Answer:
Step-by-step explanation:
The formula for the area of a sector is
[tex]A_{s} =\frac{\theta }{360}*\pi r^2[/tex]
where theta is the angle given as 45 and r is the radius (7). Plugging in we get
[tex]A_{s}=\frac{45}{360}*\pi (7)^2[/tex]
Simplify a bit to get
[tex]A_{s}=\frac{1}{8}*49\pi[/tex]
which gives you, in terms of pi:
[tex]A_{s}=\frac{49\pi }{8}[/tex]
or if you need to use the decimal form, rounded to the hundredths position:
A = 19.24
Using the keys above, enter an expression equivalent to (x+2)-(-9x^2+5x-3) using the fewest possible terms.
Answer:
Final answer in simplified form is [tex]9x^2-4x+5 [/tex]
Step-by-step explanation:
Given expression is [tex](x+2)-(-9x^2+5x-3) [/tex]
Now we need to find an equivalent expression for[tex](x+2)-(-9x^2+5x-3) [/tex]
First we can distribute the negative sign and remove the parenthesis the combine like terms
[tex](x+2)-(-9x^2+5x-3) [/tex]
[tex]=x+2+9x^2-5x+3 [/tex]
[tex]=9x^2+x-5x+2+3 [/tex]
[tex]=9x^2-4x+5 [/tex]
Hence final answer in simplified form is [tex]9x^2-4x+5 [/tex]
14. In ΔABC, J is on AB, K is on BC, and JK║AC. Solve for x if JB = 5, AJ = 17, BK = x+4, and KC = 5x.
The answer is x=8.6 units
After simplifying the fraction, we find that x = 7/17.
In
ΔABC, J is on AB, K is on BC, and JK is parallel to AC. We're given that JB = 5, AJ = 17, BK = x+4, and KC = 5x. By the properties of parallel lines and similar triangles, we can state that ΔAJK ~ ΔACB. Considering the sides of these triangles, the ratios of corresponding sides must be equal, which gives us the proportion:
AJ/JB = AC/BC
Substituting in given values and variables, we get:
17/5 = (17 + 5)/(5x + x + 4)
Solving for x, we multiply each side by the denominators to eliminate the fraction:
17(5x + x + 4) = 5(22)
85x + 17x + 68 = 110
102x + 68 = 110
102x = 42
x = 42/102
x = 7/17
After simplifying the fraction, we find that x = 7/17.
Which equation is equivalent to 3/5 = x+1/y-2 when solved for x?
Answer:
It's the second option x = (3y - 11) / 5.
Step-by-step explanation:
3/5 = x+1/y-2
Cross multiplying:
3(y - 2) = 5(x + 1)
3y - 6 = 5x + 5
5x = 3y - 6 - 5
5x = 3y - 11
x = (3y - 11) / 5.
Please help me with this..
Answer:
y = 8
Step-by-step explanation:
Since the 2 triangles are similar then the ratio of corresponding sides are equal, that is the sides 15 and 10 and y + 4 and y, thus
[tex]\frac{15}{10}[/tex] = [tex]\frac{y+4}{y}[/tex] ( cross- multiply )
10(y + 4) = 15y ← distribute left side
10y + 40 = 15y ( subtract 10y from both sides )
40 = 5y ( divide both sides by 5 )
8 = y
Anna can text much faster than her mother, Joanna. On average, it takes Joanna two minutes to send a text; on average, Anna takes 40 seconds to send a text. How long will it take the two of them to send a total of 84 texts if they start texting at the same time?
Answer:
42 min
Step-by-step explanation:
Joanna takes 2 mins to send a text.
2 mins = 2 x 60 sec = 120 sec
Anna takes 40 seconds to send a text
120 ÷ 40 = 3
Anna can text 3 messages in 120 sec
Together, in 120 sec ,
both of them can send out 1 + 3 = 4 texts
Number of 120 seconds needed to send 84 texts
= 84 ÷ 4
= 21
Number of seconds needed
= 21 x 120
= 2520
25020 sec = 2620 ÷ 60 min = 42 min
if a shape is a regular pentagon with five sides, which of the following must be true? Check all that apply
Answer:
A. It has reflectional symmetry
B. It is symmetrical
D. It has five lines of symmetry
Step-by-step explanation:
we know that
A regular pentagon has 5 sides and 5 lines of symmetry. The number of lines of symmetry in a regular polygon is equal to the number of sides
Every regular polygon has reflectional symmetry
Regular polygons are symmetrical
therefore
A. It has reflectional symmetry ------> Is true
B. It is symmetrical -----> Is true
C. It has exactly one line of symmetry ----> Is false
D. It has five lines of symmetry -----> Is true
Answer:
A. It has reflectional symmetry
B. It is symmetrical
D. It has five lines of symmetry
Step-by-step explanation:
I will mark brainliest!
At least 5 Schools have participated
help please
The number of teams who entered in a 3-on-3 charity basketball tournament can be modeled by function T, where x is the number of years since the tournament first started.
T(x)=4x+24
The entire fee paid by each team to enter the tournament can be modelfied by function F, where x is the number of years since the tournament first started.
F(x)=5x+45
Which function,R, best represented the total entry fees collected in the sixth year since the tournament first started?
A. R(x)=9x^2+29x+69
B. R(x)=20x^2+1080
C. R(x)=20x^2+300x+1080
D. R(x)=9x+69
Answer: THE ANSWER IS R(x)=9x+69
Step-by-step explanation:
Answer:
[tex]R(x)= 20x^2+300x+1080[/tex]
Step-by-step explanation:
The number of teams who entered in basketball tournament
[tex]T(x)=4x+24[/tex]
The entire fee paid by each team to enter the tournament
[tex]F(x)=5x+45[/tex]
Total entry fees = Number of teams * fee paid by each term
[tex]R(x)= T(x) * F(x)[/tex]
[tex]R(x)= (4x+24) *(5x+45)[/tex]
USe FOIL method to multiply it
[tex]R(x)= 20x^2+180x+120x+1080[/tex]
combine like terms
[tex]R(x)= 20x^2+300x+1080[/tex]
Tony started his math project at 1:57 pm and finished the project 80 minutes later. Tony has band practice at 4:00 p.M. How much time did Tony have between the end of the project and the beginning of band practice?
Answer:
80 min = 1 hr 20 min
1 hr 20 min after 1:57 pm is 3:17 pm.
Between 3:17 pm and 4:00 pm there are 43 minutes.
Tony has 43 minutes between the end of the project and the beginning of band practice.
Step-by-step explanation:
Tony had 46 minutes between the end of the project and the beginning of band practice.
To solve this problem, we need to calculate the time Tony finished his math project and then determine how much time there was between the end of the project and the start of his band practice.
1. First, we find the time Tony finished his math project. Since he started at 1:57 pm and worked for 80 minutes, we add 80 minutes to 1:57 pm.
2. To add 80 minutes to 1:57 pm, we convert 80 minutes into hours and minutes. There are 60 minutes in an hour, so 80 minutes is 1 hour and 20 minutes (since 60 minutes is 1 hour and 20 minutes is the remainder).
3. Adding 1 hour and 20 minutes to 1:57 pm gives us 3:17 pm (1:57 pm + 1 hour = 2:57 pm, and then adding the remaining 20 minutes gives us 3:17 pm).
4. Now, we need to find out how much time is between 3:17 pm (when Tony finished his project) and 4:00 pm (when his band practice starts).
5. From 3:17 pm to 4:00 pm is a duration of 45 minutes (from 3:17 pm to 4:00 pm is 43 minutes, plus the 2 minutes from 3:17 pm to 3:19 pm).
6. However, we must remember that Tony started at 1:57 pm, which is 1 minute before 1:58 pm. So, we need to add this 1 minute to the total time between the end of the project and the start of band practice.
7. Therefore, the total time Tony had between finishing his math project and starting band practice is 45 minutes + 1 minute = 46 minutes.
Please help me out :)
The angle between the legs labeled [tex]x[/tex] and [tex]y[/tex] is complementary to the angle with measure 31 degrees, so that angle has measure 90 - 31 = 59 degrees. Then
[tex]\sin59^\circ=\dfrac{400}x\implies x=\dfrac{400}{\sin59^\circ}\approx466.7[/tex]
A farmer in china discovers a mammal hide that contains 70 of its original amount of c-14 N=noe^kt No=initial amount of c-14 at time t K=0.0001 T=time in years
Answer:
N=N(sub o)e^-kt
N/N(sub o)=e^-kt
70/100=e^-kt
ln .7=-.0001t
t=ln .7/-.0001
ur welcome that is your Answer.
Step-by-step explanation:
A garden measures 77 feet by 36 feet, and the owner of the garden wishes to divide the garden into two parts by installing a fence from corner to corner. Find the cost of the total length of fence if the fence costs $ 3.87 per foot.
Answer:
$328.95
Step-by-step explanation:
By the Pythagorean theorem, the diagonal of the garden has a length that is the root of the sum of the squares of the side lengths:
d = √(77² +36²) = √7225 = 85
Then the cost of the fence is the product of this number of feet and the cost per foot:
(85 ft)·($3.87/ft) = $328.95
The total cost of the length of the fence is $328.95
The garden is in the form of a rectangle. A line that divides the rectangle from one corner to the other corner is known as an hypotenuse. The hypotenuse divides the rectangle into two right-angles triangles. The length of the hypotenuse has to be first determined using Pythagoras theorem.
The Pythagoras theorem: a² + b² = c²
where a = length
b = base
c = hypotenuse
77² + 36²
5929 + 1296 =7225
√7225 = 85 feet
Cost of the total length of the fence = length of fence x cost per foot
$3.87 x 85 = $328.95
To learn more about Pythagoras theorem, please check: brainly.com/question/20936855?referrer=searchResults
How do I do this !!! ( , )
Answer:
The point that is being intersected is (4,2).
At the end of each semester in college, a survey is given to students to get feedback on the course. One of the questions on the survey is shown below.
The course met my expectations.
1. Strongly Agree
2. Slightly Agree
3. Agree
4. Slightly Disagree
5. Strongly Disagree
Which of the following could affect the results of the survey?
A. The question covers a wide range of viewpoints.
B. The survey should have been taken throughout the course instead of at the end of the course
C. The answer choices could be interpreted differently by different students.
D. The survey should have been taken at the beginning of the course instead of at the end of the course.
Answer:
Its C just got it right.
Step-by-step explanation:
Answer:
Option C
Step-by-step explanation:
Given that at the end of each semester in college, a survey is given to students to get feedback on the course. One of the questions on the survey is shown below.
The course met my expectations.
1. Strongly Agree
2. Slightly Agree
3. Agree
4. Slightly Disagree
5. Strongly Disagree
The problem in this survey is the difference in people's mind set about saying the answer. One person may say strongly agree for agree also while other person may do the reverse.
Hence option C is right
C. The answer choices could be interpreted differently by different students.
The sum of two numbers is 136. One number is 51. What is other? What are the common factors of these two numbers?
75 // common factor is 3
Please answer I’ll rate brainlyest
Answer:
4.62%
Step-by-step explanation:
To find the percentage of patient with AB blood type, we would need:
total number of patients (both male and female) with blood type ABgrand total of all patients of all blood typesIf you see the Row labeled "AB" and go to the last column labeled "Total", we can see that 33 patients have blood type AB.
If you look at the right most block, we see the grand total of all patients of all blood types, which is 714 patients.
To find our answer, we divide 33 by 714 and multiply by 100 to get percentage.
Percentage of patients with blood type AB = [tex]\frac{33}{714}*100=4.62[/tex]
Answer:
4.6%
Step-by-step explanation:
To find the percentage of patient with AB blood type, we would need:
total number of patients with blood type AB
total number of all patients of all blood types
(33/714)* 100 = 4.6%
What would be the minimum value of the function for the graph shown if we consider the graph to be a sine function of the form y=a sin (x−c)?
2
0
-2
-4
Answer: Third Option
-2
Step-by-step explanation:
I want to find the minimum value of a function with the form
[tex]y = asin (x-c)[/tex]
But we do not know the value of the coefficient "a", which is the amplitude, nor of the constant c.
However, in the attached graph we have the function.
The minimum value of a function is the lowest value of the variable y that the function can reach.
Observe in the graph that the function is periodic and reaches its maximum value at [tex]y = 2[/tex] and its minimum value at [tex]y = -2[/tex]
Therefore the minimum value would be [tex]y = -2[/tex]
Calculate the average rate of change for the given function, from x = 1 to x = 4.
x f(x)
−1 | 0
1 | 4
4 | 10
A) -1/2
B) 1/2
C) -2
D) 2
Answer:
The correct answer option is D) 2.
Step-by-step explanation:
We are given the value of x and f(x) in a table and we are to find the average rate of change for the given function from x = 1 to x = 4.
To find that, we will calculate the ration of change in y to change in x.
Average rate of change = [tex] \frac { 1 0 - 0 } { 4 - ( - 1 ) } = \frac { 1 0 } { 5 } [/tex] = 2
The average rate of change of the function from x = 1 to x = 4 is calculated by subtracting the function values at these points and dividing by the difference in x-values, which results in 2.
Explanation:To calculate the average rate of change, you subtract the values of the function at the two points, and then divide by the difference in the x-values. For the function given with range x = 1 to x = 4, the average rate of change is calculated as follows:
[f(4) - f(1)] / (4 - 1) = (10 - 4) / (4 - 1) = 6 / 3 = 2.
Therefore, the average rate of change for the specified range is 2
Learn more about Average Rate of Change here:https://brainly.com/question/34745120
#SPJ3
HELP PLEASE WILL GIVE BRAINLIEST!
Answer:
-21 for x = 3Step-by-step explanation:
It's a quadratic function. The graph is a parabola.
The coefficient of x² is equal 1 > 0. Therefore the parabola is open up.
Conclusion: The minimum is in a vertex.
[tex]f(x)=ax^2+bx+c\\\\(h,\ k)-vertex\\\\h=\dfrac{-b}{2a},\ k=f(h)[/tex]
We have
[tex]g(x)=x^2-6x-12\to a=1,\ b=-6,\ c=-12\\\\h=\dfrac{-(-6)}{2(1)}=\dfrac{6}{2}=3\\\\k=g(3)=3^2-6(3)-12=9-18-12=-21\\\\(3,\ -21)-vertex[/tex]
Jenny walked 2.5 miles in 50 minutes. At this rate, how many minutes did it take her to walk 1 miles?
Answer:
It would take Jenny 20 minutes to walk 1 mile
Step-by-step explanation:
To find how many minutes it would takes her to walk 1 mile, you have to find out the rate of her walking 2.5 miles.
So divide 2.5/50
She walked 0.05 miles per minute
there are 20 0.05 in one mile so
It would take Jenny 20 minutes to walk 1 mile
Hope this helps! If you don't mind, please mark as brainliest! Thx! :)
Given: JK tangent, KH=16, HE=12 Find: JK.
Answer: [tex]JK=8[/tex]
Step-by-step explanation:
You can observe in the figure that JK is a tangent and KH is a secant and both intersect at the point K. Then, according to the Intersecting secant-tangent Theorem:
[tex]JK^2=KE*KH[/tex]
You know that:
[tex]KH=KE+HE[/tex]
Then KE is:
[tex]KE=KH-HE[/tex]
[tex]KE=16-12[/tex]
[tex]KE=4[/tex]
Now you can substitute the value of KE and the value of KH into [tex]JK^2=KE*KH[/tex] and solve for JK. Then the result is:
[tex]JK^2=4*16\\JK^2=64\\JK=\sqrt{64}\\JK=8[/tex]
Both intersecting point K, JK is a tangent and KH is a secant. You can use the intersecting secant-tangent Theorem:
JK^2=KH*EK
First you can do
KH=EK+EH
KE=4
Then you can substitute.
JK^2=64
JK=8
Please someone help!!
Answer:
b = 14[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Since the triangle is right use the cosine ratio to find b
cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{b}{28}[/tex]
Multiply both sides by 28
28 × cos45° = b
28 × [tex]\frac{\sqrt{2} }{2}[/tex] = b ( cancel the 28 and 2 )
b = 14[tex]\sqrt{2}[/tex]
Answer:
14√2.
Step-by-step explanation:
This is a 45-45-90 triangle so the ratio of the sides is 1:1:√2. ( By the Pythagoras theorem).
so b / 28 = 1 / √2
√2 b = 1*28
b = 28 / √2
= 28√2 / 2
= 14√2 answer.
Please help me with this
Answer:
5
Step-by-step explanation:
Vertices are where edges meet. Count the circles on the diagram below.
A and B are independent events. P(A) = 0.30 P(B) = 0.40 WHAT IS P(A/B)
Answer:
P(A|B) = 0.3Step-by-step explanation:
[tex]P(A|B)=\dfrac{P(A\ \cap\ B)}{P(B)}\\\\\text{A and B are independent events. Therefore}\ P(A\ \cap\ B)=P(A)\cdot P(B).\\\\\text{Substitute:}\\\\P(A|B)=\dfrac{P(A)\cdot P(B)}{P(B)}\qquad\text{cancel}\ P(B)\\\\P(A|B)=P(A)\to P(A|B)=0.3[/tex]
Final answer:
Since A and B are independent events, P(A/B) is equal to P(A), which is 0.30.
Explanation:
The student is asking for the calculation of P(A/B), which is the probability of event A given that event B has occurred. However, since A and B are independent events, the occurrence of B does not affect the probability of A happening. Hence, P(A/B) is simply P(A), which is 0.30.
For independent events, the probability of A occurring given B has occurred is the same as the probability of A occurring on its own, because the two events do not influence each other:
P(A/B) = P(A) = 0.30
A big diamond company pulverizes 156 tons of rock every 2 ounces of diamonds it finds. How many tons of rock must it grind up in order to locate 20 ounces of diamonds.
Answer:
1,560
Step-by-step explanation:
156=2
2x10=20
156x10=1560
Answer:156 times 10 thats your answer
Step-by-step explanation:
in need of help please!! desperate!!!!
Secant sec(x) = 1/cos
In a right triangle ABC, angle C is a right angle and cos B =255/257.
What is the measure or angle A?
A)7.2 degrees
B)83.2 degrees
C)82.8 degrees
D)90.0 degrees
Answer:
C
Step-by-step explanation:
Given
cosB = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{A B}[/tex] = [tex]\frac{255}{257}[/tex]
Then the hypotenuse AB = 257 and BC = 255
sinA = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{255}{257}[/tex]
A = [tex]sin^{-1}[/tex] ([tex]\frac{255}{257}[/tex]) = 82.8° → C
WILL MARK THE BRAINLIEST!! What are the amplitude, period, phase shift, and midline of f(x) = 2 sin(x + π) − 4?
Answer:
Step-by-step explanation:
Amplitude is twice the coefficent of the sine function. In this case, [tex]2*2=4[/tex]
Period is [tex]2\pi[/tex] divided by the coefficent of x, in this case, [tex] \frac {2\pi} 1 =2\pi [/tex]
Phase shift, is how much you sum or subctract from x inside the sine, in this case [tex] \pi [/tex].
Midline you get by hiding the sine and reading what's left, in this case, -4.
If P(A) = 2/3, P(B) = 4/5, and P(image attached)
A. 11/15
B. 13/25.
C. 8/15
D. 14/15
Answer:
P(A ∩ B) = 11/15 ⇒ answer A
Step-by-step explanation:
* Lets revise the meaning of ∪ and ∩
# A ∪ B means all the elements in A or B without reputation
- Ex: If A = {2 , 3 , 5} and B = {3 , 4 , 7}
∴ A ∪ B = {2 , 3 , 4 , 5 , 7} ⇒ we don't repeat the element 3
# A ∩ B means all the elements in A and B
- Ex: If A = {2 , 3 , 5} and B = {3 , 4 , 7}
∴ A ∩ B = {3}
- From the examples above
∵ n(A) = 3 and n(B) = 3
∵ n(A ∪ B) = 5
∵ n(A ∩ B) = 1
∴ n(A) + n(B) = n(A ∪ B) + n(A ∩ B)
* Now lets solve the problem
∵ P(A ∪ B) = 11/15
∵ P(x) = n(x)/total
- That means the total elements in the problem is 15 and n(A ∪ B) is 11
∴ n(A ∪ B) = 11
∵ P(A) = 2/3 ⇒ simplest form
- To find P(A) without simplification and you now the total is 15
then multiply up and down by 5
∴ P(A) = (2×5)/(3×5) = 10/15
∴ n(A) = 10
∵ P(B) = 4/5 ⇒ simplest form
- To find P(B) without simplification and you now the total is 15
then multiply up and down by 3
∴ P(B) = (4×3)/(5×3) = 12/15
∴ n(B) = 12
- To find n(A ∩ B) use the rule above
∵ n(A) + n(B) = n(A ∪ B) + n(A ∩ B)
∵ 10 + 12 = 11 + n(A ∩ B) ⇒ subtract 11 from both sides
∴ 11 = n(A ∩ B)
- The number of elements in A ∩ B is 11
∵ P(A ∩ B) = n(A ∩ B)/total
∴ P(A ∩ B) = 11/15
Please help me out please
Answer:
x=54
Step-by-step explanation:
Because one side of the triangle is tangent (touching) to the circle while the other is the radius itself, we can conclude that the angle that is not named is 90°.
Knowing this, we can then add 36° and 90° to get 126°.
All of the angles in a triangle add up to 180°; therefore, we can subtract 126° from 180° to get 54°.
I really hope this helps and explains it well!
Answer:
x = 54°
Step-by-step explanation:
Since the lower segment is a tangent to the circle then
the angle between the tangent and the diameter is right.
The sum of the 3 angles in a triangle = 180°
Subtract the sum of the 2 known angles from 180 for x, that is
x = 180° - (90 + 36)° = 180° - 126° = 54°