Answer: $726 in interest is accumulated over a period of 6 months
Answer:
$60.50
Step-by-step explanation:
Put the given numbers into the formula and do the arithmetic. 6 months is 1/2 year.
i = Prt . . . . i is interest earned, P is principal amount, r is annual rate, t is number of years
i = $2200×0.055×0.5 = $60.50
The amount of simple interest earned in 6 months is $60.50.
What is the missing coefficient of the x-term of the product (-x-5)2 after it has been simplified?
Answer:
The missing coefficient of the x-term of the product (-x-5)2 is 10.
Step-by-step explanation:
Solution:Through whole square formula.
(-x-5)2 = (-x)^2 -2(-x)(5)+(5)^2
=x^2+10x+25
Therefore, the missing coefficient of the x-term of the product is 10
Answer:
10
Step-by-step explanation:
The given expression is
[tex](-x-5)^2[/tex]
We need to find the coefficient of x.
According to the property of algebra.
[tex](a-b)^2=a^2-2ab+b^2[/tex]
In the given expression a=-x and b=5.
Substitute a=-x and b=5 in the above formula.
[tex](-x-5)^2=(-x)^2-2(-x)(5)+(5)^2[/tex]
On further simplification we get
[tex](-x-5)^2=x^2+10x+25[/tex]
Coefficient of x is a multiplicative factor of x.
Therefore, the coefficient of x is 10.
Scores on a history test have average of 80 with standard deviation of 6. What is the z-score for a student who earned a 75 on the test? Round your answer to the nearest thousandth.
The z-score for a student who scored 75 on the test with an average of 80 and a standard deviation of 6 is approximately -0.833, indicating the score is 0.833 standard deviations below the mean.
To calculate the z-score for a student who scored 75 on a history test, we can use the z-score formula:
[tex]Z = \( \frac{X - \mu}{\sigma} \)[/tex]
Where:
X is the raw score (75 in this case)
[tex]\( \mu \)[/tex] is the mean score (80)
[tex]\( \sigma \)[/tex] is the standard deviation (6)
Inserting the values, we get:
[tex]Z = \( \frac{75 - 80}{6} \) = \( \frac{-5}{6} \) = -0.833\[/tex]
The z-score for a student who earned 75 on the test is approximately -0.833, rounded to the nearest thousandth. This z-score indicates that the student's score is about 0.833 standard deviations below the mean
The ideal temperature of a freezer to store a particular brand of ice cream is 0°F, with a fluctuation of no more than 2°F. Which inequality represents this situation if t is the temperature of the freezer?
Answer:
| x - 0 | ≤ 2
Step-by-step explanation:
Given,
The ideal temperature of the freezer = 0° F,
Also, it can fluctuate by 2° F,
Thus, if x represents the temperature of the freezer,
Then, there can be two cases,
Case 1 : x > 0,
⇒ x - 0 ≤ 2
Case 2 : If x < 0,
⇒ 0 - x ≤ 2,
⇒ -( x - 0 ) ≤ 2,
By combining the inequalities,
We get,
| x - 0 | ≤ 2,
Which is the required inequality.
Can someone please show me how
19169000*e^(0.15)= 222712201
When e= 2.7182818284?
Answer:
It doesn't. x = 22 271 201
Step-by-step explanation:
You are going to need a calculator no matter how you do it.
[tex]x =19 169 000 \times e^{0.15}[/tex]
(a) The direct method
[tex]x = 19 169 000\times 2.718 281 828^{0.15} = 19 169 000 \times 1.161 834 243 = 22 271 201[/tex]
(b) The indirect method
[tex]\ln \left (19 169 000\times 2.718 281 828^{0.15} \right ) = \ln(19 169 000) + 0.15 = 16.768 805 + 0.15 = 16.918 804\\\\e^{16.918 804} = 22 271 201[/tex]
Manuel has $600 in a savings account at the beginning of the summer. He wants to have at least $300 in the account at the end of the summer. He withdraws $28 each week for food. Which inequality represents w, the number of weeks Manuel can withdraw money while not dropping below a $300 balance?
28-600w < 300
28-600w > 300
600-28w < 300
600-28w > 300
Answer: C (600 - 28w < 300)
I know this because: I took the E2020 test
Answer:
Answer: C (600 - 28w < 300)
Step-by-step explanation:
Using graph paper, determine the line described by the given point and slope. Click to show the correct graph below.
(0, 0) and 2/3
Answer:
see below
Step-by-step explanation:
A proportional relationship has a graph that always goes through the origin. This fact by itself eliminates all the wrong answers.
A slope of 2/3 means the rise is 2 for each horizontal run to the right of 3. The two given points are 2 vertical units and 3 horizontal units apart, demonstrating a slope of 2/3.
A man invests a certain amount of money at 2% interest and $800 more than that amount in another account at 4% interest. At the end of one year, he earned $92 in interest. How much money was invested in each account? $1,500 at 2%; $2,300 at 4% $1,400 at 2%; $2,200 at 4% $1,000 at 2%; $1,800 at 4%
Answer:
$1,000 at 2%; $1,800 at 4%
Step-by-step explanation:
Let x represent the amount invested at 2%. Then x+800 was invested at 4% and the total interest earned was ...
x·2% + (x+800)·4% = 92
x·6% + 32 = 92 . . . . . . . . . simplify
x·0.06 = 60 . . . . . . . . . . . . subtract 32; write 6% as a decimal
x = 60/0.06 = 1000 . . . . . divide by the coefficient of x
$1000 was invested at 2%; $1800 was invested at 4%.
plz help asap 20 pts and brainliest awarded!!!!!!!!
see image below
Answer: Option C
Step-by-step explanation:
By definition, a relation is considered a function if and only if for each input value x there is only one associated output y value.
To verify if the graph of a relation is a function, trace on the graph vertical lines parallel to the y axis. If one of these vertical lines cuts the graph in 2 or more points, then the relationship is not a function
By definition, a function is considered a one-to-one function if and only if there is no equal output value and, for two different input values.
For example, the following ordered pairs do not correspond to a one-to-one function, because the output value y = 6 is associated with two input values x = 1 and x = 3
(1, 6) (3, 6)
To verify if the graph of a relation is a function, draw on the graph horizontal lines parallel to the x axis. If one of these horizontal lines cuts the graph in 2 or more points, then the relationship is not a one-to-one function.
When you draw vertical lines on the plot shown, you will see that they always intersect at a single point. Therefore the relationship is a function
When drawing horizontal lines on the displayed graph you will notice that they always intersect at a single point. Therefore the function is a one-to-one function
the answer is C
Given one zero of the polynomial function, find the other zeros.
f(x)=x^3+2x^2-20x+24; -6
Answer:
{2, 2, -6}
Step-by-step explanation:
synthetic division is one of the easier ways of determining whether or not a given number is a root of a polynomial. Here we're told that -6 is a root. Let's go through the steps of synthetic division: keep in mind that if there is no remainder (that is, the remainder is zero), then the divisor (such as -6) is a zero of the polynomial.
The coefficients of f(x)=x^3+2x^2-20x+24 are {1, 2, -20, 24}.
Setting up synthetic div.:
-6 ) 1 2 -20 24
-6 24 -24
----------------------------
1 -4 4 0
Here the remainder is zero (0), so it is safe to assume that -6 is a zero of the original polynomial.
We can continue with synth. div. to determine the remaining zeros of the original function f(x)=x^3+2x^2-20x+24. The coefficients {1, -4, 4} represent the quadratic x^2 - 4x + 4. Let's check whether the factor 2 of 4 is indeed a zero:
2 ) 1 -4 4
2 -4
-----------------
1 -2 0
Here the remainder is zero. Thus, 2 is a zero of f(x)=x^3+2x^2-20x+24. Notice that the remaining coefficients are {1, -2}; they represent x - 2 = 0, so the third root is 2.
Thus, the zeros of f(x)=x^3+2x^2-20x+24 are {2, 2, -6}
27% of the students in a school are in grade 6. This is 540 students. How many students are in the school?
There are a total of 2,000 students in the school.
1.) There are 540 students in the 6th grade. 540 is only 27% of students compared to the total. To find the total students in the whole school, we divide 540 by 27%.
2.) We first change 27% into a decimal by moving the point two times to the left. (Rule to change the percent into a decimal)
27% = .27
3.) Before we divide, we remove the decimal by moving the decimal two times to the right and so do we to 540.
.27 = 27
540. = 54000.
4.) Now we have 54000 divided by 27 which give us the answer of 2,000.
Hope this Helps!!!
Please Mark as Brainliest!!!
Answer:
2,000 students are in school i do not know if it’s decimals because decimals are like % percentage but ok 2,000 is my answer I hope this helped
In a glide reflection, what comes first and what comes second?
Answer:
A glide reflection is a composition of transformations.In a glide reflection, a translation is first performed on the figure, then it is reflected over a line. Therefore, the only required information is the translation rule and a line to reflect over. ... The first one is a translation rule.
Final answer:
In a glide reflection, the translation occurs first, moving the figure along a straight line, followed by a reflection over a line parallel to the translation vector, resulting in a figure that has been moved and potentially reoriented.
Explanation:
In a glide reflection, a transformation that combines a translation with a reflection, the proper sequence is important. The translation part comes first, where the figure is slid along a straight line called the translation vector. After the figure has been moved, the second step is the reflection over a line parallel to the vector of the translation. This two-step process results in a final image that has the same size and shape as the original figure but is in a different position and may have a different orientation.
Imagine a point undergoing a glide reflection. Initially, it is translated along a vector, and then it is reflected across a line that is parallel to the direction of translation. The end result is that the point has 'glided' to a new location, as if it had slid across a mirror placed at an angle to its original path.
[tex]\frac{a}{x-8} +\frac{b}{x+4} =\frac{2x-64}{(x-8)(x+4)}[/tex]
solve for a and b
Answer:
a = -4
b = 6
Step-by-step explanation:
See attached
Answer:
a=-4 and b=6
Step-by-step explanation:
[tex]\frac{a}{x-8} +\frac{b}{x+4} =\frac{2x-64}{(x-8)(x+4)}[/tex]
First, add the fractions by finding the common denominator.
In this case, (x-8)(x+4).
[tex]\frac{a(x+4) + b(x-8)}{(x-8)(x+4)} =\frac{2x-64}{(x-8)(x+4)}[/tex]
Therefore, the numerators are equal:
[tex]a(x+4) + b(x-8) =2x-64[/tex]
Simplify:
[tex]ax+4a + bx-8b =2x-64\\(a+b)x+4a-8b=2x-64[/tex]
Now match the coefficients.
[tex]a+b=2, 4a-8b=-64[/tex]
Solve the system of equations. I'll use substitution, but you can also use elimination if you prefer.
[tex]4a-8b=-64\\a-2b=-16\\(2-b)-2b=-16\\2-3b=-16\\-3b=-18\\b=6\\a=-4[/tex]
Therefore, a=-4 and b=6.
Johnny deposited $1230 in a savings account at 2.25 percent interest. How much interest will the account earn in 10 years?
$212.50
$291.25
$276.75
$202.25
Will got an insurance check of $4500 after a car accident. He deposited it into a savings
account at 1.7 percent interest for five years. What was the total amount of money in the
account after five years?
1. $4462.50 2. $4882.50 3. $4374.38 4. $4315.63
Answer:
276.75
Step-by-step explanation:
Deposit 1230. paying 2.25 % 10 yrs.
the interest is 276.75 and the amount is 1506.75
Answer:
The answer to the first question is $276.75 and the answer to the second question is $4882.50
Step-by-step explanation:
Johnny deposited $1230 in a savings account at 2.25 percent interest. How much interest will the account earn in 10 years?
To solve this, we simply use the simple interest formula;
Simple Interest = PRT / 100
where p is the principal, R is the rate and T is the time (in years)
In this question principal = $1230 rate = 2.25 and time = 10
We can now plug the variables into the formula;
Simple Interest = PRT / 100
=$1230 × 2.25× 10 / 100
= $27675 / 100
= $276.75
Therefore, the amount of interest earn in 10 years is $276.75
Will got an insurance check of $4500 after a car accident. He deposited it into a savings account at 1.7 percent interest for five years. What was the total amount of money in the account after five years?
We can also solve this second part of the question using the simple interest formula, here;
principal = $4500
Rate =1.7
Time =5
We will now insert our values into the simple interest formula, thus;
Simple Interest = PRT / 100
=$4500 × 1.7 × 5 / 100
=$38250 / 100
=$382.50
Simple interest =$382.50
Total amount = $4500 + $382.50
=$4882.50
Therefore, the total amount in the account after five years is $4882.50
5. In what quadrant is the angle 237° located?
A. IV
B. II
C. I
D. III
Final answer:
The angle 237° is located in the third quadrant since it is between 180° and 270°.Therefore, the correct answer to the question is:
D. III
Explanation:
The question asks in which quadrant the angle 237° is located. To determine the quadrant of an angle in standard position (angle measured from the positive x-axis), we use the following information:
Angles from 0° to 90° are in the first quadrant.
Angles from 90° to 180° are in the second quadrant.
Angles from 180° to 270° are in the third quadrant.
Angles from 270° to 360° are in the fourth quadrant.
Since 237° is between 180° and 270°, it is located in the third quadrant. Therefore, the correct answer to the question is:
D. III
Use the proportion to solve for the unknown base measure of the enlarged trapezoid. 1.Set up the proportion:
equation 2.Use cross products:
2(6.5) = 3.25(x) 3.Simplify:
13 = 3.25x 4.Divide both sides by 3.25: The missing base measure of the enlarged trapezoid is cm.
Answer:
4 cm
Step-by-step explanation:
You have done all of the parts except the final division.
13 = 3.25x
13/3.25 = x = 4 . . . . . divide both sides by 3.25
The missing base measure of the enlarged trapezoid is 4 cm.
Answer:
4 CM
Step-by-step explanation:
Part A
Theresa and her brother, Ruben, are getting phones that each have 32 gigabytes of storage. How many bits of storage come with each phone? Type your answer in both scientific and standard notation.
Part B
Theresa’s parents, Cal and Julia, are getting phones that each have 64 gigabytes of storage. How many bits of storage come with each phone? Type your answer in both scientific and standard notation.
Part C
Because they are getting four new phones, the family also gets two free tablets. Each tablet has 16 gigabytes of storage. How many bits of storage come with each tablet?
Part D
Theresa talked her parents into getting SD cards for her phone and her brother’s phone. Inserting an SD card into a phone gives it more storage. They both get 8-gigabyte SD cards. How many bits of storage come with each SD card? Type your answer in both scientific and standard notation.
Part E
With their plan, the family also gets access to storage on the cloud. They can store a total of 40 gigabytes on the cloud. How many bits of storage do they get on the cloud? Type your answer in both scientific and standard notation.
Answer:
Part A)
scientific notation ------> [tex]2.56*10^{11}\ bits[/tex]
standard notation -----> [tex]256,000,000,000\ bits[/tex]
Part B)
scientific notation ------> [tex]5.12*10^{11}\ bits[/tex]
standard notation -----> [tex]512,000,000,000\ bits[/tex]
Part C)
scientific notation ------> [tex]1.28*10^{11}\ bits[/tex]
standard notation -----> [tex]128,000,000,000\ bits[/tex]
Part D)
scientific notation ------> [tex]6.4*10^{10}\ bits[/tex]
standard notation -----> [tex]64,000,000,000\ bits[/tex]
Part E)
scientific notation ------> [tex]3.2*10^{11}\ bits[/tex]
standard notation -----> [tex]320,000,000,000\ bits[/tex]
Step-by-step explanation:
we know that
[tex]1\ Gigabyte=1*10^{9}\ bytes\\ 1\ byte=8\ bits[/tex]
therefore
[tex]1\ Gigabyte=8*10^{9}\ bits[/tex]
Part A
Theresa and her brother, Ruben, are getting phones that each have 32 gigabytes of storage. How many bits of storage come with each phone? Type your answer in both scientific and standard notation
we know that
Each phone have 32 gigabytes of storage
so
using proportion
[tex]\frac{1}{8*10^{9}}\frac{\ Gigabytes}{\ bits} =\frac{32}{x}\frac{\ Gigabytes}{\ bits}\\ \\x=32*8*10^{9}\\ \\x=256*10^{9}\ bits\\ \\x=2.56*10^{11}\ bits[/tex]
scientific notation ------> [tex]2.56*10^{11}\ bits[/tex]
standard notation -----> [tex]256,000,000,000\ bits[/tex]
Part B
Theresa’s parents, Cal and Julia, are getting phones that each have 64 gigabytes of storage. How many bits of storage come with each phone? Type your answer in both scientific and standard notation.
we know that
Each phone have 64 gigabytes of storage
so
using proportion
[tex]\frac{1}{8*10^{9}}\frac{\ Gigabytes}{\ bits} =\frac{64}{x}\frac{\ Gigabytes}{\ bits}\\ \\x=64*8*10^{9}\\ \\x=512*10^{9}\ bits\\ \\x=5.12*10^{11}\ bits[/tex]
scientific notation ------> [tex]5.12*10^{11}\ bits[/tex]
standard notation -----> [tex]512,000,000,000\ bits[/tex]
Part C
Because they are getting four new phones, the family also gets two free tablets. Each tablet has 16 gigabytes of storage. How many bits of storage come with each tablet?
we know that
Each tablet have 16 gigabytes of storage
so
using proportion
[tex]\frac{1}{8*10^{9}}\frac{\ Gigabytes}{\ bits} =\frac{16}{x}\frac{\ Gigabytes}{\ bits}\\ \\x=16*8*10^{9}\\ \\x=128*10^{9}\ bits\\ \\x=1.28*10^{11}\ bits[/tex]
scientific notation ------> [tex]1.28*10^{11}\ bits[/tex]
standard notation -----> [tex]128,000,000,000\ bits[/tex]
Part D
Theresa talked her parents into getting SD cards for her phone and her brother’s phone. Inserting an SD card into a phone gives it more storage. They both get 8-gigabyte SD cards. How many bits of storage come with each SD card? Type your answer in both scientific and standard notation
we know that
Each SD card have 8 gigabytes of storage
so
using proportion
[tex]\frac{1}{8*10^{9}}\frac{\ Gigabytes}{\ bits} =\frac{8}{x}\frac{\ Gigabytes}{\ bits}\\ \\x=8*8*10^{9}\\ \\x=64*10^{9}\ bits\\ \\x=6.4*10^{10}\ bits[/tex]
scientific notation ------> [tex]6.4*10^{10}\ bits[/tex]
standard notation -----> [tex]64,000,000,000\ bits[/tex]
Part E
With their plan, the family also gets access to storage on the cloud. They can store a total of 40 gigabytes on the cloud. How many bits of storage do they get on the cloud? Type your answer in both scientific and standard notation
we know that
The cloud have 40 gigabytes of storage
so
using proportion
[tex]\frac{1}{8*10^{9}}\frac{\ Gigabytes}{\ bits} =\frac{40}{x}\frac{\ Gigabytes}{\ bits}\\ \\x=40*8*10^{9}\\ \\x=320*10^{9}\ bits\\ \\x=3.2*10^{11}\ bits[/tex]
scientific notation ------> [tex]3.2*10^{11}\ bits[/tex]
standard notation -----> [tex]320,000,000,000\ bits[/tex]
The solutions obtained are Part (A) 2.75 × 10¹¹ bits of storage, Part (B) 5.50 × 10¹¹ bits of storage ,Part (C) 1.37 × 10¹¹ bits of storage, Part (D) 6.87 × 10¹⁰ bits of storage, Part (E) 3.44 × 10¹¹ bits of storage.
Phone and Tablet Storage Measurement
Let's break down each part of the question to help Theresa and her family understand the storage capacity in bits.
Part A
Theresa and Ruben's phones each have 32 gigabytes (GB) of storage. To find the number of bits:
→ Convert gigabytes to bytes: 32 GB = 32 × 1024 × 1024 × 1024 bytes.
→ Convert bytes to bits (since 1 byte = 8 bits): 32 × 1024 × 1024 × 1024 × 8 bits.
→ Calculate the value: 32 × 1024 × 1024 × 1024 × 8 = 274,877,906,944 bits.
→ In scientific notation, this is approximately 2.75 × 10¹¹ bits.
Part B
Cal and Julia's phones each have 64 gigabytes (GB) of storage:
→ Convert gigabytes to bytes: 64 GB = 64 × 1024 × 1024 × 1024 bytes.
→ Convert bytes to bits: 64 × 1024 × 1024 × 1024 × 8 bits.
→ Calculate the value: 64 × 1024 × 1024 × 1024 × 8 = 549,755,813,888 bits.
→ In scientific notation, this is approximately 5.50 × 10¹¹ bits.
Part C
The family gets two free tablets with 16 gigabytes (GB) of storage each:
→ Convert gigabytes to bytes: 16 GB = 16 × 1024 × 1024 × 1024 bytes.
→ Convert bytes to bits: 16 × 1024 × 1024 × 1024 × 8 bits.
→ Calculate the value: 16 × 1024 × 1024 × 1024 × 8 = 137,438,953,472 bits.
→ In scientific notation, this is approximately 1.37 × 10¹¹ bits.
Part D
Theresa and Ruben each get 8-gigabyte (GB) SD cards:
→ Convert gigabytes to bytes: 8 GB = 8 × 1024 × 1024 × 1024 bytes.
→ Convert bytes to bits: 8 × 1024 × 1024 × 1024 × 8 bits.
→ Calculate the value: 8 × 1024 × 1024 × 1024 × 8 = 68,719,476,736 bits.
→ In scientific notation, this is approximately 6.87 × 10¹⁰ bits.
Part E
The family gets 40 gigabytes (GB) of cloud storage:
→ Convert gigabytes to bytes: 40 GB = 40 × 1024 × 1024 × 1024 bytes.
→ Convert bytes to bits: 40 × 1024 × 1024 × 1024 × 8 bits.
→ Calculate the value: 40 × 1024 × 1024 × 1024 × 8 = 343,597,383,680 bits.
→ In scientific notation, this is approximately 3.44 × 10¹¹ bits.
help
Use the dot product to find [v] when v =(-2,-1)
A.-1
b.-3
c;sqr5
dsqr3
Answer:
sqrt(5)
Step-by-step explanation:
Honestly think this person means to find the magnitude of the vector. You can use dot product here, the vector with itself... But that isn't the last step.
v dot v=4+1=5
and so |v|=sqrt(5)
Which of the following shows the graph of y=2e^x?
For this case we must indicate the graph corresponding to the following equation:
[tex]y = 2e ^ x[/tex]
Then, we evaluate the equation for[tex] x = 0[/tex]
[tex]y = 2e ^ 0[/tex]
We have by definition, any number raised to zero results in 1.
So:
[tex]y = 2[/tex]
Now we evaluate the equation for x = -1
[tex]y = 2e ^ {-1}\\y = \frac {2} {e}\\y = 0.736[/tex]
We already have two points to graph:
[tex](0,2)\\(-1,0.736)[/tex]
Observing the options, we realize that the correct option is option C.
It should be noted that graphs A and D, by definition, do not correspond to the exponential function.
Answer:
Option C
Need help with a math question
Answer:
81
Step-by-step explanation:
3 digits ^4 number options
3^4=81
The equation of the graphed line in point-slope form is?, and it’s equation in slope-intercept form is?
ANSWER
Point-slope form:
[tex]y - 3 = -\frac{3}{5} (x + 2)[/tex]
Slope-intercept form:
[tex]y= -\frac{3}{5} x + \frac{9}{5}[/tex]
EXPLANATION
The graphed line passes through
[tex](-2,3) \: \: and \: \: (3,0)[/tex]
The slope of this line is determined using
[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]
We substitute the points to get;
[tex]m = \frac{0 - 3}{3 - - 2} [/tex]
[tex]m = -\frac{3}{5} [/tex]
The point-slope formula is:
[tex]y-y_1 = m(x - x_1)[/tex]
Substitute the first point and slope to get:
[tex]y - 3 = -\frac{3}{5} (x - - 2)[/tex]
[tex]y - 3 = -\frac{3}{5} (x + 2)[/tex]
To find the slope-intercept form, we expand to get:
[tex]y= -\frac{3}{5} x - \frac{6}{5} + 3[/tex]
[tex]y= -\frac{3}{5} x + \frac{9}{5} [/tex]
Answer:
Slope
[tex]m=-\frac{3}{5}[/tex]
point-slope form
[tex]y=-\frac{3}{5}(x-3)[/tex]
slope-intersection form
[tex]y=-\frac{3}{5}x+1.8[/tex]
Step-by-step explanation:
The equation of a line in the point-slope form has the following formula:
[tex]y-y_0 = m (x-x_0)[/tex]
Where m is the slope and [tex](x_0, y_0)[/tex] is a point belonging to the line.
The equation of a line in the slope-intersection form has the following formula:
[tex]y = mx + b[/tex]
Where b is the intersection of the line with the y axis.
To calculate the slope of the line knowing 2 points we use the following formula:
[tex]m=\frac{y_1-y_0}{x_1-x_0}[/tex]
In this case:
[tex]x_0 =3\\y_0=0\\x_1=-2\\y_1=3[/tex]
So
[tex]m=\frac{3-0}{-2-3}[/tex]
[tex]m=-\frac{3}{5}[/tex]
So the equation of a line in the point-slope form
[tex]y-0 =-\frac{3}{5}(x-3)[/tex]
[tex]y=-\frac{3}{5}(x-3)[/tex]
The equation of a line in the slope-intersection form is:
[tex]y-0=-\frac{3}{5}(x-3)[/tex]
[tex]y=-\frac{3}{5}(x-3)[/tex]
[tex]y=-\frac{3}{5}x+\frac{9}{5}[/tex]
[tex]y=-\frac{3}{5}x+1.8[/tex]
with [tex]b=1.8[/tex]
Need help with math question
Answer:
720
Step-by-step explanation:
Answer:
720
Step-by-step explanation:
We are given the following permutation problem to solve:
[tex] _ 6 P _ 6 [/tex]
We know that the number of possibilities to choose an ordered set of [tex] r [/tex] objects from a total of [tex]n[/tex] objects is given by:
[tex] _ n P _ r = \frac { n ! } { ( n - r ) ! } [/tex]
Substituting the given values, n = 6, r = 6:
[tex] _ 6 P _ 6 = \frac { 6 ! } { ( 6 - 6 ) ! } [/tex] = 720
What is the following product? 3 root 5 times root 2
Answer:
[tex]\sqrt[6]{200}[/tex]
Step-by-step explanation:
First of all, you need to know that you cannot multiply those radicals without having a common index (the little number outside the radical that sits in the curve of the radical). One is a 3 and the other, without being stated outright, is understood to be a 2. BUT we can make them like. The index of a radical is the denominator of the exponential equivalent.
[tex]\sqrt[3]{5}=5^{\frac{1}{3}}[/tex] and
[tex]\sqrt{2}=2^{\frac{1}{2}}[/tex]
See how the indexes are now the denominators of the rational exponents. We can make them like by finding the LCM of 3 and 2...which is 6:
[tex]5^{\frac{1}{3}}=5^{\frac{2}{6}}[/tex] and
[tex]2^{\frac{1}{2}}= 2^{\frac{3}{6}}[/tex]
Now that the indexes are like, we rewrite them as radicals again:
[tex]\sqrt[6]{5^2}*\sqrt[6]{2^3}[/tex] which, simplified, is
[tex]\sqrt[6]{25}*\sqrt[6]{8}[/tex]
Now we can find the product which is
[tex]\sqrt[6]{200}[/tex]
The product of ∛5 ×√2 is approximately 2.41. The correct option is b) [tex]\sqrt[6]{200}[/tex], which matches the calculated value.
To find the product ∛5 × √2, we first take the cube root of 5 (∛5) and then multiply it by the square root of 2 (√2).
∛5 ≈ 1.71 (approximately, rounded to two decimal places)
√2 ≈ 1.41 (approximately, rounded to two decimal places)
Now, let's calculate the product:
∛5 × √2 ≈ 1.71 × 1.41 ≈ 2.41 (approximately, rounded to two decimal places)
Now, let's check the options:
a. [tex]\sqrt[6]{10}[/tex] ≈ 1.72 (approximately, rounded to two decimal places)
b. [tex]\sqrt[6]{200}[/tex] ≈ 2.41 (approximately, rounded to two decimal places) <-- Matches our calculated value.
c. [tex]\sqrt[6]{500}[/tex] ≈ 2.80 (approximately, rounded to two decimal places)
d.[tex]\sqrt[6]{100000}[/tex] ≈ 5.62 (approximately, rounded to two decimal places)
The correct answer is option b)[tex]\sqrt[6]{200}[/tex].
To know more about product:
https://brainly.com/question/32719379
#SPJ2
Which of the following graphs is described by the function given below?
y = 2x^2 + 8x +3
Answer:
A
Step-by-step explanation:
y = 2x² + 8x + 3
Complete the square:
y = 2(x² + 4x) + 3
y = 2(x² + 4x + 4) + 3 - 2(4)
y = 2(x + 2)² - 5
So the vertex is at (-2, -5). The graph must be Graph A.
Graph A has its vertex at (-4, -5). Then the correct option is A.
What is the parabola?It's the locus of a moving point that keeps the same distance between a stationary point and a specified line. The focus is a non-movable point, while the directrix is a non-movable line.
The parabolic expression is given below.
y = 2x² + 8x + 3
y = 2(x² + 4x) + 3
y = 2(x² + 4x + 4) - 8 + 3
y = 2(x + 4)² -5
The vertex of the parabola is at (-4, -5).
Graph A has its vertex at (-4, -5). Then the correct option is A.
Then the graph of the parabola is given below.
More about the parabola link is given below.
https://brainly.com/question/8495504
#SPJ2
Please dont ignore, need help) Write the ratios for sin P and cos Q
Answer: both are 21/29
Step-by-step explanation:
Use SOHCAHTOA so the opposite/hypotenuse for P is 21/29 and the adjacent/hypotenuse for Q is also 21/29
Please help, refer to the picture for information.
Answer:
b
Step-by-step explanation:
Using the distance formula
d = √ (x₂ - x₁ )² + (y₂ - y₁ )²
with (x₁, y₁ ) = (- 1, 4) and (x₂, y₂ ) = (4, 1)
d = [tex]\sqrt{(4+1)^2+(1-4)^2}[/tex]
= [tex]\sqrt{5^2+(-3)^2}[/tex]
= [tex]\sqrt{25+9}[/tex] = [tex]\sqrt{34}[/tex] → b
The midpoint of UV is point W. What are the coordinates of point V?
(–6, –14)
(2, –23)
its B.
Answer:
B). (2, –23)
Well this person made it easy by literally saying the answer...
Step-by-step explanation:
Hope this helps!! Also heart and rate if you found this answer helpful!!
The correct option is, (B) (2, –23).
What is called co-ordinate?Coordinates are distances or angles, represented by numbers, that uniquely identify points on surfaces of two dimensions (2D) or in space of three dimensions ( 3D ). There are several coordinate schemes commonly used by mathematicians, scientists, and engineers.What is co-ordinate with example?A set of values that show an exact position. On graphs it is usually a pair of numbers: the first number shows the distance along, and the second number shows the distance up or down.Example: the point (12,5) is 12 units along, and 5 units up.What is the co ordinate formula?One of the important formula of coordinate geometry is the equation of the straight line which is y = mx + c. Here m is the slope and c is the y-intercept (tan θ = m, here θ is the angle that the line makes with the positive x-axis).What is coordinate of a point?The coordinates of a point are a pair of numbers that define its exact location on a two-dimensional plane. Recall that the coordinate plane has two axes at right angles to each other, called the x and y axis. The coordinates of a given point represent how far along each axis the point is located.Learn more about coordinates here:
https://brainly.com/question/17206319
#SPJ2
Sameena measures the angle from the ground to the top of a building from two locations. The angle of elevation from the first point is 45°, and the angle of elevation from the second point is 60°. The distance from the second point to the top of the building is 150 ft.
[Not drawn to scale]
What is the distance from the first observation point to the top of the tower (x)? Round the answer to the nearest tenth.
122.5 ft
183.7 ft
244.9 ft
501.9 ft
Answer:
183.7 ft
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you that the relation between the hypotenuse and opposite side in a right triangle is ...
Sin = Opposite/Hypotenuse
For the first observation, the angle is 45° and the length of the hypotenuse of the triangle is given as x. For the second observation, the opposite side (building height) is the same, the angle is 60°, and the hypotenuse is 150 ft.
We can multiply the above equation by "Hypotenuse" to get an expression for "Opposite".
Opposite = Sin×Hypotenuse
For our two observations, this becomes ...
sin(45°)·x = (building height) = sin(60°)·(150 ft)
Dividing by the coefficient of x, we have ...
x = (150 ft)·sin(60°)/sin(45°) ≈ 183.7 ft
Answer:
B: 183.7
Step-by-step explanation:
First we need to find our values
A = 45°
B = 180 - 60 = 120
a = 150
Then we can solve for x using this formula x = a * sin(B)/sin(A).
x = 150 * sin(120)/sin(45)
x = 150 * √6/2
x = 75√6
x = 183.71173
Solve the equation. 42x – 5 = 64
Answer:
x =23/14
If we want to change it to a mixed number
x = 1 9/14
Step-by-step explanation:
42x – 5 = 64
Add 5 to each side
42x – 5+5 = 64+5
42x = 69
Divide each side by 42
42x/42 = 69/42
x = 69/42
Divide the top and bottom by 3
x =23/14
If we want to change it to a mixed number
x = 1 9/14
Answer:
d)4
Step-by-step explanation:
Express the fractions 3/4, 7/16, and 5/8 with the LCD. A. 9/16, 49/16, 36/16 B. 12/16, 7/16, 10/16 C. 24/32, 14/32, 24/32 D. 3/4, 2/4, 3/4
Answer:
B.
Step-by-step explanation:
the denominator you want is 16 so 4(4) is 16, which makes 3(4) 12 so 12/16. 7/16 is already perfect. 8(2) is 16 therefore 5(2) is 10 which makes 10/16.
(6m5 + 3 – m3 – 4m) – (–m5 + 2m3 – 4m + 6)
Answer: [tex]7m^5-3m^3-3[/tex]
Step-by-step explanation:
You can observe that you need to subtract the polynomial [tex](6m^5 + 3 - m^3 -4m)[/tex] and the polynomial [tex](-m^5 + 2m^3- 4m + 6)[/tex].
It is important the remember the multiplication of signs:
[tex](+)(+)=+\\(-)(-)=+\\(+)(-)=-[/tex]
Then, the first step is to distribute the negative sign:
[tex](6m^5 + 3 - m^3 -4m)-(-m^5 + 2m^3- 4m + 6)=\\=6m^5 + 3 - m^3 -4m+m^5-2m^3+ 4m- 6[/tex]
And finally you must add the like terms. Then:
[tex]=7m^5-3m^3-3[/tex]