At 0.108 m distance from the center of the sphere does the electric field have the same magnitude as it has at P.
Given that,
Radius of the sphere R= 0.30 m
Distance from the center of the sphere r= 0.50 m
Electric field = 15000 N/C
r > R and for this value of r.
Let density of charge = [tex]\rho[/tex]
therefore, we have,
[tex]k*\rho*(4/3*(\pi*0.3^3))/0.5^2 = k*\rho*(4/3*(\pi*r^3))/r^2[/tex]
where r is the distance from centre.
Now, we have,
the field inside a sphere is given by [tex]\(kqx/r^3\)[/tex]
the field outside the sphere is given by [tex]\(kq/x^2\)[/tex]
so equating the two equations,
[tex]kq*x/(0.3^3)=kq/(0.5^2)[/tex]
or, x=0.108m
So, After solving we get distance= 0.108 m.
Hence, At 0.108 m distance from the center of the sphere does the electric field have the same magnitude as it has at P.
learn more on electric field
https://brainly.com/question/14837739
#SPJ12
The electric field of a nonconducting sphere is directly proportional to the distance from its center when inside the sphere and inversely proportional to the square of the distance when outside. To have the same magnitude of 15,000 N/C as at point P (0.50m), the point must be outside the sphere at a distance that depends on the sphere's total charge.
Explanation:The question asked is based on the concept of electric fields in Physics. Firstly, we need to understand that the electric field inside a uniformly charged nonconducting sphere is directly proportional to the distance from the center of the sphere (It follows the equation E = k*r, where E is the electric field, k is a constant, and r is the distance from the center). At the point P (0.50m), the electric field E is given as 15,000 N/C.
So, for the electric field to have the same magnitude at another point, this point must be outside the sphere. This is because the electric field will decrease once we move out of the sphere (Outside the sphere, the electric field falls off as 1/r^2, so to achieve the same magnitude of 15,000 N/C we have to move farther away from the sphere). The exact distance depends on the total charge of the sphere, which is not given in the question.
Learn more about Electric Fields here:https://brainly.com/question/31366250
#SPJ3
What is the wavelength of a sound wave traveling at 360 m/s and a
frequency of 150 Hz? *
1.0 m
2.4 m
оооо
Е Е ЕЕ
0.4 m
0.8 m
Answer:2.4m
Explanation:
Velocity=360m/s
Frequency=150Hz
Wavelength=velocity ➗ frequency
Wavelength=360 ➗ 150
Wavelength=2.4m
Final answer:
The wavelength of a sound wave traveling at 360 m/s and a frequency of 150 Hz is 2.4 m.
Explanation:
The wavelength of a sound wave can be calculated using the equation:
λ = v / ƒ
where λ is the wavelength, v is the speed of sound, and ƒ is the frequency of the sound wave. Given that the speed of sound is 360 m/s and the frequency is 150 Hz, we can substitute these values into the equation:
λ = 360 m/s / 150 Hz = 2.4 m
Therefore, the wavelength of the sound wave is 2.4 m.
g A simple pendulum (consisting of a point mass suspended by a massless string) on the surface of the earth has a period of 1.00 s. On a distant planet, a pendulum of identical length but twice the mass is found to have the same period. What is true about the acceleration due to gravity on the distant planet? [Assume both pendulums operate free of any friction or air resistance force]
Answer:
Explanation:
The formula for time period of a pendulum is given as follows :
T = 2π[tex]\sqrt{\frac{l}{g} }[/tex]
l is length of pendulum and g is acceleration due to gravity .
So time period of pendulum is not dependent on the mass of the pendulum . If time period is same and length is also the same then acceleration due to gravity will also be the same . Hence the acceleration due to gravity at distant planet will be same as that on the earth.
A bungee jumper jumps from a tall bridge that is 60m above a flat, dry creek bed. She is carrying an audio generator that emits sound at frequency 1200 Hz. The unstretched length of the bungee cord is 26m, and the spring constant is selected so that she stops just before hitting the creek bed. At what point in her fall is the beat frequency, determined by listening to the audio generator and the reflection from the creek bed, a maximum
Answer:
Explanation:
The original frequency of sound f₀
The apparent frequency of sound fa
For apparent frequency the formula is
fa = [tex]f_0\times\frac{V+v}{V-v }[/tex] , v is velocity of jumper which increases as he goes down .
Beat frequency
= fa - f₀
= [tex]f_0\times(\frac{V+v}{V-v }-1)[/tex]
= [tex]f_0\times(\frac{2v}{V-v })[/tex]
since v is very small in comparison to V , velocity of sound , in the denominator , v can be neglected.
beat frequency = [tex]f_0\times(\frac{2v}{V })[/tex]
v , the velocity of jumper will go on increasing as long as net force on the jumper is positive or
mg > kx where x is extension in the cord and k is its force constant . Below this point kx or restoring force becomes more than weight of the jumper and then net force on the jumper directs upwards. At this point beat frequency becomes maximum.
Problem 16.71 A bowler projects an 8-in.-diameter ball weighing 12 lb along an alley with a forward velocity v0 of 15 ft/s and a backspin 0 of 9 rad/s. Knowing that the coefficient of kinetic friction between the ball and the alley is 0.10, determine (a) the time t1 at which the ball will start rolling without sliding, (b) the speed of the ball at time t1, (c) the distance the ball will have traveled at time t1.
Answer:
Find the attachments for complete solution
Compared to the current in the 10.-ohm resistance in the circuit shown at the right, the current in the 5.0-ohm resistance is
a. one-half as great
b. one-fourth as great
c. the same
d. twice as great
Answer:
The answer is d. Twice as great.
Explanation:
The German physicist and mathematician Georg Simon Ohm says in his basic law of electrical circuits or Ohm's law that the potential difference V that is applied at the ends of a conductor is proportional to the intensity I of the current that circulates and that the electrical resistance R is the ratio factor between I and V.
The equation would be I = V / R
If by any chance R is reduced because it is inversely proportional, the current would increase.
So if the current goes from 10 to half 5, its current would double.
A car has a momentum of 20,000 kg • m/s. What would the car’s momentum be if its velocity doubles? 10,000 kg • m/s 20,000 kg • m/s 40,000 kg • m/s 80,000 kg • m/s
Answer:40000kg•m/s
Explanation:
momentum=20000kg•m/s
Since they velocity is doubled
Momentum would also be doubled, therefore momentum would be 40000kg•m/s
Answer:
C: 40,000 kg · m/s
Explanation:
I got it right on edg :)
In deserts the temperatures can reach extreme values in deep of summer and winter. A steel bridge is being constructed and it is supposed to be 1234.567 m long at 233.15 K in the coldest possible winter. What will be the possible length of this bridge when the temperature rises to a possible extreme of +140.0°F in hottest part of summer? The average coefficient of linear expansion of the steel is 11.0123 × 10-6 K-1.
Answer:
The length of the bridge during the hottest part of summer is [tex]L_s = 1235.925 m[/tex]
Explanation:
From the question we are told that
The length of the steel bridge is [tex]L = 1234.567m[/tex]
The temperature for this length is [tex]T_1 = 233.15K[/tex]
The temperature at summer [tex]T_2 = + 140.0F = \frac{140 - 32}{180} *100 + 273= 333 K[/tex]
The coefficient of linear expansion is [tex]\alpha = 11.0123*10^{-6} K^{-1}[/tex]
Generally the change in length of the steel bridge is mathematically represented as
[tex]\Delta L = \alpha L \Delta T[/tex]
Substituting value
[tex]\Delta L = 11.0123*10^{-6} * 1234.567 (333-233.15)[/tex]
[tex]\Delta L = 1.3575 \ m[/tex]
The length of the bridge in summer is mathematically evaluated as
[tex]L_s = L + \Delta L[/tex]
Substituting values
[tex]L_s = 1234.567 + 1.3575[/tex]
[tex]L_s = 1235.925 m[/tex]
The three small spheres are welded to the light rigid frame which is rotating in a horizontal plane about a vertical axis through O with an angular velocity w= 20 rad/s. If a couple MO= 30 N.m is applied to the frame for 5 seconds, compute the new angular velocity.
The new angular velocity is computed using the kinematic expression w² = wo² + 2a0, where 'wo' is the original angular velocity 'a' is the angular acceleration and 'w' is the new angular velocity. The calculation is guided by principles of physics primarily involving angular momentum and acceleration.
Explanation:The calculation for the new angular velocity can be gleaned from the kinematic expression w² = wo² + 2a0. The formula described represents the angular motion of the frame. The angular velocity originally is 20 rad/s and a couple MO of 30 N.m is applied to the frame for 5 seconds. The development of this concept involves principals of angular momentum as well as angular acceleration.
The angular acceleration can be calculated using the relation a = nett
Bearing in mind the initial angular velocity, the applied couple MO, and the duration of its application, the new angular velocity can be computed using the given formula. Note that the laws of physics, specifically the law of conservation of angular momentum, play an essential part in this calculation.
Learn more about Angular Velocity here:https://brainly.com/question/30733452
#SPJ12
In aircraft design, the pressure coefficient Cp is usually measured during wind tunnel testing of an aircraft component to predict structural loads, as well as lift and drag forces. Let Cp=(p−p[infinity])/ (0.5*rhoU[infinity]^2)where U[infinity] is the airspeed of the test at pressure p[infinity] and using a fluid of density rho. The pressure difference p ‐ p[infinity] is measured directly where p is the pressure located at a point on the surface of the test component. Estimate the uncertainty in Cp under the following conditions: Δp = p − p[infinity] = 1,000 N/m2, uΔp = 15 N/m2; rho = 1.20 kg/m3, urho = 0.01 kg/m3; U[infinity] = 50.0 m/s, u_U[infinity] = 0.21 m/s. Assume 95% confidence in stated values.
Answer:
Check the explanation
Explanation:
From given data, it can be noted that 95% of given confidently data, means 5% of data is uncertain. According to the question, we have to calculate uncertainty in Cp .
Kindly check the attached image below for the step by step explanation to the question above.
A mother is helping her children, of unequal weight, to balance on a seesaw so that they will be able to make it tilt back and forth without the heavier child simply sinking to the ground. Given that her heavier child of weight WWW is sitting a distance LLL to the left of the pivot, at what distance L1L1L_1 must she place her second child of weight www on the right side of the pivot to balance the seesaw? Express your answer in terms of LLL, WWW, and www.
Answer:
L1L1L_1 = ( LLL × WWW)/ www.
Explanation:
From the question we are given that the children's weight are not equal, thus, there will be a need to balance the seesaw "so that they will be able to make it tilt back and forth without the heavier child simply sinking to the ground''.
Also, From the question, we are gven that the weight of the heavier child = WWW, the heavier child's is sitting a distance = LLL, the weight of the second child= www.
Therefore, in order to balance the seesaw, she will need to place her second child of weight www on the right side of the pivot to balance the seesaw at a distance of;
L1L1L_1 = ( LLL × WWW)/ www.
A hydrogen atom can be in the 1S state, whose energy we'll call 0, the 2S state, or any of 3 2P states. The 2S and 2P states have energies of 10.2 eV. There are other states with higher energy but we'll ignore them for simplicity. The 2P states have distinctive optical properties, so we're interested in how many are present even when it's a small fraction of the total. 1) What fraction of the H is in 2P states at T=5900 K, a typical Sun surface temperature?
Final answer:
The fraction of hydrogen atoms in the 2P states at T=5900 K is calculated using the Boltzmann distribution. The energy of the 2S and 2P states is 10.2 eV, and their degeneracies are factored into the Boltzmann factor to determine the relative populations of these states.
Explanation:
The fraction of hydrogen atoms in the 2P states at a temperature of 5900 K can be calculated using the Boltzmann distribution. According to quantum mechanics, the energy levels of a hydrogen atom involve principal quantum numbers, with the ground state being 1s and higher energy excited states being designated by higher quantum numbers and corresponding letters (s, p, d, f, etc.) for their angular momentum quantum numbers. Since we are given that the energy of 2S and 2P states are the same at 10.2 eV and the ground state (1S) has an energy we'll call 0, we can use the Boltzmann factor to find the relative populations of these states.
To calculate the fraction of hydrogen atoms in the 2P state, use the following Boltzmann factor equation: fraction = (g2P / gTotal) * exp(-E2/kT), where g2P is the degeneracy of the 2P state, gTotal is the total degeneracy of all states considered, E2 is the energy of the 2P state, k is the Boltzmann constant, and T is the temperature. The degeneracy of the 2P state is 3 (since there are three 2P states) and the only other state considered here is the 2S state, which has degeneracy 1, making gTotal = 4. Plugging in the energy of 10.2 eV for E2 and converting it to joules (multiply by 1.602 x 10-19 J/eV), using k = 1.38 x 10-23 J/K, and T = 5900 K, we can calculate the fraction of hydrogen in the 2P state.
A 1.20 kg copper rod rests on two horizontal rails 0.78 m apart and carries a current of 45 A from one rail to the other. The coefficient of static friction between rod and rails is 0.61. What is the magnitude of the smallest magnetic field that puts the rod on the verge of sliding
Answer:
B = 0.204T
Explanation:
To find the value of the magnetic force you use the following formula:
[tex]F_B=ILBsin\theta[/tex]
I: current of the copper rod = 45A
B: magnitude of the magnetic field
L: 0.78m
you assume that magnetic field B and current I are perpendicular between them.
The magnetic force must be, at least, equal to the friction force, that is:
[tex]F_{f}=F_{B}\\\\\mu N=\mu Mg=ILB\\\\B=\frac{\mu Mg}{IL}[/tex]
M: mass of the rod = 1.20kg
μ: coefficient of static friction = 0.61
g: gravitational acceleration constant = 9.8m/s^2
By replacing the values of the parameters you obtain:
[tex]B=\frac{(0.61)(1.20kg)(9.8m/s^2)}{(45A)(0.78m)}=0.204T[/tex]
Answer:
The magnitude of the smallest magnetic field is [tex]B = 0.1744 \ T[/tex]
Explanation:
From the question we are told that
The mass of the copper is [tex]m = 1.20 kg[/tex]
The distance of separation for the rails is [tex]d = 0.78 \ m[/tex]
The current is [tex]I = 45 A[/tex]
The coefficient of static friction is [tex]\mu = 0.61[/tex]
The force acting along the vertical axis is mathematically represented as
[tex]F = mg - F_y[/tex]
Where [tex]F_y[/tex] is the force acting on copper rod due to the magnetic field generated this is mathematically represented as
[tex]F_y = I * d * B_1[/tex]
The magnetic field here is acting towards the west because according to right hand rule magnetic field acting toward the west generate a force acting in the vertical axis
So the equation becomes
[tex]F = mg - I * d * B_1[/tex]
Here [tex]B_1 = B sin \theta[/tex]
[tex]F = mg - I * d * Bsin(\theta )[/tex]
The in the horizontal axis is mathematically represented as
[tex]F_H = ma + F_x[/tex]
Since the rod is about to move it acceleration is zero
Now [tex]F_x[/tex] is the force acting in the horizontal direction due to the magnetic field acting downward this is because a according to right hand rule magnetic field acting downward generate a force acting in the horizontal positive horizontal direction. this mathematically represented as
[tex]F_H = 0 + I * d * B_2[/tex]
So the equation becomes
[tex]F_H = I * d * B_2[/tex]
Here [tex]B_2 = B cos \theta[/tex]
[tex]F_H = I * d * Bcos (\theta)[/tex]
Now the frictional force acting on this rod is mathematically represented as
[tex]F_F = \mu * F[/tex]
[tex]F_F = \mu * (mg -( I * d * Bsin(\theta )))[/tex]
Now when the rod is at the verge of movement
[tex]F_H = F_F[/tex]
So [tex]I * d * Bcos (\theta) = \mu * (mg -( I * d * Bsin(\theta )))[/tex]
=> [tex]B = \frac{\mu mg }{I * d (cos \theta + \mu (sin \theta ))}[/tex]
Now [tex]\theta[/tex] is the is the angle of the magnetic field makes with the vertical and the horizontal and this can be mathematically evaluated as
[tex]\theta = tan^{-1} (\mu )[/tex]
Substituting value
[tex]\theta = tan^{-1} ( 0.61 )[/tex]
[tex]\theta = 31.38^o[/tex]
Substituting values into the equation for B
[tex]B = \frac{0.61 (1.20) (9.8)}{(45) (0.78) (cos (31.38) + 0.61 (sin (31.38)) )}[/tex]
[tex]B = 0.1744 \ T[/tex]
A horizontal rope is tied to a 57.0 kg kg box on frictionless ice. What is the tension in the rope if: You may want to review (Pages 135 - 137) . Part A The box is at rest? Express your answer as an integer and include the appropriate units. T T = nothing nothing SubmitRequest Answer Part B The box moves at a steady v x vxv_x = 4.20 m/s m/s ? Express your answer as an integer and include the appropriate units. T T = nothing nothing SubmitRequest Answer Part C The box v x vxv_x = 4.20 m/s m/s and a x axa_x = 5.80 m/ s 2 m/s2 ?
Answer:
Explanation:
A ) The surface is frictionless . If the box is at rest , there will be no tension in the rope.
B ) In this case , the box is moving with steady rate of 4.20 m /s . In this case also no force is acting on the box so tension in the rope will be nil.
C ) In this case the box is moving with acceleration of 5.8 m /s² so force on the box = mass x acceleration
= 57 x 5.8
= 330.6 N .
So tension in the rope will be equal to force acting on the rope . Hence tension = 330.6 N .
Final answer:
The tension in the rope tied to a 57.0 kg box on frictionless ice is 0 N when the box is at rest, 0 N when moving at a steady velocity of 4.20 m/s, and 331 N when the box is accelerating at 5.80 m/s².
Explanation:
When considering the tension in the rope connected to the 57.0 kg box on frictionless ice, different scenarios will result in different tensions:
Part A: Box at Rest
In the first scenario where the box is at rest, the tension in the rope will be zero Newtons (0 N). This is because, on frictionless ice, there is no other force opposing the box's motion that the rope would need to counteract.
Part B: Box Moving at Steady Velocity
For the second part, where the box is moving at a constant velocity (4.20 m/s), the tension is still zero Newtons. Even if the box is in motion, the lack of frictional forces on the ice means no net force is required to maintain the box's constant velocity.
Part C: Box Accelerating
In the third case, where the box is moving at 4.20 m/s and also accelerating at 5.80 m/s², we need to apply Newton's second law, F = ma. The tension (T) in the rope is calculated as the product of the mass (m) of the box and its acceleration (a). Thus:
T = m × a = 57.0 kg × 5.80 m/s² = 330.6 N
Therefore, the tension in the rope would be 331 N (rounded to the nearest integer).
A 50 mm diameter steel shaft and a 100 mm long steel cylindrical bushing with an outer diameter of 70 mm have been incorrectly shrink fit together and have to be separated. What axial force, Pa, is needed for this if the diametral interference is 0.005 mm and the coefficient of friction is 0.2? E (steel) = 207 x 103 MPa (N/mm2)
Answer:
The axial force is [tex]P = 15.93 k N[/tex]
Explanation:
From the question we are told that
The diameter of the shaft steel is [tex]d = 50mm[/tex]
The length of the cylindrical bushing [tex]L =100mm[/tex]
The outer diameter of the cylindrical bushing is [tex]D = 70 \ mm[/tex]
The diametral interference is [tex]\delta _d = 0.005 mm[/tex]
The coefficient of friction is [tex]\mu = 0.2[/tex]
The Young modulus of steel is [tex]207 *10^{3} MPa (N/mm^2)[/tex]
The diametral interference is mathematically represented as
[tex]\delta_d = \frac{2 *d * P_B * D^2}{E (D^2 -d^2)}[/tex]
Where [tex]P_B[/tex] is the pressure (stress) on the two object held together
So making [tex]P_B[/tex] the subject
[tex]P_B = \frac{\delta _d E (D^2 - d^2)}{2 * d* D^2}[/tex]
Substituting values
[tex]P_B = \frac{(0.005) (207 *10^{3} ) * (70^2 - 50^2))}{2 * (50) (70) ^2 }[/tex]
[tex]P_B = 5.069 MPa[/tex]
Now he axial force required is
[tex]P = \mu * P_B * A[/tex]
Where A is the area which is mathematically evaluated as
[tex]\pi d l[/tex]
So [tex]P = \mu P_B \pi d l[/tex]
Substituting values
[tex]P = 0.2 * 5.069 * 3.142 * 50 * 100[/tex]
[tex]P = 15.93 k N[/tex]
What is the structure's center of gravity? (b) Calculate the structure's moment of inertia. (c) What is the angular acceleration experienced by the masses? (d) Determine the structures angular velocity after 10 s. (e) After 30 s, the external force is removed. What is the total energy of the system?om/homework-help/questions-and-answers/far-space-5-kg-ball-10-kg-ball-connected-10-m-long-rigid-massless-rod-steady-force-10-n-ap-q50426001
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
If the temperature of this balloon were to decrease suddenly, how would the balloon change?
A. Its mass would increase.
B. Its mass would decrease.
C. Its volume would increase.
D. Its volume would decrease.
Final answer:
The volume of a balloon decreases when its temperature is suddenly lowered, in accordance with Charles's Law, because the gas particles inside the balloon move less vigorously due to a decrease in their average kinetic energy.
Explanation:
When the temperature of a balloon decreases suddenly, according to Charles's Law, the volume of the gas inside the balloon also decreases, assuming that all other conditions, such as pressure and the amount of gas, remain constant. This occurs because a decrease in temperature leads to a decrease in the average kinetic energy of the gas particles, meaning they move less vigorously and occupy less space. Therefore, the correct answer to the question would be D. Its volume would decrease.
Weather balloons are high altitude balloons that are capable of reaching an altitude of 40 km (or 25 miles). They are usually filled with hydrogen or helium gas. One such balloon is filled with gas that is initially at a temperature of 300 K and at atmospheric pressure. This particular balloon can expand to a maximum diameter of 32 m when it reaches an altitude where the pressure and temperature are 0.028 atm and 190 K respectively. Determine the diameter of the balloon at lift off
Answer:
[tex]D_{1}=11.32 m[/tex]
Explanation:
We will need to use the ideal gas equation. The equation is given by:
[tex]PV=nRT[/tex]
P is the pressureV is the volumen is the amount of moleculesR is the ideal gas constantAs we have the same amount of molecules in the initial and final steps, therefore we can do this:
[tex]\frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}}[/tex] (1)
- P(1) is the atmospheric pressure (P(1) = 1 atm) and P(2) is 0.028 atm
- T(1) is 300 K and T(2) is 190 K
- V(1) is the volume of the balloon in the first step, we can consider a spherical geometry so:
[tex]V_{1}=\frac{4}{3}\pi (\frac{D_{1}}{2})^{3}[/tex] (2)
[tex]V_{2}=\frac{4}{3}\pi (\frac{D_{2}}{2})^{3}[/tex] (3)
- D(2) = 32 m
So [tex]V_{2}=17157.3 m^{3}[/tex]
Let's solve the equation (1) for V(1)
[tex]V_{1}=\frac{T_{1}P_{2}V_{2}}{P_{1}T_{2}}[/tex]
[tex]V_{1}=\frac{300*0.028*17157.3}{1*190}[/tex]
[tex]V_{1}=758.53 m^{3}[/tex]
And using the equation (2) we can find D.
[tex]D_{1}=2(\frac{3}{4}V_{1})^{1/3}[/tex]
[tex]D_{1}=2(\frac{3}{4\pi}*758.53)^{1/3}[/tex]
[tex]D_{1}=11.32 m[/tex]
I hope it helps you!
n open rectangular tank is filled to a depth of 2 m with water (density 1000 kg/m3). On top of the water there is a 1 m deep layer of gasoline (density 700 kg/m3). The width of the tank is 1 m (the direction perpendicular to the paper). The tank is surrounded by air at atmospheric pressure. Calculate the total force on the right wall of the tank, and specify its direction. The acceleration of gravity g = 9.81 m/s2.
Answer:
gasoline zone P_net = 6860 Pa
Water zone P_net = 26460 Pa
Force direction is out of tank
Explanation:
The pressure is defined
P = F / A
F = P A
let's write Newton's equation of force
F_net = F_int - F_ext
P_net A = (P_int - P_ext) A
The P_ext is the atmospheric pressure
P_ext = P₀
the pressure inside is
gasoline zone
P_int = P₀ + ρ' g h'
water zone
P_int = P₀ + ρ' g h' + ρ_water h_water
we substitute
Zone with gasoline
P_net = ρ' g h'
P_net = 700 9.8 1
P_net = 6860 Pa
Water zone
P_net = rho’ g h’ + rho_water g h_water
P_net = 6860 + 1000 9.8 2
P_net = 26460 Pa
To find the explicit value of the force, divide by a specific area.
Force direction is out of tank
To understand how to use the principle of superposition in conjunction with the Biot-Savart (or Ampere's) law. From the Biot-Savart law, it can be calculated that the magnitude of the magnetic field due to a long straight wire is given by Bwire=μ0I2πd , where μ0 (=4π×10−7T⋅m/A) is the permeability constant, I is the current in the wire, and d is the distance from the wire to the location at which the magnitude of the magnetic field is being calculated. The same result can be obtained from Ampere's law as well.
The principle of superposition can be used in conjunction with the Biot-Savart (or Ampere's) law to calculate the magnetic field due to a combination of current-carrying wires. Ampere's law is a more general law that relates the magnetic field to the total current passing through a closed loop.
Explanation:The principle of superposition can be used in conjunction with the Biot-Savart (or Ampere's) law to calculate the magnetic field due to a combination of current-carrying wires. The Biot-Savart law allows us to calculate the magnetic field at any point due to an element of current in a wire. By integrating this law over the entire length of the wires and applying the principle of superposition, we can determine the total magnetic field produced by multiple wires.
For example, if we have two parallel wires carrying currents I1 and I2, the total magnetic field at a point due to both wires can be found by summing the individual magnetic fields produced by each wire using the Biot-Savart law.
It is important to note that Ampere's law can also be used to determine the magnetic field produced by current-carrying wires. It is a more general law that relates the magnetic field to the total current passing through a closed loop. The results obtained from Ampere's law are consistent with the Biot-Savart law.
Learn more about Biot-Savart law here:https://brainly.com/question/38811123
#SPJ3
A spring hangs from the ceiling with an unstretched length of x0=0.45 m . A m1=7.9 kg block is hung from the spring, causing the spring to stretch to a length x1=0.74 m.Find the length x2of the spring when a m2=3.3 kg block is hung from the spring. For both cases, all vibrations of the spring are allowed to settle down before any measurements are made.
To find the new length of the spring when a different mass is hung from it, calculate the spring constant using the initial mass, and then use Hooke's Law to solve for the extension caused by the new mass. Add this extension to the original unstretched length of the spring to find the stretched length.
Explanation:The student's question involves finding the new length of a spring x2 when a block with mass m2 of 3.3 kg is hung from it. Given an initial unstretched length (x0) and a stretched length (x1) with block m1, we can solve for the spring constant k using Hooke's Law, which states F = k * x, where F is the force, k is the spring constant, and x is the extension from the natural length of the spring.
First, we calculate the extension caused by m1: extension_m1 = x1 - x0 = 0.74 m - 0.45 m = 0.29 m. The force exerted by m1 is F1 = m1 * g, where g is the acceleration due to gravity (9.81 m/s2). Calculating the force, we get F1 = 7.9 kg * 9.81 m/s2. Then, the spring constant k can be found using k = F1 / extension_m1.
With the value of k, we can find the extension caused by m2: extension_m2 = F2 / k, where F2 = m2 * g. Finally, the length x2 of the spring with m2 hung from it is x2 = x0 + extension_m2.
What can you infer about the prefix "thermo-" from the
word "thermoregulation?"
A
It refers to the brain
reser to the brain
It refers to temperature
It refers to feedback
It refers to nerves and hormones
Answer:
it refers to temperature I did test with the same question and got it correct.
Explanation:
A pursuit spacecraft from the planet Tatooine is attempting to catch up with a Trade Federation cruiser. As measured by an observer on Tatooine, the cruiser is traveling away from the planet with a speed of 0.600c. The pursuit ship is traveling at a speed of 0.800c relative to Tatooine, in the same direction as the cruiser. (a) For the pursuit ship to catch the cruiser, should the velocity of the cruiser relative to the pursuit ship be directed toward or away from the pursuit ship? (b) What is the speed of the cruiser relative to the pursuit ship?
Answer:
a) toward the pursuit
b) 0.384c
Explanation:
a) The velocity of the cruiser relative to the pursuit should be toward the pursuit.
b) To find the speed of the cruiser relative to the pursuit ship you use the following formula:
[tex]u'=\frac{u-v}{1-\frac{uv}{c^2}}[/tex]
v: velocity of the cruiser as seen by Tatooine
u: velocity of the pursuit ship as seen by Tatooine
c: speed of light
By replacing the values of the parameters you obtain:
[tex]u'=\frac{0.800c-0.600c}{1-\frac{(0.800)(0.600)c^2}{c^2}}=0.384c[/tex]
When accounting for relativistic velocity addition, the velocity of the cruiser relative to the pursuit ship should be directed towards the pursuit ship for it to be 'caught up' with. The cruiser's relative speed is about -0.429c from the perspective of the pursuit ship.
Explanation:From the perspective of the observer on Tatooine, the cruiser is moving away from the planet at a speed of 0.600c and the pursuit ship is moving in the same direction at a speed of 0.800c. To figure out these velocities in a relative sense, we must use the theory of relativity, specifically the concept of relativistic velocity addition. In classical physics, velocities simply add or subtract, but this isn't the case when dealing with speeds close to the speed of light.
(a) For the pursuit ship to catch up with the cruiser, the velocity of the cruiser relative to the pursuit ship should be directed towards the pursuit ship.
(b) When solving for the relative speed of the cruiser from the perspective of the pursuit ship, we use the formula for relativistic velocity addition: V'=(v-u)/(1-(uv/c^2)). In this case, v is the speed of the cruiser (0.600c), u is the speed of the pursuit spacecraft (0.800c), and c is the speed of light. Plugging in the values, you will find that the speed of the cruiser relative to the pursuit ship is approximately -0.429c (where the minus sign indicates the cruiser is moving towards the pursuit ship relative to the pursuit ship's frame of reference).
Learn more about Relativistic Velocity Addition here:https://brainly.com/question/34180662
#SPJ12
A current of 4.0 A is maintained in a single circular loop having a circumference of 80 cm. An external magnetic field of 2.0 T is directed so that the angle between the field and the plane of the loop is 20°. Determine the magnitude of the torque exerted on the loop by the magnetic forces acting upon it. Group of answer choices 0.27 N ⋅ m 0.41 N ⋅ m 0.38 N ⋅ m 0.77 N ⋅ m 0.14 N ⋅ m
The torque on a single circular loop in an external magnetic field can be calculated using the formula T = NIAB sin 0. We need to find the area of the loop using the given circumference and then substitute the values of the current, magnetic field strength, area, and angle into the formula to find the torque.
Explanation:To calculate the magnitude of the torque exerted on the circular loop by the magnetic forces, we need to use the formula for torque on a current-carrying loop in a uniform magnetic field, which is T = NIAB sin 0, where N represents the number of turns in the loop, I represents the current, A represents the area of the loop, B represents the magnetic field strength, and 0 represents the angle between the field and the plane of the loop.
In this case, since there is only a single loop, N is equal to 1. The current I is given as 4.0 A. The magnetic field strength B is given as 2.0 T. The angle 0 is 20°. The area of the loop A can be calculated from the circumference given as 80 cm or 0.8 m. Recall that the circumference of a circle is given by the formula 2πr. If the circumference C is given by 80 cm or 0.8 m, the radius r can be found by dividing the circumference by 2π. Once you've found the radius r, the area of the circle is πr².
Learn more about Torque on a Circular Loop here:https://brainly.com/question/15076746
#SPJ12
The correct answer is "0.14 N.m". The final torque value is 0.14 N·m on the loop.
To determine the torque exerted on the loop, we use the formula:
Torque (τ) = nIBA sin(θ)
First, find the area (A) of the loop. The circumference (C) of the loop is given by 80 cm, which is 0.80 m. From the circumference, we can find the radius (r):
C = 2πr -> r = C / 2π = 0.80 m / 2π ≈ 0.127 m
Now, calculate the area (A) of the loop:
A = πr² = π(0.127 m)² ≈ 0.0507 m²
Next, calculate the torque:
τ = nIBA sin(θ) = 1 × 4.0 A × 2.0 T × 0.0507 m² × sin(20°)
Using the value of sin(20°) ≈ 0.342:
τ ≈ 1 × 4.0 A × 2.0 T × 0.0507 m² × 0.342 ≈ 0.14 N · m
Therefore, the magnitude of the torque exerted on the loop is 0.14 N·m.
What is the unit for force?
Answer:
N / NEWTONS
Explanation:
Named after Isaac Newton, the man who discovered gravity
Answer:
newtons and the symbol is N
Explanation:
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal equilibrium at 10.0°C. Two metallic blocks are placed into the water. One is a 75.0-g piece of copper at 60.0°C. The other has a mass of 70.0 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20.0°C.
Determine the specific heat of the unknown sample.
Answer:
The specific heat of the unknown sample is 1822.14 J/kg.k
Explanation:
Given;
mass of aluminum calorimeter, [tex]M_c[/tex] = 100 g
mass of water, [tex]M_w[/tex] = 250 g
stabilizing temperature of water-calorimeter, ΔT = 10.0°C
mass of copper, [tex]M_c_u[/tex] = 75 g
initial temperature of copper, [tex]T_{cu}[/tex] = 60.0°C
mass of unknown sample, [tex]M_u[/tex] = 70.0 g
initial temperature of unknown sample, [tex]T_u[/tex] = 100°C.
The final temperature of the entire system, t = 20.0°C
Apply the principle of conservation of energy;
energy used to heat water and calorimeter is equal to energy released by copper and unknown sample.
[tex]Q = M_{cu}C_{cu} \delta T_{cu} + M__{u}C{_u} \delta T_u[/tex]
where;
Q is energy used to heat water and calorimeter
[tex]C_c_u[/tex] is the specific heat capacity of copper
[tex]C_u[/tex] is the specific heat capacity of unknown sample
Make [tex]C_u[/tex] subject of the formula;
[tex]C_u = \frac{Q-M_c_u C_c_u \delta T_c_u}{M_u \delta T_u} \\\\C_u = \frac{(C_wM_w +C_cM_c)\delta T-M_c_u C_c_u \delta T_c_u}{M_u \delta T _u} \\\\C_u = \frac{(4186*0.25 +900*0.1)10-0.075* 387 *40}{0.07* 80} \\\\C_u = \frac{11365 -1161}{5.6} \\\\C_u = 1822.14 \ J/kg.k[/tex]
Therefore, the specific heat of the unknown sample is 1822.14 J/kg.k
The specific heat of the unknown sample is;
c_u = 1823 J/Kg.k
We are given;
Mass of Aluminum calorimeter; m_c = 100 g = 0.1 kg
Mass of water; m_w = 250 g = 0.25 kg
Initial temperature of Calorimeter and water; T_c = T_w = 10°C = 283 K
Mass of Copper; m_cu = 75 g = 0.075 kg
Initial temperature of Copper; T_cu = 60°C = 333 K
Mass of unknown sample; m_u = 70 g = 0.07 kg
Initial temperature of unknown substance = 100°C = 373 K
Final temperature of system; T_f = 20°C = 293 K
Formula for quantity of heat is;
Q = mcΔt
where;
m is mass
c is specific heat capacity
Δt is change in temperature;
For the calorimeter and water , we have;
Q_cw = (m_w*c_w + m_c*c_c)Δt
Specific heat capacity of water is; c_w = 4186 J/Kg.K
Specific heat capacity of aluminium is 900 J/Kg.K
Thus;
Q_cw = ((0.25 * 4186) + (0.1 * 900))(293 - 283)
Q_cw = 11365 J
For the unknown sample and the piece of copper;
Q_cu,u = (m_cu*c_cu*Δt) + (m_u*c_u*Δt)
specific heat capacity of copper; c_cu = 385 J/Kg.K
Thus;
Q_cu,u = (0.075*385*(333 - 293)) + (0.07*c_u*(373 - 293))
Q_cu,u = 1155 + 5.6c_u
From conservation of energy principle;
Q_cw = Q_cu,u
Thus;
11365 = 1155 + 4.2c_u
c_u = (11365 - 1155)/5.6
c_u = 1823 J/Kg.k
Read more at; https://brainly.com/question/16588023
the force that is exerted when a shopping cart is pushed. the forces that causes a metal ball to move toward a magnet
Answer:
The force that is exerted when a shopping cart is pushed is a type of push force, supplied by the muscles of the cart pusher's body.
The forces that causes a metal ball to move toward a magnet is a type of pull force that is as a result of the magnetic field forces.
Explanation:
Forces are divided into push forces that tends to accelerate a body away from the source of the force, and pull forces that accelerates the body towards the force source.
Examples of push forces includes pushing a cart, pushing a table, repulsion of two similar poles of a magnet etc. Examples of pull forces includes a attractive force between two dissimilar poles of a magnet, pulling a load by a rope, a dog pulling on a leash etc.
Answer:
The force that is exerted when a shopping cart is pushed:
-Contact
The force that causes a metal ball to move toward a magnet:
-Noncontact
A rod of 2.0-m length and a square (2.0 mm X 2.0 mm) cross section is made of a material with a resistivity of 6.0 E–8 Ohm meter. If a potential difference of 0.50 V is placed across the ends of the rod, at what rate is heat generated in the rod? *
Answer:
8.33*10^-16 Watt
Explanation:
Given that
Length of the rod, l = 2 m,
Area of the rod, A = 2 x 2 mm² = 4*10^-6 m²
resistivity of the rod, p = 6*10^-8 ohm metre,
Potential difference of the rod, V = 0.5 V
Let R be the resistance of the rod, then
R = p * l / A
R = (6*10^-8 * 2) / (4*10^-6)
R = 3*10^14 ohm
Heat generated per second = V² / R Heat = (0.5)² / (3*10^14)
Heat = 0.25 / 3*10^14
Heat = 8.33*10^-16 Watt
Therefore, the rate at which heat is generated is 8.33*10^-16 Watt
In a laundromat, during the spin-dry cycle of a washer, the rotating tub goes from rest to its maximum angular speed of 2.2 rev/s in 8.8 s. You lift the lid of the washer and notice that the tub accelerates and comes to a stop in 20.0 s. Assuming that the tub rotates with constant angular acceleration while it is starting and stopping, determine the total number of revolutions undergone by the tub during this entire time interval.
Answer:
[tex]n_{T} = 31.68\,rev[/tex]
Explanation:
The angular acceleration is:
[tex]\ddot n_{1} = \frac{2.2\,\frac{rev}{s} -0\,\frac{rev}{s} }{8.8\,s}[/tex]
[tex]\ddot n_{1} = 0.25\,\frac{rev}{s^{2}}[/tex]
And the angular deceleration is:
[tex]\ddot n_{2} = \frac{0\,\frac{rev}{s}-2.2\,\frac{rev}{s} }{20\,s}[/tex]
[tex]\ddot n_{2} = -0.11\,\frac{rev}{s^{2}}[/tex]
The total number of revolutions is:
[tex]n_{T} = n_{1} + n_{2}[/tex]
[tex]n_{T} = \frac{\left(2.2\,\frac{rev}{s} \right)^{2}-\left(0\,\frac{rev}{s} \right)^{2}}{2\cdot \left(0.25\,\frac{rev}{s^{2}} \right)} + \frac{\left(0\,\frac{rev}{s} \right)^{2}-\left(2.2\,\frac{rev}{s} \right)^{2}}{2\cdot \left(-0.11\,\frac{rev}{s^{2}} \right)}[/tex]
[tex]n_{T} = 31.68\,rev[/tex]
What measurement stays the same at any point in a parallel circuit?
A. current
B. voltage
C. resistivity
D. power
Answer:Voltage
Explanation:
Voltage stays the same at any point in a parallel circuit
7. Which one of the following statements best describes the concept of the electric field? a) The electric field is a vector quantity that is the reaction force of electrons. b) The electric field at each point is the potential energy of a test charge divided by the amount of the test charge. c) The electric field is a distribution of vectors at points due to the presence of one or more charged objects. d) The electric field is a scalar quantity related to the total amount of charge on one or more charged objects. e) The electric field is a scalar field, which has a magnitude at each given point, similar to the temperature or pressure field.
Answer:(c)
Explanation:
The electric field is a distribution is a distribution of vectors at point due to the presence of one or more charged objects.
If two or more charged particles are present in a system then the net electric field at a point is the vector addition of all the charges.
For example if a negative and a positive charge is present then electric field of negative charge is towards the negative charge while it is away for positive charge.
option d and e are wrong as Electric field is a vector quantity