of sec θ if sin θ = -15/17 and 180 < θ < 270?

Answers

For [tex]180^\circ<\theta<270^\circ[/tex], we expect to have [tex]\cos\theta<0[/tex]. Then if [tex]\sin\theta=-\dfrac{15}{17}[/tex], we have

[tex]cos^2\theta+\sin^2\theta=1\implies\cos\theta=-\sqrt{1-\sin^2\theta}=-\dfrac8{17}[/tex]

[tex]\implies\sec\theta=\boxed{-\dfrac{17}8}[/tex]

Solve the equation -2=3-7 5sqrt x^2

Answers

Answer:

B. 0.43, -0.43

Step-by-step explanation:

The given equation is

[tex]-2=3-7\sqrt[5]{x^2}[/tex]

Combine similar terms to get:

[tex]-2-3=-7\sqrt[5]{x^2}[/tex]

[tex]-5=-7\sqrt[5]{x^2}[/tex]

[tex]\sqrt[5]{x^2}=\frac{5}{7}[/tex]

[tex]x^2=(\frac{5}{7})^5[/tex]

[tex]x^2=\frac{3125}{16807}[/tex]

[tex]x=\pm \sqrt{\frac{3125}{16807}}[/tex]

[tex]x=\pm 0.43[/tex]

[tex]x=0.43[/tex] or [tex]x=-0.43[/tex]

The correct answer is B.

Answer:

B

Step-by-step explanation:

First subtract 3 from the equation:

[tex]-2-3=3-7\sqrt[5]{x^2}-3\\ \\-5=-7\sqrt[5]{x^2}[/tex]

Now divide the equation by -7:

[tex]\sqrt[5]{x^2}=\dfrac{5}{7}[/tex]

Now raise the equation to the 5th power:

[tex]x^2=\left(\dfrac{5}{7}\right)^5[/tex]

Take square root:

[tex]x=\pm \sqrt{\left(\dfrac{5}{7}\right)^5} =\pm \dfrac{25}{49}\sqrt{\dfrac{5}{7}} \\ \\x_1\approx 0.43\\ \\x_2\approx -0.43[/tex]

Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work. (Enter your answers as a comma-separated list of ordered pairs.)x = t^3 - 3t, y = t^2 - 4

Answers

Final answer:

To find the points where the tangent is horizontal or vertical on the given curve, we find the slope, set it equal to zero or undefined, and solve for t. Then substitute the values of t in the equations to find the corresponding points on the curve.

Explanation:

To find the points on the curve where the tangent is horizontal or vertical, we need to find the slope of the curve and determine when it is zero or undefined. For the given curve x = t^3 - 3t, y = t^2 - 4, we can find the slope dy/dx, set it equal to zero or undefined, and solve for t. Once we have the values of t, we can substitute them back into the equations x = t^3 - 3t and y = t^2 - 4 to find the corresponding points on the curve.

To find the horizontal tangent, we set dy/dx equal to zero:

dy/dx = (dy/dt) / (dx/dt) = (2t) / (3t^2 - 3) = 0

Setting the numerator equal to zero, 2t = 0, we find t = 0. Substituting t = 0 back into the equations x = t^3 - 3t and y = t^2 - 4, we get the point (0, -4).

To find the vertical tangent, we set dx/dt equal to zero:

dx/dt = 3t^2 - 3 = 0

Solving for t, we find t = ±1. Substituting t = 1 and t = -1 back into the equations x = t^3 - 3t and y = t^2 - 4, we get the points (2, -3) and (-2, -3) respectively.

Therefore, the points on the curve where the tangent is horizontal or vertical are (0, -4), (2, -3), and (-2, -3).

Learn more about Curve Tangent here:

https://brainly.com/question/34884506

#SPJ12

Final answer:

The points on the curve defined by x = t^3 - 3t and y = t^2 - 4 where the tangent is horizontal or vertical are (-2, 3), (0, -4), and (2, 3).

Explanation:

In the subject of Mathematics, specifically calculus, the question is seeking the points on the curve defined by the parametric equations x = t^3 - 3t and y = t^2 - 4 where the tangent is horizontal or vertical. This means we are looking for the values of t where the derivative dy/dx equals 0 (horizontal tangent) or is undefined (vertical tangent).

First, we need to calculate the derivatives dx/dt and dy/dt. dx/dt = 3t^2 - 3 and dy/dt = 2t. Then we can find the overall derivative dy/dx = (dy/dt)/(dx/dt).

For a horizontal tangent, dy/dx = 0, meaning the numerator of our derivative equation must be zero: dy/dt = 2t = 0. This gives us t = 0.

For a vertical tangent, dy/dx is undefined, meaning the denominator of our derivative equation must be zero: dx/dt = 3t^2 - 3 =0. Solving this equation gives us t = -1, 1.

Substitute t = -1, 0, and 1 into x = t^3 - 3t and y = t^2 - 4 to get the points in the (x, y) format. This results in the points: (-2, 3), (0, -4), and (2, 3).

Learn more about Tangent Points here:

https://brainly.com/question/34269116

#SPJ3

Suppose that A and B are events with probabilities P(A) = 3/4 and P(B) = 1/3. (a) (8 points) What is the largest P(A ∩ B) can be? What is the smallest it can be? Give examples to show that both extremes for P(A ∩ B) are possible. (b) (8 points) What is the largest P(A ∪ B) can be? What is the smallest it can be? Give examples to show that both extremes for P(A ∪ B) are possible

Answers

Answer:

  (a) max P(A∩B) = 1/3; min P(A∩B) = 1/12

  (b) max P(A∪B) = 1; min P(A∪B) = 3/4

Step-by-step explanation:

Let the universal set be the numbers 1–12, U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, each with probability 1/12.

Let event A be any of the numbers 1–9, {1, 2, 3, 4, 5, 6, 7, 8, 9}. If a number is chosen at random from U, the probability of event A is 9/12 = 3/4.

a1) Let event B be any of the numbers 1–4, {1, 2, 3, 4}. If a number is chosen at random from U, the probability of event B is 4/12 = 1/3.

The set A∩B is the numbers 1–4, {1, 2, 3, 4}, so the probability of that event is also 4/12 = 1/3.

In general the maximum value of P(A∩B) will be min(P(A), P(B)). Here, that is min(3/4, 1/3) = 1/3.

__

a2) Let event B be any of the numbers 9–12, {9, 10, 11, 12}. If a number is chosen at random from U, the probability of event B is 4/12 = 1/3. The set A∩B is the number {9}, so the probability of that event is 1/12.

In general, the minimum value of P(A∩B) is max(0, P(A) +P(B) -1). Here, that is max(0, 3/4 +1/3 -1) = 1/12.

__

b1) Let event B be defined as in (a2), the numbers 9–12. Then A∪B is the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, which is equal to the universal set, U. That is, the probability of event A∪B when drawing a number from U is 1.

In general, the maximum value of P(A∪B) is min(1, P(A)+P(B)). Here, that is min(1, 3/4+1/3) = 1.

__

b2) Let event B be defined as in (a1), the numbers 1–4. Then A∪B is the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. If a number is chosen at random from U, the probability of event A∪B is 9/12 = 3/4.

In general, the minimum value of P(A∪B) is max(P(A), P(B)). Here, that is max(3/4, 1/3) = 3/4.

Tokyo, Japan covers an area of 845 square miles. There are 38 million people living in Tokyo. Delhi, India has an area of 573 square miles and has a population of 36 million people. Although more people live in Tokyo, the population density is greater in Delhi. How many more people per square mile live in Delhi?

Answers

Answer:

(36,000,000 / 573) - (38,000,000 / 845) = 17856.8 ≈ 17857 people per square mile

Answer:

17857 people per mile²

Step-by-step explanation:

Area of Tokyo, Japan = 845 square miles

Population Tokyo = 38 million

Area of Delhi, India = 573 square miles

Population of Deli = 36 million

Population density of Tokyo = [tex]\frac{38}{845}[/tex] = 0.04497 millions/miles²

Population density of Delhi = [tex]\frac{36}{573}[/tex] = 0.062827 millions/miles²

Difference in population density of Delhi and Tokyo = 0.062827 - 0.04497

                      = 0.17857 million per mile²

or 17857 people per mile² is the answer.

Which expression is equivalent to (r^-7)^6

A. r^42

B. 1/r^42

C. -7r^6

D. 1/r

Answers

(r^-7)^6 = r^-1 = 1/r

Therefore the answer is D. 1/r

Let me know if you have any questions.

Answer:

B. 1/r^42

Step-by-step explanation:

(r^-7)^6= r^-7*6= r^-42.

As a positive exponent: 1/r^42

Find the value of x in the triangle shown above PLEASE HELP ASAP! Will give 5 stars to right answer

Answers

Answer:

12

Step-by-step explanation:

Answer:

12

Step-by-step explanation:

[tex] {9}^{2} + {x}^{2} = {15}^{2} \\ \\ 81 + {x}^{2} = 225 \\ \\ {x}^{2} = 144 \\ \\ {12}^{2} = 144 \\ \\ [/tex]

mean absolute deviation of 23,28,16,25,18,31,14,37​

Answers

Answer:

6.25

Step-by-step explanation:

I find it convenient to use technology to compute the mean absolute deviation. (see below)

Answer:

(MAD) Mean Absolute Deviation: 6.25

Step-by-step explanation:

Mean: 23 + 28 + 16 + 25 + 18 + 31 + 14 + 37 = 192/8 = 24

24 - 23 = 1

24 - 28 = 4

24 - 16 = 8

24 - 25 = 1

24 - 18 = 6

24 - 31 = 7

24 - 14 = 10

24 - 37 = 13

Mean Absolute Deviation (MAD): 1 + 4 + 8 + 1 + 6 + 7 + 10 + 13 = 50/8 = 6.25

what is the additive inverse of the expression below, where are a and b real numbers?

2a+b

A. -1
B. 0
C. 2a-b
D. -2a-b

Answers

Answer:

  D. -2a-b

Step-by-step explanation:

The additive inverse is found by multiplying the expression by -1.

  -1(2a+b) = -2a -b . . . . matches selection D

Please help last question

Answers

Answer:

75

Step-by-step explanation:

"given that it's a junior" means to only look at juniors.

From the table, under junior, there are 2  males and 6 females. 2 + 6 = 8. The total number of juniors is 8.

p(female given junior) = 6/8 = 3/4 = 0.75 = 75%

Answer: 75

Answer:

75

Step-by-step explanation:

"given that it's a junior" means to only look at juniors.

From the table, under junior, there are 2  males and 6 females. 2 + 6 = 8. The total number of juniors is 8.

p(female given junior) = 6/8 = 3/4 = 0.75 = 75%

Answer: 75

WILL MARK BRAINLIEST IF RIGHT
In right △ABC, the altitude

CH

to the hypotenuse

AB

intersects angle bisector

AL

in point D. Find the sides of △ABC if AD = 8 cm and DH = 4 cm.

Answers

Answer:

AB = 16√3AC = 8√3BC = 24

Step-by-step explanation:

The mnemonic SOH CAH TOA reminds you that ...

  Sin = Opposite/Hypotenuse

In ΔAHD, the side opposite angle DAH is DH, and the hypotenuse is AD, so we have ...

  sin(∠DAH) = DH/AD = 4/8

  ∠DAH = arcsin(4/8) = 30°

That makes ΔAHD a 30°-60°-90° triangle, so the side lengths have the ratios 1 : √3 : 2.

∠CAB = 2·30° = 60°, so ΔABC is also a 30°-60°-90° triangle having the same ratios of side lengths.

In short, ...

  AH = √3·DH = 4√3

  AC = 2·AH = 8√3

  AB = 2·AC = 16√3

  BC = √3·AC = 8·(√3)² = 24

Other Questions
cuanto es 00 necesito ayuda por favor Quick someone answer me ASAP!Which of the following synonyms is most appropriate to describe a person whose mind and heart are concentrated on one idea to the exclusion of everything else?A.preoccupiedB.interestedC.obsessedD.focused What was an ironclad What inspired William Kamkwamba to build a windmill? The combustion of ________ has added great quantities of carbon dioxide to the atmosphere. Officer Brimberry wrote 32 tickets for traffic violations last week, but only 28 tickets this week. What is the percent decrease Which hazard does the ozone layer protect Earth from? smog acid rain carbon dioxide ultraviolet radiation What are the weather events related to a warm front? Obi Wan uses his Jedi mind tricks to compel people to do his will. The words he uses begin in his vocal cords which _____ the air molecules in his throat. How many moles are in 240g of CaCO3? A man is four times as old as his son. In 3 years time, the father will be three times asold as the son. How old is each now?Pls help The House Un-American Activities Committee investigated the possibility of communist propaganda infiltrating: a.the Chicago meat packing industry b.the Wonka chocolate factory c.the British secret service d.the Hollywood film industry The skeletal system, the muscular system, and the nervous system all work together. Explain one link between the skeletal system snd muscular system, between the skeletal system and the nervous system, and between the muscular system and the nervous system. In the electrolysis of brine, the substances produced at the cathode are _____.oxygen gas and hydroxide ionssodium metal and hydrogen gaschlorine gas and hydrogen gashydrogen gas and hydroxide ions Phosphorus is required for organisms to synthesize DNA and phospholipids. In an ecosystem, phosphorus is transferred into the soil by the weathering of rocks. Phosphorus is absorbed by plants, which are consumed by herbivores. Carnivores obtain phosphorus through the consumption of herbivores. Which is a process that transfers phosphorus between an abiotic system and a biotic system.a , a plant absorbing phosphorus from the soilb , weathering of rocks releases phosphorus into the soilc , an herbivore consuming a plantd , a carnivore consuming an herbivore find the volume of each figure. Round your answer to the nearest hundredth, if necessary. Which disease might be prevented by not sharing a water bottle? Is 6.333 a irrational number & If so what is it Katie studies math for 3 5 of an hour for every 1 4 of an hour she studies social studies. What is Katie's unit rate of the time she spends studying math to the time she spends studying social studies? Mountain chain makes an arc through slovakia ukraine and romania