Find each difference in the photo below

Find Each Difference In The Photo Below

Answers

Answer 1

Answer:

[tex]= - 2 x^{3} + 4x -8[/tex]

Step-by-step explanation:

The first step is to open the parenthesis,

Since there is a negative sign before the second parenthesis, so the sign of all the values in second parenthesis will be changed and the equation will look something like this

[tex]= 2x^{3} + 4x -2 - 4 x^{3} + 6[/tex]

The second step is to re arrange the equation

[tex]= 2x^{3} - 4 x^{3} + 4x - 2 + 6[/tex]

The last and final step is to solve the equation

[tex]= - 2 x^{3} + 4x -8[/tex]

This is our answer

Answer 2

Answer:

The difference is -2x³ + 4x + 4.

Step-by-step explanation:

Subtract the two expression as follows:

[tex](2x^{3}+4x-2)-(4x^{3}-6)=2x^{3}+4x-2-4x^{3}+6\\[/tex]

Combine the like terms together:

                                         [tex]=2x^{3}-4x^{3}+4x-2+6[/tex]

Simplify as follows:

                                         [tex]=-2x^{3}+4x+4[/tex]

Thus, the difference is -2x³ + 4x + 4.


Related Questions

Test the claim that the proportion of people who own cats is significantly different than 90% at the 0.1 significance level.

The null and alternative hypothesis would be:

a. H0:p≥0.9H0:p≥0.9
H1:p<0.9H1:p<0.9
b. H0:p=0.9H0:p=0.9
H1:p≠0.9H1:p≠0.9
c. H0:p≤0.9H0:p≤0.9
H1:p>0.9H1:p>0.9
d. H0:μ=0.9H0:μ=0.9
H1:μ≠0.9H1:μ≠0.9
e. H0:μ≤0.9H0:μ≤0.9
H1:μ>0.9H1:μ>0.9
f. H0:μ≥0.9H0:μ≥0.9
H1:μ<0.9H1:μ<0.9

The test is:
a. left-tailed
b. two-tailed
c. right-tailed

Based on a sample of 100 people, 94% owned cats

The p-value is: (to 2 decimals)

Based on this we:

Fail to reject the null hypothesis

Reject the null hypothesis

Box 1: Select the best answer

Box 2: Select the best answer

Box 3: Enter your answer as an integer or decimal number. Examples: 3, -4, 5.5172
Enter DNE for Does Not Exist, oo for Infinity

Box 4: Select the best answer

Answers

Answer:

1. H0 : p = 0.9

   H1 : p ≠ 0.9

2. The test is two tailed.

3. Reject the null hypothesis

Step-by-step explanation:

We are given that we have to test the claim that the proportion of people who own cats is significantly different than 90% at the 0.1 significance level.

So, Null Hypothesis, [tex]H_0[/tex] : p = 0.90

Alternate Hypothesis, [tex]H_1[/tex] : p [tex]\neq[/tex] 0.9

Here, the test is two tailed because we have given that to test  the claim that the proportion of people who own cats is significantly different than 90% which means it can be less than 0.90 or more than 0.90.

Now, test statistics is given by;

            [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)   , where,  n = sample size = 100

                                                       [tex]\hat p[/tex] = 0.94 (given)

So, Test statistics = [tex]\frac{0.94-0.90}{\sqrt{\frac{0.94(1-0.94)}{100} } }[/tex] = 1.68

Now, P-value = P(Z > 1.68) = 1 - P(Z <= 1.68)

                                           = 1 - 0.95352 = 0.0465 ≈ 0.05 or 5%

Now, our decision rule is that;

       If p-value < significance level  ⇒ Reject null hypothesis

       If p-value > significance level  ⇒ Accept null hypothesis

Since, here p-value is less than significance level as 0.05 < 0.1, so we have sufficient evidence to reject null hypothesis.

Therefore, we conclude that proportion of people who own cats is significantly different than 90%.

A publisher reports that 344% of their readers own a particular make of car. A marketing executive wants to test the claim that the percentage is actually different from the reported percentage. A random sample of 220220 found that 300% of the readers owned a particular make of car. Is there sufficient evidence at the 0.020.02 level to support the executive's claim

Answers

Answer:

No, there is not enough evidence at the 0.02 level to support the executive's claim.

Step-by-step explanation:

We are given that a publisher reports that 34% of their readers own a particular make of car. A random sample of 220 found that 30% of the readers owned a particular make of car.

And, a marketing executive wants to test the claim that the percentage is actually different from the reported percentage, i.e;

Null Hypothesis, [tex]H_0[/tex] : p = 0.34 {means that the percentage of readers who own a particular make of car is same as reported 34%}

Alternate Hypothesis, [tex]H_1[/tex] : p [tex]\neq[/tex] 0.34 {means that the percentage of readers who own a particular make of car is different from the reported 34%}

The test statistics we will use here is;

                T.S. = [tex]\frac{\hat p -p}{\sqrt{\frac{\hat p(1- \hat p)}{n} } }[/tex] ~ N(0,1)

where, p = actual % of readers who own a particular make of car = 0.34

            [tex]\hat p[/tex] = percentage of readers who own a particular make of car in a

                  sample of 220 = 0.30

            n = sample size = 220

So, Test statistics = [tex]\frac{0.30 -0.34}{\sqrt{\frac{0.30(1- 0.30)}{220} } }[/tex]

                             = -1.30

Now, at 0.02 significance level, the z table gives critical value of -2.3263 to 2.3263. Since our test statistics lie in the range of critical values which means it doesn't lie in the rejection region, so we have insufficient evidence to reject null hypothesis.

Therefore, we conclude that the actual percentage of readers who own a particular make of car is same as reported percentage and the executive's claim that it is different is not supported.

Is (2,7) a point on the line y=4x-3?

Answers

Given that the equation of the line is [tex]y=4x-3[/tex]

We need to determine the point (2,7) lies on the line.

For a point to lie on the line, substituting the point in the equation of the line makes it valid.

Thus, substituting the point (2,7) in the equation of the line [tex]y=4x-3[/tex], we get;

[tex]7=4(2)-3[/tex]

[tex]7=8-3[/tex]

[tex]7\neq 5[/tex]

Thus, the both sides of the equation are not equal.

Substituting the point (2,7) in the equation makes the equation invalid.

Thus, the point (2,7) does not lie on the line  [tex]y=4x-3[/tex]

A weighted average of the value of a random variable, where the probability function provides weights, is known as _____. a. a probability function b. a random variable c. the expected value d. None of the answers is correct.

Answers

Answer:

The answer is c. The expected value.

Step-by-step explanation:

Final answer:

The weighted average of the value of a random variable calculated with probability weights is known as the expected value. The expected value indicates the long-term average outcome for a random variable that has been experimented on multiple times. It is calculated using the sum of the products of the variable values and their corresponding probabilities.

Explanation:

The weighted average of the value of a random variable, where the probability function provides weights, is known as the expected value. The expected value is a key concept in probability and statistics, often referred to in equations as E(X) and symbolized as μ (mu), where X is a random variable. It represents the long-term average outcome of a random variable after many repetitions of an experiment. For a discrete random variable with a probability distribution function P(x), the expected value can be calculated using the formula: μ = Σ XP(x).

Random variables are typically defined in the context of a probability distribution, which can take on various forms like normal, uniform, or exponential distributions, depending on the nature of the experiment. When constructing a confidence interval for a population mean, the confidence level indicates the degree of certainty in the interval estimate. The error bound, which is part of the confidence interval calculation, would typically decrease if the confidence level is lowered because a lower confidence level means that we are willing to accept a greater chance that the interval does not contain the population mean, leading to a narrower interval.

. You decide you want to start investing for your retirement and you want to have $650,000. If you save $100 a month in an account that averages a 10% annual rate of return, will you have enough money in 25 years? (Hint: this formula was introduced in Section 1)

Answers

Answer:

750,0000

Step-by-step explanation:

Consider the infinite series sigma ^infinity _k = 1 1/7^k a. Find the first four terms of the sequence of partial sums. b. Use the results of part (a) to propose a formula for S_n. c. Propose a value of the series. a. Find the first four terms of the sequence of partial sums. S_1 =, S_2 =, S_3 =, S_4 = (Simplify your answers.) b. Use the results of part (a) to propose a formula for S_n. A. S_n = 7^n - 1/6 middot 7^n B. S_n = 7n/7^n C. S_n = n/7^n D. S_n = 6 middot 7^n/7^n - 1 c. Propose a value of the series. A reasonable conjecture for the value of the series is

Answers

Answer:

a. First four terms of the sequential partial sums

[tex]S_1=\frac{1}{7}, S_2=\frac{7^2-1}{6*7^2}, S_3 =\frac{7^3-1}{6*7^3}, S_4 =\frac{7^4-1}{6*7^4}[/tex]

b. The formula for Sn is option A = [tex]\frac{7^n-1}{6*7^n}[/tex]

c. Value of the series = [tex]\frac{1}{6}[/tex]

Step-by-step explanation:

a. First four terms of the sequential partial sums

[tex]\sum^{\infty}_{k=1}\\S_1=\frac{1}{7}\\ S_2=\frac{1}{7}+ \frac{1}{7^2}= \frac{8}{49} =\frac{7^2-1}{6*7^2}\\S_3=\frac{1}{7}+ \frac{1}{7^2}+\frac{1}{7^3} = \frac{57}{343} =\frac{7^3-1}{6*7^3}\\S_4=\frac{1}{7}+ \frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4} = \frac{400}{2401} =\frac{7^4-1}{6*7^4}[/tex]

b. Formula for Sn

The sum of n terms

[tex]S_n=\frac{1}{7}+ \frac{1}{7^2}+\frac{1}{7^3}+ \frac{1}{7^4}+.....+ \frac{1}{7^n}= \frac{7^n-1}{6*7^n}[/tex]

c. Value for the series

This can be given as the Sum of infinite terms;

[tex]S_{\infty}=\frac{1}{7}+ \frac{1}{7^2}+ \frac{1}{7^3}+ \frac{1}{7^4}+....+ \frac{1}{7^n}+ ....= \lim_{n \to \infty} \frac{7^n-1}{6*7^n}= \frac{1}{6}[/tex]

3.3.1. An urn contains five balls numbered 1 to 5. Two balls are drawn simultaneously. (a) Let X be the larger of the two numbers drawn. Find pX (k). (b) Let V be the sum of the two numbers drawn. Find pV (k).

Answers

Answer:

Step-by-step explanation:

Given that an urn contains five balls numbered 1 to 5

Two balls are drawn simultaneously.

a) X = the larger of two numbers drawn

Assuming balls are drawn without replacement, (since simultaneously drawn)

the sample space would be (1,2) (1,3)(1,4)(1,5) (2,3)(2,4)(2,5) (3,4) (3,5) (4,5)

n(S) = 10

n(x=2) = 1,

n(x=3) =2

n(x=4) = 3

n(x=5) = 4

Larger value  X can take values only as 2,3,4 or 5

X          2              3            4               5

p          0.1           0.2       0.3             0.4

-------------------------------------------

b) V = sum of numbers drawn

V can take values as 3, 4, 5, 6, 7, 8 or 9

V                  3        4             5          6           7             8          9

p                  0.1     0.1         0.2      0.2         0.2        0.1        0.1

The probability that the larger number drawn will be k follows a specific probability distribution, as does the sum of the two numbers drawn. Using the given information and principles of probability, we can determine the probabilities for each value of k for both X and V. For X, the probability distribution pX(k) is [1/5, 1/5, 3/10, 1/5, 1/5]. For V, the probability distribution pV(k) is [1/20, 1/10, 3/20, 1/10, 1/10, 1/10, 3/20, 1/10, 1/20].

(a) Let's consider each possible outcome to find pX(k), the probability that the larger number drawn will be k:

If k is 1, there is only one possible outcome: drawing (1, anything). The probability of this outcome is (1/5) * (4/4) = 1/5.

If k is 2, there are two possible outcomes: drawing (2, 1) or (2, 3). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) = 1/10 + 1/10 = 1/5.

If k is 3, there are three possible outcomes: drawing (3, 1), (3, 2), or (3, 4). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (2/4) = 1/10 + 1/10 + 1/10 = 3/10.

If k is 4, there are four possible outcomes: drawing (4, 1), (4, 2), (4, 3), or (4, 5). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (3/4) = 1/10 + 1/10 + 1/10 + 3/20 = 1/5.

If k is 5, there are five possible outcomes: drawing (5, 1), (5, 2), (5, 3), (5, 4), or (5, 5). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (4/4) = 1/10 + 1/10 + 1/10 + 1/10 + 1/5 = 1/5.

Therefore, the probability distribution pX(k) is:

pX(1) = 1/5

pX(2) = 1/5

pX(3) = 3/10

pX(4) = 1/5

pX(5) = 1/5

(b) Let's consider each possible outcome to find pV(k), the probability that the sum of the two numbers drawn will be k:

If k is 2, there is only one possible outcome: drawing (1, 1). The probability of this outcome is (1/5) * (1/4) = 1/20.

If k is 3, there are two possible outcomes: drawing (1, 2) or (2, 1). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) = 1/20 + 1/20 = 1/10.

If k is 4, there are three possible outcomes: drawing (1, 3), (2, 2), or (3, 1). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) = 1/20 + 1/20 + 1/20 = 3/20.

If k is 5, there are four possible outcomes: drawing (1, 4), (2, 3), (3, 2), or (4, 1). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) = 1/20 + 1/20 + 1/20 + 1/20 = 1/10.

If k is 6, there are five possible outcomes: drawing (1, 5), (2, 4), (3, 3), (4, 2), or (5, 1). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) = 1/20 + 1/20 + 1/20 + 1/20 + 1/20 = 1/10.

If k is 7, there are four possible outcomes: drawing (2, 5), (3, 4), (4, 3), or (5, 2). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) = 1/20 + 1/20 + 1/20 + 1/20 = 1/10.

If k is 8, there are three possible outcomes: drawing (3, 5), (4, 4), or (5, 3). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) + (1/5) * (1/4) = 1/20 + 1/20 + 1/20 = 3/20.

If k is 9, there are two possible outcomes: drawing (4, 5) or (5, 4). The probability of these outcomes is (1/5) * (1/4) + (1/5) * (1/4) = 1/20 + 1/20 = 1/10.

If k is 10, there is only one possible outcome: drawing (5, 5). The probability of this outcome is (1/5) * (1/4) = 1/20.

Therefore, the probability distribution pV(k) is:

pV(2) = 1/20

pV(3) = 1/10

pV(4) = 3/20

pV(5) = 1/10

pV(6) = 1/10

pV(7) = 1/10

pV(8) = 3/20

pV(9) = 1/10

pV(10) = 1/20

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Rona drove 56 milesto visit a friend she drove 42 miles before stopping for gas what percent of the drive did rona complete before stopping for gas

Answers

Answer:

75%

Step-by-step explanation:

Find the percentage corresponding to 42/56:  (0.75)(100%) = 75%

Answer:

75%

Step-by-step explanation:

Becauuuuuuseeee if you divide 42  by 56 it would be 0.75 and yeah. so take out the 0 and its 75%

When two standard dice are thrown, what is the probability that the sum of the dots on the two top faces will be 3? Express your answer using three significant digits.

Answers

Final answer:

The probability that the sum of the dots on two dice will be 3 is 0.056, determined by finding the number of favorable outcomes (2) and dividing by the total number of outcomes (36).

Explanation:

The subject of this question is probability, specifically focusing on an experiment involving the tossing of two six-sided dice. To find the probability that the sum of the dots on the two top faces will be 3, we first need to determine the total number of possible outcomes when two dice are thrown. For one six-sided die, there are 6 possible outcomes. Therefore, when two dice are thrown, the total number of outcomes is 6 * 6 = 36.

Next, we need to find the number of outcomes where the sum of the dots would be 3. Looking at our dice, we can see that this can only happen in two ways: getting a 1 on the first die and a 2 on the second, or getting a 2 on the first die and a 1 on the second.

So, the number of favorable outcomes is 2.

Probability is defined as the number of favorable outcomes divided by the total number of outcomes. Hence, the probability of the sum of the dots being 3 when two dice are thrown is 2/36. To get this in three significant figures, we divide 2 by 36 which gives the decimal 0.0556. Therefore, the probability to three significant figures is 0.056.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ11

Based on data from a large study of healthy infants in six countries, the World Health Organization produced growth charts that are part of every pediatrician’s toolkit for monitoring a child’s overall health. According to the WHO report, girls who are one month old have a mean head circumference of 36.6 centimeters with a standard deviation of 1.2 centimeters. As with most body measurements, head circumference has a normal probability distribution. Medscape defines microcephaly (small head syndrome) as a head circumference that is more than two standard deviations below the mean. What is the probability that a one-month old girl will be categorized as having microcephaly? Group of answer choices 68% 95% 5% 2.5%

Answers

Answer:

We are interested on this probability

[tex]P(X<\mu -2\sigma = 36.6 -2*1.2 =34.2)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<34.2)=P(\frac{X-\mu}{\sigma}<\frac{34.2-\mu}{\sigma})=P(Z<\frac{34.2-36.6}{1.2})=P(z<-2)[/tex]

And we can find this probability using the normal standard table or excel and we got:

[tex]P(z<-2)=0.025[/tex]

And the best answer for this case would be:

2.5%

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the head circumference of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(36.6,1.2)[/tex]  

Where [tex]\mu=36.6[/tex] and [tex]\sigma=1.2[/tex]

We are interested on this probability

[tex]P(X<\mu -2\sigma = 36.6 -2*1.2 =34.2)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<34.2)=P(\frac{X-\mu}{\sigma}<\frac{34.2-\mu}{\sigma})=P(Z<\frac{34.2-36.6}{1.2})=P(z<-2)[/tex]

And we can find this probability using the normal standard table or excel and we got:

[tex]P(z<-2)=0.025[/tex]

And the best answer for this case would be:

2.5%

Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(X=17), n=18, p=0.9

Answers

Answer:

P(X = 17) = 0.3002

Step-by-step explanation:

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

In this problem we have that:

[tex]n = 18, p = 0.9[/tex]

We want P(X = 17). So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 17) = C_{18,17}.(0.9)^{17}.(0.1)^{1} = 0.3002[/tex]

P(X = 17) = 0.3002

Answer:

P(X=17) = 0.3002 .

Step-by-step explanation:

We are given that the random variable X has a binomial distribution with the given probability of obtaining a success.

The above situation can be represented through Binomial distribution;

[tex]P(X=r) = \binom{n}{r}p^{r} (1-p)^{n-r} ; x = 0,1,2,3,.....[/tex]

where, n = number of trials (samples) taken = 18

            r = number of success = 17

           p = probability of success which in our question is given as 0.9 .

So, X ~ [tex]Binom(n=18,p=0.9)[/tex]

We have to find the probability of P(X = 17);

P(X = 17) = [tex]\binom{18}{17}0.9^{17} (1-0.9)^{18-17}[/tex]

               = [tex]18 \times 0.9^{17} \times 0.1^{1}[/tex]    { [tex]\because \binom{n}{r} = \frac{n!}{r! \times (n-r)!}[/tex] }

               = 0.3002

Therefore, P(X=17) = 0.3002 .

Suppose that, during the next hour, 20 customers each purchase one cup of coffee. Assume that the customers make their decisions independently, and each customer has a 17% probability of ordering decaffeinated coffee. What is the probability that everyone will order a coffee with caffeine? g

Answers

Answer:

0.0241 or 2.41%

Step-by-step explanation:

Since each customer has a 17% probability of ordering decaffeinated coffee, the probability of a customer ordering a coffee with caffeine is:

[tex]P(C) = 1-0.17 = 0.83[/tex]

If customers make their decisions independently, the probability that all 20 order a coffee with caffeine is:

[tex]P(X=20)=P(C)^{20}\\P(X=20) = 0.83^{20}=0.0241=2.41\%[/tex]

The probability is 0.0241 or 2.41%.

One of four calculator batteries is bad. An experiment consists of testing each battery until the dead one is found.
(a) How many possible outcomes are there for this experiment?
(b) Is the outcome GBGG (Good, Bad, Good, Good) possible? Why or why not?

Answers

Answer:

(a) 4 possible outcomes

(b) Not possible, testing stops upon finding the bad battery,

Step-by-step explanation:

Let G denote a good battery and B denote a bad battery.

Whenever a bad battery is found, the batteries stop being tested.

(a) The outcomes for this experiment are:

B

GB

GGB

GGGB

There are 4 possible outcomes.

(b) The outcome GBGG is not possible since testing stops upon finding the bad battery, the outcome in this case would be GB.

A Type II error is defined as which of the following?

A. rejecting a false null hypothesis
B. rejecting a true null hypothesis
C. failing to reject a false null hypothesis
D. failing to reject a true null hypothesis

Answers

Answer:

Option C.  failing to reject a false null hypothesis

Step-by-step explanation:

Type II error states that Probability of accepting null hypothesis given the fact that null hypothesis is false.

This is considered to be the most important error.

So, from the option given to us option C matches that failing to reject a false null hypothesis.

Suppose f:double-struck Rn → double-struck Rm and g:double-struck Rp → double-struck Rq. (a) What must be true about the numbers n, m, p, and q for f ∘ g to make sense? n = q m = p n = p m = q n = m (b) What must be true about the numbers n, m, p, and q for g ∘ f to make sense? n = q m = p n = p m = q n = m (c) When does f ∘ f make sense?

Answers

Answer:

See the attached picture.

Step-by-step explanation:

See the attached picture.

Final answer:

To ensure compositions f ∘ g, g ∘ f, and f ∘ f make sense, certain conditions must be met regarding the number of inputs and outputs of the functions.

Explanation:

(a) For f ∘ g to make sense, the number of inputs of g must match the number of outputs of f. Therefore, n must equal p, and m must equal q.

(b) For g ∘ f to make sense, the number of inputs of f must match the number of outputs of g. Therefore, n must equal q, and m must equal p.

(c) For f ∘ f to make sense, the number of outputs of f must match the number of inputs of f. Therefore, n must equal m.

Learn more about Composition of Functions here:

https://brainly.com/question/33783470

#SPJ11

You are testing the null hypothesis that the population proportion equals .45, using data you collected from a sample of 100 adults. You sample proportion equals .30. What does Z equal

Answers

Answer:

[tex]z=\frac{0.3 -0.45}{\sqrt{\frac{0.45(1-0.45)}{100}}}=-3.015[/tex]  

Step-by-step explanation:

Data given and notation

n=100 represent the random sample taken

[tex]\hat p=0.3[/tex] estimated proportion of interest

[tex]p_o=0.45[/tex] is the value that we want to test

[tex]\alpha[/tex] represent the significance level

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion is 0.45.:  

Null hypothesis:[tex]p=0.45[/tex]  

Alternative hypothesis:[tex]p \neq 0.45[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.3 -0.45}{\sqrt{\frac{0.45(1-0.45)}{100}}}=-3.015[/tex]  

The z-value is approximately -3.01.

To test the null hypothesis about a population proportion, you can use the z-test for proportions. The formula for the z-test statistic for proportions is:

[tex]z= \frac{p -p_0}{\frac{\sqrt{p_0(1 -p_0)}}{n} }[/tex]

​where:

p  is the sample proportion,  

p_0 is the hypothesized population proportion under the null hypothesis, n is the sample size.

In your case:

p =0.30 (sample proportion),

p_0​ =0.45 (hypothesized population proportion),

n=100 (sample size).

Now plug these values into the formula:

Calculate the values within the brackets first:

[tex]z= \frac{0.30 - 0.45}{\frac{\sqrt{0.45(1 -0.45)}}{100} }[/tex]

[tex]z= \frac{-0.15}{\frac{\sqrt{0.45(0.55)}}{100} }[/tex]

[tex]z= \frac{-0.15}{\frac{\sqrt{0.2475}}{100} }[/tex]

[tex]z= \frac{-0.15}{\sqrt{0.002475} }[/tex]

z≈−3.01

So, the z-value is approximately -3.01.

for such more question on null hypothesis

https://brainly.com/question/4436370

#SPJ6

Big chickens: The weights of broilers (commercially raised chickens) are approximately normally distributed with mean 1511 grams and standard deviation 198 grams. Use the TI-84 Plus calculator to answer the following. (a) What proportion of broilers weigh between 1143 and 1242 grams?

Answers

Answer:

5.55% of broilers weigh between 1143 and 1242 grams

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 1511, \sigma = 198[/tex]

What proportion of broilers weigh between 1143 and 1242 grams?

This is the pvalue of Z when X = 1242 subtracted by the pvalue of Z when X = 1143.

X = 1242

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{1242 - 1511}{198}[/tex]

[tex]Z = -1.36[/tex]

[tex]Z = -1.36[/tex] has a pvalue of 0.0869

X = 1143

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{1143 - 1511}{198}[/tex]

[tex]Z = -1.36[/tex]

[tex]Z = -1.86[/tex] has a pvalue of 0.0314

0.0869 - 0.0314 = 0.0555

5.55% of broilers weigh between 1143 and 1242 grams

The distribution of actual weight of tomato soup in a 16 ounce can is thought to be be shaped with a ean equal to 16 ounces, and a standard deviation equal to 0.25 ounces. Based on this information, between what two values could we expect 95% of all cans to weigh?

(a) 15.75 to 16.25 ounces

(b) 15.50 to 16.50 ounces

(c) 15.25 to 16.75 ounces

(d) 15 to 17 ounces

Answers

Answer:

(b) 15.50 to 16.50 ounces

Step-by-step explanation:

The Empirical Rule states that, for a normally distributed(bell shaped) random variable:

68% of the measures are within 1 standard deviation of the mean.

95% of the measures are within 2 standard deviation of the mean.

99.7% of the measures are within 3 standard deviations of the mean.

In this problem, we have that:

Mean = 16

Standard deviation = 0.25

Based on this information, between what two values could we expect 95% of all cans to weigh?

By the Empirical Rule, within 2 standard deviations of the mean. So

16 - 2*0.25 = 15.50 ounces

16 + 2*0.25 = 16.50 ounces

So the corret answer is:

(b) 15.50 to 16.50 ounces

Final answer:

By calculating two standard deviations from the mean in both directions, we determine that 95% of cans are expected to weigh between 15.5 and 16.5 ounces. Thus, option b is correct.

Explanation:

The question involves finding between which two values 95% of all cans of tomato soup would weigh, given that the mean weight is 16 ounces with a standard deviation of 0.25 ounces. This question can be answered by applying the empirical rule (also known as the 68-95-99.7 rule) for a normal distribution, which states that approximately 95% of the data falls within two standard deviations of the mean.

To calculate the range:

1. Subtract two standard deviations from the mean to find the lower limit.

16 ounces - (2 * 0.25 ounces) = 15.5 ounces

2. Add two standard deviations to the mean to find the upper limit.

16 ounces + (2 * 0.25 ounces) = 16.5 ounces

Therefore, we can expect 95% of all cans to weigh between 15.5 and 16.5 ounces, which corresponds to option (b) 15.50 to 16.50 ounces.

A warehouse receives orders for a particular product on a regular basis. When an order is placed, customers can order 3, 4, 5, ..., 22 units of the product. Historical data suggest that the size of any given order is equally likely to be of any of these sizes. Let X denote the size of an order.
Find the probability that a customer orders at most five units?

Answers

Answer:

ssfgsdgdsfg

Step-by-step explanation:

sgsfdgfdsgdg

An observation from a normally distributed population is considered "unusual" if it is more than 2 standard deviations away from the mean. There are several contaminants that can harm a city's water supply. Nitrate concentrations above 10 ppm (parts per million) are considered a health risk for infants less than six month of age. The City of Rexburg reports that the nitrate concentration in the city's drinking water supply is between 1.59 and 2.52 ppm (parts per million,) and values outside of this range are unusual. We will assume 1.59 ppm is the value of mu - 2 sigma and mu + 2 sigma is equal to 2.52 ppm. It is reasonable to assume the measured nitrate concentration is normally distributed.
(Source: City of Rexburg)

Use this information to answer questions 20 and 22.
20. Estimate the mean of the measured nitrate concentration in Rexburg's drinking water. (Round your answer to three decimal places)
21. Estimate the standard deviation of the measured nitrate concentration in Rexburg's drinking water. (Round your answer to three decimal places)
22. Between what two measured nitrate concentrations do approximately 68% of the data values lie?
A.2.055 and 2.520 ppm
B.1.357 and 2.753 ppm
C.1.823 and 2.288 ppm
D.1.590 and 2.520 ppm

Answers

Answer:

Step-by-step explanation:

Hello!

X: nitrate concentration in the city's drinking water supply.

X~N(μ;δ²)

A concentration above 10 ppm is a health risk for infants less than 6 months old.

The reported nitrate concentration is between 1.59 and 2.52 ppm, values outside this range are considered unusual.

If any value of a normal distribution that is μ ± 2δ is considered unusual, it is determined that:

μ - 2δ= 1.59

μ + 2δ= 2.52

20) and 21)

I'll clear the values of the mean and the standard deviation using the given information:

a) μ - 2δ= 1.59 ⇒ μ = 1.59 + 2δ

b) μ + 2δ= 2.52 ⇒ Replace the value of Mu from "a" in "b" and clear the standard deviation:

(1.59 + 2δ) + 2δ= 2.52

1.59 + 4δ= 2.52

4δ= 2.52 - 1.59

δ= 0.93/4

δ= 0.2325

Then the value of the mean is μ = 1.59 + 2(0.2325)

μ = 1.59 + 0.465

μ = 2.055

22)

Acording to the empirical rule, 68% of a normal distribution is between μ±δ

Then you can expect 68% of the distribution between:

μ-δ= 2.055-0.2325= 1.8225

μ+δ= 2.055+0.2325= 2.2875

Correct option: C. 1.823 and 2.288 ppm

I hope it helps!

The Christmas Bird Count (CBC) is an annual tradition in Lexington, Massachusetts. A group of volunteers counts the number of birds of different species over a 1-day period. Each year, there are approximately 30–35 hours of observation time split among multiple volunteers. The following counts were obtained for the Northern Cardinal (or cardinal, in brief) for the period 2005–2011.

Year Number

2005 76

2006 47

2007 63

2008 53

2009 62

2010 69

2011 62

5.126 What is the mean number of cardinal birds per year observed from 2005 to 2011?

5.127 What is the standard deviation (sd) of the number of cardinal birds observed?

5.128 What is the probability of observing at least 60 cardinal birds in 2012? (Hint: Apply a continuity correction where appropriate.)

The observers wish to identify a normal range for the number of cardinal birds observed per year. The normal range will be defined as the interval (L, U), where L is the largest integer ≤ 15th percentile and U is the smallest integer ≥ 85th percentile.
5.129 If we make the same assumptions as in Problem 5.128, then what is L? What is U?

5.130 What is the probability that the number of cardinal birds will be ≥ U at least once on Christmas day during the 10-year period 2012–2021? (Hint: Make the same assumptions as in Problem 5.128.)

Answers

Answer:

(5.216) mean = 61.71

(5.217) standard deviation = 8.88

(5.218) P(X>=60) = 0.9238

(5.129) L = 79, U = 69

(5.130) P(X> or = U) = 0.7058

Step-by-step explanation:

The table of the statistic is set up as shown in attachment.

(5.216) mean = summation of all X ÷ no of data.

mean = 432/7 = 61.71 birds

(5.217)Standard deviation = √ sum of the absolute value of difference of X from mean ÷ number of data

S = √ /X - mean/ ÷ 7

= √551.428/7

S = 8.88

(5.218) P (X> or = 60)

= P(Z> or =60 - 61.71/8.8 )

= P(Z>or= - 0.192)

= 1 - P(Z< or = 0.192)

= 1- 0.0762

= 0.9238

(5.219)the 15th percentile=15/100 × 7

15th percentile = 1.05

The value is the number in the first position and that is 79,

L= 79

85th percentile = 85/100 × 7 = 5.95

The value is the number in the 6th position, and that is 69

U = 69

5.130) P(X>or = 60)

= P(Z>or= 69 - 61.71/8.8)

= P(Z> or = 0.8208)

= 1 - P(Z< or = 0.8209)

= 1 - 0.2942

= 0.7058

Geologists estimate the time since the most recent cooling of a mineral by counting the number of uranium fission tracks on the surface of the mineral. A certain mineral specimen is of such an age that there should be an average of 6 tracks per cm2 of surface area. Assume the number of tracks in an area follows a Poisson distribution. Let X represent the number of tracks counted in 1 cm2 of surface area.

a)Find P(X = 7).
b)Find P(X ≥ 3).
c)Find P(2 < X < 7).
d)Find μX.
e)Find σX

Answers

Answer:

(a) The value of P (X = 7) is 0.1388.

(b) The value of P (X ≥ 3) is 0.9380.

(c) The value of P (2 < X < 7) is 0.5433.

(d) [tex]\mu_{X}=6[/tex]

(e) [tex]\sigma_{X}=2.45[/tex]

Step-by-step explanation:

Let X = number of uranium fission tracks on per cm² surface area of the mineral.

The average number of track per cm² surface area is, λ = 6.

The random variable X follows a Poisson distribution with parameter λ = 6.

The probability mass function of a Poisson distribution is:

[tex]P(X=x)=\frac{e^{-\lambda}\lambda^{x}}{x!};\ x=0, 1, 2, 3...[/tex]

(a)

Compute the value of P (X = 7) as follows:

[tex]P(X=6)=\frac{e^{-6}(6)^{7}}{7!}=\frac{0.0025\times 279936}{5040}=0.1388[/tex]

Thus, the value of P (X = 7) is 0.1388.

(b)

Compute the value of P (X ≥ 3) as follows:

P (X ≥ 3) = 1 - P (X < 3)

              = 1 - P (X = 0) - P (X = 1) - P (X = 2)

              [tex]=1-\frac{e^{-6}(6)^{0}}{0!}-\frac{e^{-6}(6)^{1}}{1!}-\frac{e^{-6}(6)^{2}}{2!}\\=1-0.00248-0.01487-0.04462\\=0.93803\\\approx0.9380[/tex]

Thus, the value of P (X ≥ 3) is 0.9380.

(c)

Compute the value of P (2 < X < 7) as follows:

P (2 < X < 7) = P (X = 3) + P (X = 4) + P (X = 5) + P (X = 6)

                   [tex]=\frac{e^{-6}(6)^{3}}{3!}+\frac{e^{-6}(6)^{4}}{4!}+\frac{e^{-6}(6)^{5}}{5!}+\frac{e^{-6}(6)^{6}}{6!}\\=0.08924+0.13385+0.16062+0.16062\\=0.54433\\\approx0.5443[/tex]

Thus, the value of P (2 < X < 7) is 0.5433.

(d)

The mean of the Poisson distribution is:

[tex]\mu_{X}=\lambda=6[/tex]

(e)

The standard deviation of the Poisson distribution is:

[tex]\sigma_{X}=\sqrt{\sigma^{2}_{X}}=\sqrt{\lambda}=\sqrt{6}=2.4495\approx2.45[/tex]

In a study of cereal leaf beetle damage to oats, researchers measured the number of beetle larvae per stem in small plots of oats after applying (or not applying) the pesticide Malathion . Researchers applied Malathion to a random sample of 5 plots, and did not apply the pesticide to an independent sample of 12 plots. A noted scientist claims that Malathion will not make any difference in the mean number of larvae per stem. Test her claim at the .05 level of significance. State H0 and H1. a. H0: Mean Malathion -MeanNoMalathion <= 0 H1: Mean Malathion-Mean Malathion > 0 b. H0: MeanMalathion -MeanNoMalathion >= 0 H1: MeanMalathion-MeanNoMalathion < 0 c. H0: MeanMalathion = MeanNoMalathion H1: MeanMalathion ≠ MeanNoMalathion d. H0: MeanMalathion-MeanNoMalathion = 0 H1: MeanMalathion-MeanNoMalathion ≠ 0

Answers

Answer:

At 0.05 level of significance, there is no difference in the mean number of larvae per stem. This supports the scientist's claim.

(d) H0: MeanMalathion - MeanNoMalathion equals 0

H1: MeanMalathion - MeanNoMalathion not equals 0

Step-by-step explanation:

Test statistic (t) = (mean 1 - mean 2) ÷ sqrt[pooled variance (1/n1 + 1/n2)]

Let the difference between the two means be x and the pooled variance be y

n1 = 5, n2 = 12

t = x ÷ sqrt[y(1/5 + 1/12)] = x ÷ sqrt(0.283y) = x ÷ 0.532√y = 1.88x/√y

Assuming the ratio of x to √y is 0.5

t = 1.88×0.5 = 0.94

n1 + n2 = 5 + 12 = 17

degree of freedom = n1 + n2 - 2 = 17 - 2 = 15

significance level = 0.05 = 5%

critical value corresponding to 15 degrees of freedom and 5% confidence interval is 2.131

The test is a two-tailed test because the alternate hypothesis is expressed using not equal to.

The region of no rejection of the null hypothesis lies between -2.131 and 2.131

Conclusion

Fail to reject the null hypothesis because the test statistic 0.94 falls within the region bounded by the critical values.

The scientist's claim is right.

A null hypothesis is a statement from a population parameter which is either rejected or accepted (fail to reject) upon testing. It is expressed using the equality sign.

An alternate hypothesis is also a statement from a population parameter which negates the null hypothesis and is accepted if the null hypothesis is rejected. It is expressed using any of the inequality signs.

A fair die is rolled 8 times. What is the probability that the die comes up 6 exactly twice? What is the probability that the die comes up an odd number exactly five times? Find the mean number of times a 6 comes up. Find the mean number of times an odd number comes up. Find the standard deviation of the number of times a 6 comes up. Find the standard deviation of the number of times an odd number comes up.

Answers

Answer:

0.2605, 0.2188, 1.33, 4, 1.0540, 1.4142

Step-by-step explanation:

A fair die is rolled 8 times.  

a. What is the probability that the die comes up 6 exactly twice?  

b. What is the probability that the die comes up an odd number exactly five times?  

c. Find the mean number of times a 6 comes up.  

d. Find the mean number of times an odd number comes up.  

e. Find the standard deviation of the number of times a 6 comes up.  

f. Find the standard deviation of the number of times an odd number comes up.

a. A die is rolled 8 times. If A represent the number of times a 6 comes up. For a fair die the probability that the die comes up 6 is 1/6 - Thus A ~ Bin(8, 1/6)

The probability mass function  of the random variable A is  

[tex]p(A) = \left \{ {\frac{8!}{x!(8 - x)!}*(\frac{1}{6} )^{A}*(\frac{5}{6} )^{8-A} } \right. for A=0,1, ...8[/tex]

hence, p(6 twice) implies P(A=2)

that is P(2) substitute A = 2

[tex]p(2) = \left \{ {\frac{8!}{2!(8 - 2)!}*(\frac{1}{6} )^{2}*(\frac{5}{6} )^{8-2} } \right. for A=0,1, ...8[/tex]

[tex]p(2)=\frac{8!}{2!6!} *(\frac{1}{6} )^{2} *(\frac{5}{6} )^{6}[/tex]  

p(2) = 0.2605  

b. If B represent the number of times an odd number comes up. For the fair die the probability that an odd number comes up is 0.5.

Thus B ~ Bin(8, 1/2 )

The probability mass function of the random variable B is given by

[tex]p(B) = \left \{ {\frac{8!}{B!(8 - B)!}*(\frac{1}{2} )^{B\\}*(\frac{1}{2} )^{8-B} } \right. for B=0,1, ...8[/tex]

hence p(odd comes up 5 times) is

[tex]p(x=5) = p(2)=\frac{8!}{5!3!} *(\frac{1}{2} )^{5} *(\frac{1}{2} )^{3}[/tex]

p(5) = 0.2188

c. let the mean no of times a 6 comes up be μₐ

   and let the total number of outcomes be n

   using the formula μₐ = nρₐ

   μₐ = 8 * 1/6

        = 1.33

d. let the mean nos of times an odd nos comes up be μₓ

   let the total outcomes be n = 8

   let the probability odd be pb = 1/2

   μₓ = npb

        = 8 * (1/2)

        = 4

e. the standard deviation of a random variable A is given as follows

σₐ [tex]= \sqrt{np(1-p)}[/tex]

where p = 1/6 (prob 6 outcome)

n = total outcomes = 8

  [tex]= \sqrt{8*\frac{1}{6}*\frac{5}{6} }[/tex]

  = 1.0540

f. the standard dev of the binomial random variable Y is given by

σ [tex]= \sqrt{np(1-p)}[/tex]

where p = 1/2 and n = 8

  =  [tex]\sqrt{8*\frac{1}{2} *\frac{1}{2} }[/tex]

  = 1.4142

Blue Ribbon taxis offers shuttle service to the nearest airport. You look up the online reviews for Blue Ribbon taxis and find that there are 17 17 reviews, six of which report that the taxi never showed up. Is this a biased sampling method for obtaining customer opinion on the taxi service

Answers

Answer:

Yes, this a biased sampling method.

Step-by-step explanation:

The sampling done is a biased sampling method.

This is because usually people who are upset or dissatisfied with the service are the ones who write online reviews, as there are no other way to release their frustration with the service provided.

The bias is likely to be directed towards the proportion of people who are not satisfied with service.

PLEASE HELP ONLY IF RIGHT 50 POINTS AND BRAINLIEST PLUS THANK YOU AND 5 STARS. My cousin need help.
Anthony has a sink that is shaped like a half-sphere. The sink has a volume of 4000/3*π in^3. One day, his sink clogged. He has to use one of two cylindrical cups to scoop the water out of the sink. The sink is completely full when Anthony begins scooping. Hint: you may need to find the volume for both.

1.)One cup has a diameter of 4 in. and a height of 8 in. How many cups of water must Anthony scoop out of the sink with this cup to empty it? Round the number of scoops to the nearest whole number, and make certain to show your work.

2.One cup has a diameter of 8 in. and a height of 8 in. How many cups of water must he scoop out of the sink with this cup to empty it? Round the number of scoops to the nearest whole number, and make certain to show your work.

Answers

Answer:

1) Number of scoops = 42

2)Number of scoops = 10

Step-by-step explanation:

Volume of the sink = (4000/3)π in³

1)

Diameter = 4 in      ∵   Radius = 4/2 = 2 in

Height = 8 in

Volume of the cylindrical cup =  [tex]\pi r^{2}h = \pi 2^{2} * 8 = 32\pi[/tex] in³

Number of cups of water that must be scooped out = Volume of the sink/ Volume of the cylindrical cup

= (4000/3)π / 32π    ==>  42

Number of scoops = 42

b)

Diameter = 8 in    ∵   Radius = 8/2 = 4 in

Height = 8 in

Volume of the cylindrical cup =  [tex]\pi r^{2}h = \pi 4^{2} * 8 = 128\pi[/tex] in³

Number of cups of water that must be scooped out = Volume of the sink/ Volume of the cylindrical cup

= (4000/3)π / 128π ==> 10

Number of scoops = 10

A regression model, y = 4 + 4x1 + 6x2, with the undernoted parameters. Parameters: R2= 0.88 Sig of F: 0.04 p-value of x1= 0.05 p-value of x2= 0.08 a. Should NOT be rejected because all the parameters are generally acceptable. b. Should be rejected because the Sig of F: 0.04 is not high enough to be generally acceptable (95% or more) as a measure of confidence in the R2 . (1 - sig of F = Confidence Level) c. Should be rejected because the p-value of x2= 0.08 is not high enough to be generally acceptable (95% or more) (1- p = confidence level) d. Should be rejected because the R2 is very low

Answers

Answer:

a. Should NOT be rejected because all the parameters are generally acceptable.

Step-by-step explanation:

It’s estimated that 52% of American adults have incurred credit card debt. The department of finance surveys 2500 adults for a report.

Determine the probability that between 1200 and 1450 of those surveyed incurred debt.

Answers

Answer:

100% probability that between 1200 and 1450 of those surveyed incurred debt.

Step-by-step explanation:

We use the binomial approximation to the normal to solve this question.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].

In this problem, we have that:

[tex]n = 2500, p = 0.52[/tex]

So

[tex]\mu = E(X) = 2500*0.52 = 1300[/tex]

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{2500*0.52*0.48} = 24.98[/tex]

Determine the probability that between 1200 and 1450 of those surveyed incurred debt.

This is the pvalue of Z when X = 1450 subtracted by the pvalue of Z when X = 1200. So

X = 1450

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{1450 - 1300}{24.98}[/tex]

[tex]Z = 6[/tex]

[tex]Z = 6[/tex] has a pvalue of 1

X = 1200

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{1200 - 1300}{24.98}[/tex]

[tex]Z = -4[/tex]

[tex]Z = -4[/tex] has a pvalue of 0

1 - 0 = 1

100% probability that between 1200 and 1450 of those surveyed incurred debt.

Imagine that you have been given a dataset of 1,000 documents that have been classified as being about entertainment or education. There are 700 entertainment documents in the dataset and 300 education documents in the dataset. The tables below give the number of documents from each topic that a selection of words occurred in. Word-document counts for the entertainment dataset fun christmas is 695 machine 35 family 400 learning 70 415 Word-document counts for the education dataset is christmas fun 200 machine 120 family 10 learning 105 295a. What target level will a naive Bayes model predict for the following query document: "machine learning is fun"? b. What target level will a naive Bayes model predict for the following query document: "christmas family fun"? c. What target level will a naive Bayes model predict for the query document in part (b) of this question, if Laplace smoothing with k = 10 and a vocabulary size of 6 is used?

Answers

Answer:

Please find attached answer.

Step-by-step explanation:

Final answer:

The Naive Bayes model is likely to classify the document 'machine learning is fun' and 'christmas family fun' as 'entertainment', even when using Laplace smoothing.

Explanation:

The Naive Bayes model classifies texts based upon the likelihood of a particular term belonging to a given class. To find the target level for the document, you multiply the prior probability of the document being in a given class (either entertainment or education) with the likelihoods of the terms in the query document being in that class and you choose the class with the highest probability.

For the query document "machine learning is fun": Given the word-document counts, the model would predict 'entertainment' due to the higher frequency of 'fun' and 'machine' in entertainment documents than in education documents.For the query document "christmas family fun": The model would probably predict 'entertainment' due to the higher frequency of 'fun' and 'family' in the entertainment dataset than in the education dataset.If Laplace smoothing with k = 10 and a vocabulary size of 6 is used, the model would still predict 'entertainment' for "christmas family fun", as adjusting for unseen words in this way will not change the relative probabilities significantly.

Learn more about Naive Bayes model here:

https://brainly.com/question/21507963

#SPJ3

What is 3 1/4 +( 3 1/4 +5 1/5)?

Answers

Answer:16.5

Step-by-step explanation:

Answer:

11 7/10

Step-by-step explanation:

Lets make the fractions into common denominators, by mulitplying 4 by 5 and 5 by 4 (see below) and follow PEMDAS

3 1/4(5) +(3 1/4(5) + 5 1/5(4))

3 5/20+ (3 5/20+5 4/20)

Simplify like terms

3 5/20+ (8 9/20)

11 14/20

Simplify fraction

11 7/10

Other Questions
How do the depictions of slavery in paragraphs 7-8 help us understand it?The language of business fails to capture the impact of the trade on those who were bought and sold. The black scholar and activist W.E.B. Du Bois, writing in the 1930s, described the slave trade this way: The transformation of ten million human beings out of the dark beauty of their mother continent into the new-found Eldorado of the West was the most significant drama in the last thousand years of human history. The men and women captured and sold into slavery, he argued, had descended into Hell. They had been ripped from their families and forced to march long distances in Africa in chains (perhaps almost two million died in the process). They were then imprisoned in slave forts, dungeons, or barracoons on the African coast before being placed into the holds of slave ships.They are imprisoned in the ships, reported a Spanish Jesuit in South America in 1627, lying with one persons head at another persons feet. They are locked in the hold and closed off from the outside. These men and women were fed a half cup of corn or crude millet and a small cup of water but once a day. Other than that, they get nothing else besides beating, whipping, and cursing. After this treatment, they arrived in the Americas looking like skeletons.A.They stress that few slaves made it to America.B.They emphasize the horrible treatment of slaves.C.They explain how slaves were eventually freed in America.D.They compare the treatment of slaves in America and Africa. What is the product of the polynomials below?(6x2-3x-6)(4x2 +5x+4) A grandfather clock is controlled by a swinging brass pendulum that is 1.6 m long at a temperature of 28C. (a) What is the length of the pendulum rod when the temperature drops to 0.0C? (Give your answer to at least four significant figures.) The atomic number, or ________ number, is the described as the number of _________ in the nucleus of an chemical element.A)proton, protonsB)photon, photonsC)neutron, neutronsD)electron, electrons Interacting is noted as the salesperson maintaining contact with the multiple individuals in the buying organization who influence purchase decisions and who manage the various touchpoints the customer has in the selling organization to ensure consistency in communication. True or false? How should an administrator test the functionality of DNS operation on a domain controller, as well as troubleshoot issues with DNS forwarders, delegation, dynamic updates, and record registration? word puzzle!!!!Karen's friends want to buy her a wedding gift. Originally ten friends were going to chip in equally, but then two or them dropped out. Each of the remaining eight friends had to chip in another dollar to bring the total back up to the original amount. How much money did they plan to collect? Many magazine companies are dropping the title of ________ from their publications as evidence of the importance of digital publishing to their business. If the DNA sequence of Species 5 were examined, which percentage of its nucleotide sequence would be identical tothat of Species 4?A)below 61%B)close to 96%between 88% and 96%Dbetween 61% and 88% Random errors are those that remain in after mistakes and have been eliminated. They are caused by factors beyond the control of the observer, obey , and are sometimes called ___ . They are present in all surveying observations. Triangle ABC is similar to triangle PQR. Solve for n. PLEASE HELP The concentration from analysis question 5 represents the concentration in the 10.00 mL sample that was prepared in the volumetric flask using an aliquot of the solution in the 100.00 mL volumetric flask. Calculate the concentration of acetylsalicylic acid in the 100.00 mL volumetric flask. This is a simple dilution as long as you use the correct volumes Consider the given function and the given interval. f(x) = 6 sin(x) 3 sin(2x), [0, ] (a) Find the average value fave of f on the given interval. (b) Find c such that fave = f(c). (Round your answers to three decimal places.) White blood cells are an important component of our immune system. One thing they do is consume and destroy bacteria by extending their plasma membrane around the bacterium and bringing it inside the cell in a vesicle. By what process do they engulf the bacterium? On average, those with the short form of the ____ transporter gene and a history of stressful experiences reported more than average symptoms of depre Marge was not being asked for a follow-up interview to her job applications. She asked her friend Homer to help her solve the problem. Homer asked her if she was sure what the problem was? Homer was helping Marge:_________.1. generate an alternative course of action2. evaluate her alternatives3. clarify the problem Which of these was a factor that pushed immigrants to the United States?OA. Free land in FranceOB. Religious freedom in GermanyOC. Job opportunities in EnglandOD. The potato famine in Ireland 1) In this passage, Keynes argues thatA) recovery should be pursued before reform.hess andForB) reform should be pursued before recovery.; butrecovery and reform should be pursuedsimultaneously.ong-recovery and reform should both be tabledindefinitely And electromagnet is in temporary magnet made by Coiling wire around an iron core which becomes a magnet win and electric current flows through the wire how could a strength of an electromagnet be increase -6y= -20 + 2x2x 4y=0Solve by elimination