Each milligram of glucose has the same amount of energy available to do work. The series B test tubes produced more bacteria per milligram of glucose than did the series A test tubes. Assuming that each bacterium produced requires a certain amount of energy, which test tube should contain some products of glucose that still contain some "unused" energy?

Answers

Answer 1

Answer:

The series A test tube has some left amount of glucose left in it.

Explanation:

Let's assume that a fixed amount of glucose is synthesized, for the fixed quantity the bacteria produced in A and B be x and y respectively,

Therefore, the condition on x and y is,    y > x  as the no. of bacteria present in B is greater.

As a result B would require a greater amount of energy for its functioning, these energy would be derived from the already fixed amount of glucose present.

A test tube would also require the energy for its x number of bacteria, but it is less than that of B.

Therefore, there would be some unused glucose left in Test Tube Series A which has unused energy.


Related Questions

You throw a ball of mass 1 kg straight up. You observe that it takes 2.2 s to go up and down, returning to your hand. Assuming we can neglect air resistance, the time it takes to go up to the top is half the total time, 1.1 s. Note that at the top the momentum is momentarily zero, as it changes from heading upward to heading downward.

(a) Use the momentum principle to determine the speed that the ball had just AFTER it left your hand.
vinitial = ?? m/s

(b) Use the Energy Principle to determine the maximum height above your hand reached by the ball.
h = ?? m

Answers

Answer:

10.791 m/s

5.93505 m

Explanation:

m = Mass of ball

[tex]v_f[/tex] = Final velocity

[tex]v_i[/tex] = Initial velocity

[tex]t_f[/tex] = Final time

[tex]t_i[/tex] = Initial time

g = Acceleration due to gravity = 9.81 m/s²

From the momentum principle we have

[tex]\Delta P=F\Delta t[/tex]

Force

[tex]F=mg[/tex]

So,

[tex]m(v_f-v_i)=mg(t_f-t_i)\\\Rightarrow v_i=v_f-g(t_f-t_i)\\\Rightarrow v_i=0-(-9.81)(1.1-0)\\\Rightarrow v_i=10.791\ m/s[/tex]

The speed that the ball had just after it left the hand is 10.791 m/s

As the energy of the system is conserved

[tex]K_i=U\\\Rightarrow \dfrac{1}{2}mv_i^2=mgh\\\Rightarrow h=\dfrac{v_i^2}{2g}\\\Rightarrow h=\dfrac{10.791^2}{2\times 9.81}\\\Rightarrow h=5.93505\ m[/tex]

The maximum height above your hand reached by the ball is 5.93505 m

The speed at which the ball had just after it left hand is 10.791 m/s and maximum height above your hand reached by the ball is 5.94 m.

What is momentum principal?

When the two objects collides, then the initial collision of the two body is equal to the final collision of two bodies by the principal of momentum.

The net force using the momentum principle can be given as,

[tex]F_{net}=\dfrac{\Delta P}{\Delta t}[/tex]

Momentum of an object is the force of speed of it in motion. Momentum of a moving body is the product of mass times velocity. Therefore, the above equation for initial and final velocity and time can be written as,

[tex]F_{net}=\dfrac{m(v_f-v_i)}{(t_f-t_i)}[/tex]

(a) The speed that the ball had just AFTER it left your hand-

The mass of the ball is 1 kg, and it takes 2.2 s to go up and down. The net force acting on the body is mass times gravitational force.

Therefore, the above equation can be written as,

[tex]mg=\dfrac{m(v_f-v_i)}{(t_f-t_i)}\\g=\dfrac{(v_f-v_i)}{(t_f-t_i)}\\[/tex]

As the final velocity is zero and initial time is also zero. Therefore,

[tex](-9.81)=\dfrac{(0-v_i)}{(1.1-0)}\\v_i=10.791 \rm m/s[/tex]

(b) The maximum height above your hand reached by the ball-

Using the energy principle, we can equate the kinetic energy of the system to the potential energy of the system as,

[tex]\dfrac{1}{2}mv_i^2=mgh\\\dfrac{1}{2}(10.791)^2=(9.81)h\\h=5.94\rm m[/tex]

Thus, the speed at which the ball had just after it left hand is 10.791 m/s and maximum height above your hand reached by the ball is 5.94 m.

Learn more about the momentum here;

https://brainly.com/question/7538238

An automatic coffee maker uses a resistive heating element to boil the 2.4 kg of water that was poured into it at 21 °C. The current delivered to the coffee pot is 8.5 A when it is plugged into a 120 V electrical outlet. If the specific heat capacity of water is 4186 J/kgC° , approximately how long does it take to boil all of the water?

Answers

Answer:

Explanation:

The expression for the calculation of the enthalpy change of a process is shown below as:-

[tex]\Delta H=m\times C\times \Delta T[/tex]

Where,  

[tex]\Delta H[/tex]

is the enthalpy change

m is the mass

C is the specific heat capacity

[tex]\Delta T[/tex]

is the temperature change

Thus, given that:-

Mass of water = 2.4 kg

Specific heat = 4.18 J/g°C

[tex]\Delta T=100-21\ ^0C=79\ ^0C[/tex]

So,  

[tex]\Delta H=2.4\times 4.18\times 79\ J=792.52\ kJ[/tex]

Heat Supplied [tex]Q=VIt[/tex]

where [tex]i=current[/tex]

[tex]V=Voltage[/tex]

[tex]8.5\times 120\times t=2.4\times 4186\times 79[/tex]

[tex]t=778.10 s[/tex]

 

Final answer:

To determine the time required to boil the water in a coffee maker, calculate the power using P = IV, then the heat needed to raise the water temperature to its boiling point with Q = mcΔT, and finally divide Q by P to find the time.

Explanation:

The question deals with calculating how long it takes an automatic coffee maker to boil 2.4 kg of water using a resistive heating element. The initial temperature of the water is 21 °C, and we are given that the coffee maker is plugged into a 120 V electrical outlet with a current of 8.5 A. The specific heat capacity of water is 4186 J/kg°C. To find the time to boil the water, we'll first calculate the power delivered by the heating element using the relationship P = IV, where P is power, I is current, and V is voltage. Once power is known, we can use the equation Q = mcΔT to find the heat Q required to raise the temperature of water to its boiling point (100 °C), where m is water's mass, c is the specific heat capacity, and ΔT is the change in temperature. Finally, we'll divide quantified heat Q by the power P to find the time t: t = Q/P.

You are unloading a refrigerator from a delivery van. The ramp on the van is 5.0 m long, and its top end is 1.4 m above the ground. As the refrigerator moves down the ramp, you are on the down side of the ramp trying to slow the motion by pushing horizontally against the refrigerator with a force of 270N .


Part A


How much work do you do on the refrigerator during its trip down the ramp?


W = ???

Answers

Final answer:

The work done on the refrigerator during its trip down the ramp is 1350 J.

Explanation:

To calculate the work done while unloading the refrigerator, we need to determine the displacement of the refrigerator and the force applied.

The displacement is given by the length of the ramp, which is 5.0 m.

The force applied is given as 270 N.

To calculate the work done, we use the formula:

Work = Force x Displacement x Cosine(angle)

In this case, the angle is 0 degrees since the force is applied horizontally.

Therefore, the work done on the refrigerator is:

Work = 270 N x 5.0 m x Cos(0°) = 1350 J.

Which of the following best describes a substance in which the temperature remains constant while at the same time it is experiencing an inward heat flow?
a. gasb. liquidc. solidd. substance undergoing a change of state

Answers

Answer:

The right option is (d) substance undergoing a change of state

Explanation:

Latent Heat: Latent heat is the heat required to change the state of a substance without change in temperature. Latent heat is also known as hidden heat because the heat is not visible. The unit is Joules (J).

Latent heat is divided into two:

⇒ Latent Heat of fusion

⇒ Latent Heat of vaporization.

Latent Heat of fusion: This is the heat  energy required to convert a substance from its solid form to its liquid form without change in temperature. E.g (Ice) When ice is heated, its temperature rise steadily until a certain temperature is reached when the solid begins to melts.

Latent Heat of vaporization: This is the heat required to change a liquid substance to vapor without a change in temperature. The latent heat depend on the mass of the liquid and the nature of the liquid. E.g When water is heated from a known temperature  its boiling point (100°C) When more heat is supplied to its boiling temperature, it continue to boil without a change in temperature.

From The above, Latent heat brings about  a change of state of a substance at a steady temperature.

The right option is (d) substance undergoing a change of state

The substance that best represents a temperature remaining constant despite an inward heat flow is one that is undergoing a change of state, such as during the melting of ice or boiling of water. So, the correct option is D.

The best description of a substance in which the temperature remains constant while it is experiencing an inward heat flow is a substance undergoing a change of state (option d). This occurs during a process called phase transition.

Here's an example: when ice melts into water, it absorbs heat from the surroundings but the temperature stays constant at 0 degrees Celsius until all of the ice has melted.

Similarly, when water is boiling, its temperature holds steady at 100 degrees Celsius until all the water has transitioned into steam, despite the continued input of heat.

Learn more about Change of State here:

https://brainly.com/question/2273588

#SPJ3

A cart of mass 250 g is place on a frictionless horizontal air track. A spring having a spring constant of 9.5 N/m is attached between the cart and the left end o f the track. If the cart is displaced 4.5 cm from its equilibrium position, find: a) The period at which it oscillates.[1.0 s] b) Its maximum speed.[0.28 m/s] c) Its speed when it is located 2.0 cm from its equilibrium position.[0.25 m/s]

Answers

Answer:

a) [tex]T=1.02 s[/tex]

b) [tex]v=0.28\frac{m}{s}[/tex]

c) [tex]v=0.25\frac{m}{s}[/tex]

Explanation:

a) The period is defined as:

[tex]T=\frac{2\pi}{\omega}[/tex]

[tex]\omega[/tex] is the natural frequency of the system, in this case is given by:

[tex]\omega=\sqrt{\frac{k}{m}}\\\omega=\sqrt{\frac{9.5\frac{N}{m}}{250*10^{-3}kg}}\\\omega=6.16\frac{rad}{s}[/tex]

Now, we calculate the period:

[tex]T=\frac{2\pi}{6.16\frac{rad}{s}}\\T=1.02 s[/tex]

b) According to the law of conservation of energy, we have:

[tex]\frac{kx^2}{2}=\frac{mv^2}{2}\\v=\sqrt{\frac{kx^2}{m}}\\v=\sqrt{\frac{(9.5\frac{N}{m})(4.5*10^{-2}m)^2}{250*10^{-3}kg}}\\v=0.28\frac{m}{s}[/tex]

c) In this case, we have:

[tex]U_i=U_f+K_f\\\frac{kx_i^2}{2}=\frac{kx_f^2}{2}+\frac{mv^2}{2}\\v=\sqrt{\frac{k(x_i^2-x_f^2)}{m}}\\v=\sqrt{\frac{9.5\frac{N}{m}((4.5*10^{-2}m)^2-(2*10^{-2}m)^2)}{250*10^{-3}kg}}\\v=0.25\frac{m}{s}[/tex]

The maximum speed is; 0.28 m/s

The speed when it is located 2.0 cm from its equilibrium position is; 0.25 m/s

What is the speed from the equilibrium position?

A) Formula for period is;

T = √(2π/ω)

where ω which is the natural angular frequency

ω = √(k/m)

we are given;

k = 9.5 N/m

m = 250 g = 0.25 kg

x = 4.5 cm = 0.045 m

Thus;

ω = √(9.5/0.25)

ω = 6.1 rad/s

Thus;

Period is; T = √(2π/6.1)

T = 1.02 s

B) From law of conservation of energy;

maximum speed is;

v = √(kx²/m)

v = √(9.5 * 0.045²/0.25)

v = 0.28 m/s

C) We are now given;

x₁ = 4.5cm = 0.045 m

x₂ = 2 cm = 0.02 m

Thus, speed is gotten from;

v = √((k(x₁ - x₂)/m)

v = √((9.5(0.045 - 0.02)/0.25)

v = 0.25 m/s

Read more about speed at; https://brainly.com/question/26114128

An electromagnetic wave is transporting energy in the negative y direction. At one point and one instant the magnetic field is in the positive x direction. The electric field at that point and instant is:Why is (D) the answer? I thought it's (C)A) positive y directionB) negative y directionC) positive z directionD) negative z direction

Answers

Answer:negative Z direction

Explanation:

It is given that EM wave is travelling in negative y direction i.e. -[tex]\hat{j}[/tex]

Magnetic Field is in positive x direction i.e. [tex]\hat{i}[/tex]

We know that Electric field and magnetic field are perpendicular to each other and they are mutually perpendicular to direction of wave propagation.

Mathematically if Electric field is in negative z direction it will yield the direction of wave propagation

[tex]=(-\hat{k})\times \hat{i}[/tex]

[tex]=-\hat{j}[/tex]                            

17 of 24 Constants In an experiment to simulate conditions within an automobile engine, 0.165 mol of air at a temperature of 700 K and a pressure of 3.40×106 Pa is contained in a cylinder of volume 280 cm3 . Then 690 J of heat is transferred to the cylinder. Part APart complete If the volume of the cylinder is constant while the heat is added, what is the final temperature of the air? Assume that the air is essentially nitrogen gas. T = 901 K Previous Answers Correct Part B If instead the volume of the cylinder is allowed to increase while the pressure remains constant, find the final temperature of the air.

Answers

Answer:

a. T₂ = 901.43 ° K

b. T₂ = 843.85 ° K

Explanation:

Given

η = 0.165 mol , Q = 690 J , V = 280 cm³ , P = 3.40 x 10 ⁶ Pa , T₁ = 700 ° K

Using the equation that describe the experiment of heat

Q = η * Cv * ΔT

a.

Nitrogen   Cv =  20.76 J / mol ° K  

ΔT = T₂ - T₁

T₂ = [ Q / ( η * Cv) ] + T₁

T₂ = [ 690 J / ( 0.165 mol * 20.76 J / mol ° K ) ] + 700 ° K

T₂ = 901.43 ° K

b.

Nitrogen   Cp = 29.07 J / mol ° K

T₂ = [ Q / ( η * Cv) ] + T₁

T₂ = [ 690 J / ( 0.165 mol * 29.07 J / mol ° K ) ] + 700 ° K

T₂ = 843.85 ° K

The Final temperature of the air when the volume of the cylinder is constant is 700 K.

To find the final temperature of the air when the volume of the cylinder is constant, we can use the ideal gas law equation:

P₁V₁/T₁ = P₂V₂/T₂

Since the volume is constant, V₁ = V₂.

The initial pressure (P₁) and temperature (T₁) are given, and the final pressure (P₂) is also given (3.40×106 Pa).

We can rearrange the equation to solve for T₂:

T₂ = (P₂T₁) / P₁

Substituting the given values, we have:

T₂ = (3.40×106 Pa * 700 K) / (3.40×106 Pa)

T₂ = 700 K

So, the final temperature of the air is 700 K when the volume of the cylinder is constant.

Learn more about Final temperature here:

https://brainly.com/question/35133820

#SPJ6

Why would a plume of solid silicate rock rising slowly from deep in the mantle begin melting as it neared the base of the lithosphere?
A. The rock heats up and expands at lower pressures, causing it to liquefy
B. Temperatures remain high as lowered pressures decrease melting temperatures.
C. The lowered pressures cause rapid heat loss accompanied by melting.
D. None of the above

Answers

Answer:

B. Temperatures remain high as lowered pressures decrease melting temperatures.

Explanation:

Rocks , like ice , contracts on melting so , their melting point decreases on decrease in pressure . When hot solid rocks are pushed towards the surface of the earth, due to decrease in pressure , their melting point decreases , so the solid rocks starts melting without any addition of  heat . Their  present temperature becomes more than their melting point.

To develop muscle tone, a woman lifts a 2.50 kg weight held in her hand. She uses her biceps muscle to flex the lower arm through an angle of 60.0°.What is the angular acceleration (in rad/s2) if the weight is 24.0 cm from the elbow joint, her forearm has a moment of inertia of 0.250 kg · m2, and the net force she exerts is 550 N at an effective perpendicular lever arm of 2.10 cm? (Ignore gravity)How much work (in J) does she do?

Answers

To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

[tex]\tau = Fr[/tex]

Where,

F = Force

r = Radius

Replacing we have that,

[tex]\tau = Fr[/tex]

[tex]\tau = 21cm (\frac{1m}{100cm})* 550N[/tex]

[tex]\tau = 11.55Nm[/tex]

The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore

[tex]I = 0.25Kg\cdot m^2 +(2.5kg)(0.24m)^2[/tex]

[tex]I = 0.394kg\cdot m^2[/tex]

Finally, angular acceleration is a result of the expression of torque by inertia, therefore

[tex]\tau = I\alpha \rightarrow \alpha = \frac{\tau}{I}[/tex]

[tex]\alpha = \frac{11.55}{0.394}[/tex]

[tex]\alpha = 29.3 rad/s^2[/tex]

PART B)

The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians [tex](\pi / 3)[/tex], therefore

[tex]W = \tau \theta[/tex]

[tex]W = 11.5* \frac{\pi}{3}[/tex]

[tex]W = 12.09J[/tex]

Question:

Jane, looking for Tarzan, is running at top speed (4.5 m/s) and grabs a vine hanging vertically from a tall tree in the jungle.

How high can she swing upward?

Energy Conservation

According to the conservation of the mechanical energy the total energy remains constant of the system, therefore the kinetic energy of the system will get converted into the potential energy of the system.

Answers

Answer:

She can swing 1.0 m high.

Explanation:

Hi there!

The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

And the potential energy:

PE = m · g · h

Where:

m = mass of Jane.

v = velocity.

g = acceleration due to gravity (9.8 m/s²).

h = height.

Then:

ME = KE + PE

Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:

ME = KE + PE      (PE = 0)

ME = KE

ME = 1/2 · m · (4.5 m/s)²

ME = m · 10.125 m²/s²

When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:

ME = KE + PE      (KE = 0)

ME = PE

ME = m · 9.8 m/s² · h

Then, equallizing both expressions of ME and solving for h:

m · 10.125 m²/s² =  m · 9.8 m/s² · h

10.125 m²/s² / 9.8 m/s²  = h

h = 1.0 m

She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).

A backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pres- sure at the bottom of the pool. (b) Two persons with com- bined mass 150 kg enter the pool and float quietly there. No water overflows. Find the pressure increase at the bottom of the pool after they enter the pool and float.

Answers

Answer

given,

diameter = 6 m

depth = h = 1.5 m

Atmospheric pressure = P₀ = 10⁵ Pa

a) absolute pressure

P = P₀ + ρ g h

P = 10⁵ + 1000 x 10 x 1.5

P = 1.15 x 10⁵ Pa

b) When two person enters into the pool

mass of the two person = 150 Kg

    weight of water level displaced is equal to the weight of person

    ρ V g = 2 m g

     [tex]V = \dfrac{2 m}{\rho}[/tex]

     [tex]V = \dfrac{2\times 150}{1000}[/tex]

            V = 0.3 m³

Area of pool = [tex]\dfrac{\pi}{4}d^2[/tex]

                    =[tex]\dfrac{\pi}{4}\times 6^2[/tex]

                    = 28.27 m²

height of the water rise

        [tex]h = \dfrac{V}{A}[/tex]

        [tex]h = \dfrac{0.3}{28.27}[/tex]

               h = 0.0106 m

pressure increased

           P = ρ g h

           P = 1000 x 10 x 0.0106

           P = 106.103 Pa

a. the absolute pressure at the bottom of the pool is approximately 116.02 kPa.

b. the pressure increase at the bottom of the pool after the persons enter and float is approximately 0.147 kPa.

To find the absolute pressure at the bottom of the pool, we can use the hydrostatic pressure formula:

(a) Absolute pressure at a depth in a fluid:

P=P_0 +ρ⋅g⋅h

Where:

P is the absolute pressure at the given depth.

P_0 is the atmospheric pressure (which we'll assume to be 1 atm, or approximately 101.3 kPa).

ρ is the density of the fluid (water), which is about 1000 kg/m³.

g is the acceleration due to gravity, approximately 9.81 m/s².

h is the depth below the surface.

Given that the diameter of the pool is 6.00 m, the radius (r) is 3.00 m, and the depth (h) is 1.50 m, we can find the pressure at the bottom of the pool:

P=101.3kPa+(1000kg/m³)⋅(9.81m/s²)⋅(1.50m)

Solve for P:

P≈101.3kPa+14,715Pa≈116,015Pa≈116.02kPa

So, the absolute pressure at the bottom of the pool is approximately 116.02 kPa.

(b) To find the pressure increase at the bottom of the pool after two persons with a combined mass of 150 kg enter and float, we need to consider the additional weight of the water displaced by the persons. This additional weight will create an increase in pressure at the bottom of the pool.

The buoyant force (Fb) on an object submerged in a fluid is given by Archimedes' principle:

Fb =ρ⋅V⋅g

Where:

Fb is the buoyant force.

ρ is the density of the fluid (water), which is 1000 kg/m³.

V is the volume of water displaced, which is equal to the volume of the submerged part of the persons.

g is the acceleration due to gravity (9.81 m/s²).

The volume of water displaced is equal to the volume of the persons submerged, which is given by the cross-sectional area (A) of the pool base times the depth (h) to which they are submerged:

V=A⋅h

A=π⋅r^2

Given that the radius (r) is 3.00 m and the depth (h) is 1.50 m, we can calculate the area and then the volume:

A=π⋅(3.00m)^2 ≈28.27m²

V=28.27m²⋅1.50m≈42.41m³

Now, we can calculate the buoyant force:

Fb=(1000kg/m³)⋅(42.41m³)⋅(9.81m/s²)≈416,068N

Since pressure is force per unit area, we need to calculate the additional pressure (ΔP) at the bottom of the pool:

ΔP= Fb/A

​A=π⋅(3.00m)^2 ≈28.27m²

ΔP= 416,068N / 28.27m² ≈14,699Pa≈0.147kPa

So, the pressure increase at the bottom of the pool after the persons enter and float is approximately 0.147 kPa.

Learn more about Pressure at the bottom of a pool here:

https://brainly.com/question/29650777

#SPJ12

An object is 12 m long, 0.65 m wide, and 13 cm high. Calculate the volume of this object.

Answers

The volume corresponds to the measure of the space occupied by a body. From the given dimensions we can intuit that we are looking to find the Volume of an Cuboid, that is, an orthogonal rectangular prism, whose faces form straight dihedral angles.

Mathematically the volume of this body is given as

[tex]V = lWh[/tex]

Where,

L = Length

W = Width

H = High

[tex]V = (12)(0.65)(13*10^{-2})[/tex]

[tex]V = 1.014m^3[/tex]

Note: The value given for the height was in centimeters, so it was transformed to meters.

How long does it take a 750-W coffeepot to bring to a boil 0.85L of water initially at 15?C?

Assume that the part of the pot which is heated with the water is made of 360 g of aluminum, and that no water boils away. Ignore the heat loss to the surrounding environment.

The value of specific heat for water is 4186 J/kg?C? and for aluminum is 900 J/kg?C?.

Answers

Final answer:

To calculate the time it takes for the coffee pot to bring the water to a boil, we need to determine the amount of heat required and use the power of the coffee pot. By calculating the heat required for both the water and the aluminum pot, and using the power of the coffee pot, we can determine that it takes approximately 96.077 seconds for the coffee pot to bring the water to a boil.

Explanation:

To determine how long it takes for the coffee pot to bring the water to a boil, we need to calculate the amount of heat required. The heat required to raise the temperature of the water from 15?C to 100?C is given by the formula Q = mcΔT, where Q is the heat, m is the mass, c is the specific heat, and ΔT is the change in temperature. Using the values given, we can calculate the heat required.

The heat required for the water is Q = (0.85 kg)(4186 J/kg?C)(100?C - 15?C) = 43707.5 J. The heat required for the aluminum coffee pot is Q = (0.36 kg)(900 J/kg?C)(100?C - 15?C) = 28350 J. Adding the two heats together gives us a total heat of 72057.5 J.

The power of the coffee pot is given as 750 W. Power is defined as the rate at which work is done or the rate at which energy is transferred. So, we can use the formula P = E/t, where P is power, E is energy, and t is time. Rearranging the formula, we can solve for t:

t = E/P = 72057.5 J / 750 W = 96.077 seconds.

Learn more about Time required for the coffee pot to bring water to a boil here:

https://brainly.com/question/30260910

#SPJ12

What two elements are used with other metals to lower their melting points?

A) antimony and carbon
B) bismuth and carbon
C) antimony and bismuth
D) arsenic and antimony

Answers

Answer:

C) antimony and bismuth

Explanation:

Answer:

its C

Explanation:

A 2.3 kg block executes SHM while attached to a horizontal spring of spring constant 150 N/m. The maximum speed of the block as it slides on a horizontal frictionless surface is 2.3 m/s. What are (a) the amplitude of the block's motion, (b) the magnitude of its maximum acceleration, and (c) the magnitude of its minimum acceleration? (d) How long does the block take to complete 4.1 cycles of its motion?

Answers

Answer

given,

mass of block = m = 2.3 Kg

spring constant = k = 150 N/m

speed = 2.3 m/s

a) we know,

   [tex]\omega = \sqrt{\dfrac{k}{m}}[/tex]

   [tex]\omega = \sqrt{\dfrac{150}{2.3}}[/tex]

             ω = 8.08 rad/s

      v = A ω

      2.3 = A x 8.08

         A = 0.285 m

b) maximum acceleration

        a = A ω²

        a = 0.285 x 8.08²

        a = 18.58 m/s²

c) acceleration is minimum at mean position the minimum value of acceleration is zero.

d) time period

   [tex]T = \dfrac{2\pi}{\omega}[/tex]

   [tex]T = \dfrac{2\pi}{8.08}[/tex]

            T = 0.778 s

        t = 4.1 x 0.7778

        t = 3.188 s

A projectile of mass m1 moving with speed v1 in the +x direction strikes a stationary target of mass m2 head-on. The collision is elastic. Use the Momentum Principle and the Energy Principle to determine the final velocities of the projectile and target, making no approximations concerning the masses. (Use the following as necessary: m1, m2, and v1.)

Answers

Using Momentum Principle and the Energy Principle to determine the final velocities of the projectile and target are respectively;

v1 = (m1•u1 - m2•u1)/(m1 + m2)

v1 = (m1•u1 - m2•u1)/(m1 + m2)v2 = (m1•u1 + m1•u2)/(m1 + m2)

Let us denote the following;

Mass of projectile; m1

Mass of target; m2

Initial velocity of projectile; u1

Final velocity of projectile; v1

Initial velocity of target; u2 = 0 m/s

Final velocity of target; v2

From conservation of momentum, we have;

(m1•u1) + (m2•u2) = (m1•v1) + (m2•v2)

Plugging in the relevant values;

(m1•u1) + (m2•0) = (m1•v1) + (m2•v2)

(m1•u1) = (m1•v1) + (m2•v2) - - - (eq 1)

From energy principle, we have;

u1 + v1 = u2 + v2

Thus;

Since u2 is zero, then we have;

u1 + v1 = v2 - - - (eq 2)

Put (u1 + v1) for v2 in eq 1 to get;

(m1•u1) = (m1•v1) + (m2(u1 + v1))

(m1•u1) = (m1•v1) + (m2•u1 + m2•v1) - - - (eq 3)

Let us make v1 the subject;

m1•u1 - m2•u1 = m1•v1 + m2•v1

v1(m1 + m2) = m1•u1 - m2•u1

v1 = (m1•u1 - m2•u1)/(m1 + m2)

Let us make v1 the subject in eq 2;

v1 = v2 - u2

Put v2 - u2 for v1 in eq 1 to get;

(m1•u1) = (m1(v2 - u2) + (m2•v2)

(m1•u1) = m1•v2 - m1•u2 + m2•v2

m1•u1 + m1•u2 = v2(m1 + m2)

v2 = (m1•u1 + m1•u2)/(m1 + m2)

Read more at; https://brainly.com/question/13994268

Final answer:

The final velocities of the projectile and the target after an elastic collision can be arrived at by solving the equations for Conservation of Momentum and Conservation of Kinetic Energy simultaneously. Here, the target's initial velocity is zero (it's at rest). By substituting this into the equations and solving them, we can find the final velocities.

Explanation:

An elastic collision is a type of collision where both momentum and kinetic energy are conserved. For this problem, we can solve the final velocities using the conservation laws.

Conservation of Momentum gives us:

m1*v1 = m1*v1' + m2*v2'     -------- (1)

V1' and V2' are the final velocities of the projectile and target, respectively.

Conservation of Kinetic Energy gives us:

1/2*m1*v1^2 = 1/2*m1*(v1')^2 + 1/2*m2*(v2')^2     -------- (2)

While solving these two equations, one should remember that m2 was initially at rest, so the momentum in the Y-direction is zero. The above-mentioned equations can be solved by substitution method or any other algebraic method to get the final velocities v1' and v2'.

Learn more about elastic collisions here:

https://brainly.com/question/33268757

#SPJ11

All Houston Methodist buildings system wide have an emergency power generator that turns on to supply emergency power after normal power shuts down within:

A. 5 seconds
B. 30 seconds
C. 60 seconds
D. 10 seconds

Answers

Answer:

(D) 10 seconds

Explanation:

The Houston Methodist Hospital automated the emergency power supply system (EPSS) testing processes in order to ensure the safety of patients during an outage

There is an emergency power generator that turns on to supply emergency power after normal power shuts down within 10 seconds.

Answer:

D. 10 seconds

Explanation:

The Houston Methodist Hospital has eleven diesen powered generators that turn on at most 10 seconds after the normal power shuts down.

Considering that it is a hospital, this system is really important.

So the correct answer is:

D. 10 seconds

A projectile is shot at an angle 45 degrees to the horizontalnear the surface of the earth but in the absence of air resistance.

When it reaches the highest point of its trajectory, its speed is150 m/s. In a second trial with the same projectile, the initialspeed is the same but the angle is now 37 degree with thehorizontal.

At its highest point in this trajectory, the velocityof the projectile would be what?

Answers

Answer:

169.4 m/s

Explanation:

Given that the angle of projectile is θ_1 =450°

The speed of body at maximum height is U cosθ_1 = 150 m/s

The angle in second trail is θ_2 =37°  

From the given data U cosθ_1 = 150 m/s

U = 150 m/s / cosθ_1

=  150m/s / cos45°

=212.13 m/s

The velocity of the projectile at maximum height in second trail= Ucos(θ_2)

=212.13 m/s×cos37°

=169.4 m/s

The velocity of a projectile at its highest point when fired at an angle to the horizontal remains the same if the initial speed is unchanged, regardless of the angle. Hence, even when changing the angle from 45 to 37 degrees, the velocity at the highest point would still be 150 m/s.

The student's question deals with the velocity of a projectile at the highest point in its trajectory. When a projectile is fired upward at an angle, its velocity at the highest point of its trajectory is only composed of the horizontal component because the vertical component of the velocity becomes zero at that point.

In the given scenario, when the projectile is shot at 45 degrees to the horizontal, the speed at the highest point is given as 150 m/s. This speed represents the horizontal component since there's no vertical component at the highest point. When the angle is changed to 37 degrees, the horizontal component of the initial velocity is calculated using the cosine component of the initial speed, hence the velocity at the highest point remains the same as when it was fired at 45 degrees, provided that the initial speed is unchanged.

Therefore, in the second trial, with the angle at 37 degrees, the velocity of the projectile at its highest point would still be 150 m/s, because the horizontal component of the velocity is not affected by the change in angle.

A spring with spring constant k is suspended vertically from a support and a mass m is attached. The mass is held at the point where the spring is not stretched. Then the mass is released and begins to oscillate. The lowest point in the oscillation is 18 cm below the point where the mass was released. What is the oscillation frequency?

Answers

Answer:

The oscillation frequency of the spring is 1.66 Hz.

Explanation:

Let m is the mass of the object that is suspended vertically from a support. The potential energy stored in the spring is given by :

[tex]E_s=\dfrac{1}{2}kx^2[/tex]

k is the spring constant

x is the distance to the lowest point form the initial position.

When the object reaches the highest point, the stored potential energy stored in the spring gets converted to the potential energy.

[tex]E_P=mgx[/tex]

Equating these two energies,

[tex]\dfrac{1}{2}kx^2=mgx[/tex]

[tex]\dfrac{k}{m}=\dfrac{2g}{x}[/tex].............(1)

The expression for the oscillation frequency is given by :

[tex]f=\dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}}[/tex]

[tex]f=\dfrac{1}{2\pi}\sqrt{\dfrac{2g}{x}}[/tex] (from equation (1))

[tex]f=\dfrac{1}{2\pi}\sqrt{\dfrac{2\times 9.8}{0.18}}[/tex]

f = 1.66 Hz

So, the oscillation frequency of the spring is 1.66 Hz. Hence, this is the required solution.

A cylinder is filled with 10.0 L of gas and a piston is put into it. The initial pressure of the gas is measured to be 163. kPa. The piston is now pushed down, compressing the gas, until the gas has a final volume of 4.40 L. Calculate the final pressure of the gas. Round your answer to 3 significant digits.

Answers

Answer:

P₂  = 370 kPa

Explanation:

Boyle's  law: States that the volume of a given mass of gas is inversely proportional to its pressure provided the temperature remains constant. It can be expressed mathematically as,

P₁V₁ = P₂V₂................ Equation 1

Where P₁ = Initial Pressure, V₁ = Initial volume, P₂ = Final Pressure, V₂ = Final Volume.

Making P₂ The subject of the equation above,

P₂ = P₁V₁/V₂..................... equation 2

Substituting these vaues into equation 2,

Where P₁ = 163 kPa = 163000 pa, V₁ =  10 L, V₂ = 4.4 L.

P₂ = 163000(10)/4.4

P₂ = 370454.55 Pa

P₂ = 370000 Pa

P₂  = 370 kPa To 3 significant figure.

Therefore Final pressure = 370 kPa

A small object is attached to the end of a relaxed, horizontal spring whose opposite end is fixed. The spring rests on a frictionless surface. Let the initial position of the object be defined as x-0. The object is pulled to position x = A and then released, after which it undergoes simple harmonic motion. In one full cycle of its motion, the total distance traveled by the object is 2 4 O 4A

Answers

Answer:

The total distance traveled by an object attached to a spring that is pulled to position x=A and then released is 4 A.

Explanation:

We have an small object attached to a relaxed spring whose opposite end is fixed. The spring rests on a frictionless surface. This means the only force acting on the object is the elastic  force of the spring, a conservative force, since the weight and the normal force compensate between them.

The initial position of the object is x=0 then is pulled to position x=A and released. After which it undergoes a simple harmonic motion with an amplitude A. From the position x=A to the equilibrium position in x=0 the object travels a distance A. From the equilibrium position x=0 to maximum negative position in x= -A the object travels again a distance A. Then to return to the original position the object should travel a distance 2 A in reverse direction.

In one full cycle of its motion the object travels a distance 4 A.

PLS HELP I'LL GIVE YOU BRAINLIEST
The diagram shows models of both prokaryotic and eukaryotic cells. The diagram shows models of both prokaryotic and eukaryotic cells. Prokaryotic cells are considered to be the more primitive of the two. What is a similarity between eukaryotes and prokaryotes as illustrated by the models? A) Both contain ribosomes. B) Both contain mitochondria. C) Both are surrounded by a capsule. D) Both contain a membrane-bound nucleus.

Answers

Answer:

both have plasma membrane, ribosomes, cytoplasm, and DNA

Explanation:

Final answer:

Both eukaryotic and prokaryotic cells contain ribosomes, which are responsible for protein synthesis. Eukaryotic cells are more complex with a true nucleus, found in animals and plants, while prokaryotic cells, found in bacteria, are simpler and lack a true nucleus.

Explanation:

Option A is the correct answer. Both eukaryotic and prokaryotic cells contain ribosomes. The ribosomes in both types of cells serve the same function: protein synthesis, or assembly of amino acids to form proteins. Eukaryotic cells are those with a true nucleus and complex structures, found in animals, plants, fungi, and protists, while prokaryotic cells are smaller, simpler cells without a true nucleus, found in bacteria and archaea.

Unlike eukaryotic cells, prokaryotic cells don't contain a membrane-bound nucleus or mitochondria. A capsule is found in some bacteria, not all prokaryotes and no eukaryotes.

Learn more about Cell Biology here:

https://brainly.com/question/32100370

#SPJ2

A small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread describes a cone. The acceleration of gravity is 9.8 m/s2, 2.7 m, 6 kg, 31C. What is the speed of the ball when it is in circular motion? Answer in units of m/s.

Answers

Final answer:

The speed of the metal ball in circular motion is calculated by using the equation for centripetal acceleration (v = √(rg)) and substituting the given values for radius and gravity. After calculation, the speed of the ball is determined to be approximately 5.1 m/s.

Explanation:

In this physics problem, we can calculate the speed of the metal ball by using the provided values and the concept of centripetal acceleration. Centripetal acceleration results from the force that makes the metal ball move in a circular pattern, which in this case is provided by the tension in the thread and gravity. In a scenario where the ball is in uniform circular motion, with the tension at an angle, forming a cone around the vertical axis, the component of tension providing the centripetal force equals the gravitational force or weight of the object.

A key equation that can be used here is: ac = v² /r, where 'ac' is the centripetal acceleration, 'v' is the velocity (or speed), and 'r' is the radius. Given that ac = g (acceleration due to gravity = 9.8 m/s²), we can modify the equation to: v = √(rg), where 'r' is the radius or the length of the thread (2.7 m).

Implementing these values into our equation we find that: v = √[(2.7 m)(9.8 m/s²)] = √26.46 = 5.1 m/s. Therefore, the speed of the metal ball when it is in circular motion is approximately 5.1 m/s.

Learn more about Centripetal Acceleration here:

https://brainly.com/question/14465119

#SPJ12

Point A has coordinates of (2,5,1) and point D has coordinate of (9, 6, 10). Calculate the unit vector of (landa AD)

Answers

Answer:(69,69,69)

Explanation:

The ratio of the intercortex of the inner circle has an area of 98:89. This is due to the fact the vector of the circle is no less than the ratio times the pie squared. Then pie squared the circumference will end up approximately at 68.83957 where you then round up to all 69's.

As part of a safety investigation, two 1600 kg cars traveling at 21 m/s are crashed into different barriers.

A) Find the average force exerted on the car that hits a line of water barrels and takes 1.8 s to stop.
B) Find the average force exerted on the car that hits a concrete barrier and takes 0.14 s to stop.

Answers

Answer

given,

mass of the car = 1600 Kg

velocity of the car = 21 m/s

time = 1.8 s

a) momentum = mass x velocity

P = 1600 x 21

P = 33600 kg.m/s

[tex]Force = \dfrac{change\ in \ momentum}{t}[/tex]

[tex]Force = \dfrac{33600-0}{1.8}[/tex]

F = 18666.67 N

b) [tex]Force = \dfrac{change\ in \ momentum}{t}[/tex]

[tex]Force = \dfrac{33600-0}{0.14}[/tex]

F = 240000 N

The hydrofoil boat has an A-36 steel propeller shaft that is 100ft long. It is connected to an inline diesel engine that delivers a maximum power of 2500 hp and causes the shaft to rotate at 1700 rpm. If the outer diamater of the shaft is 8 in. and the wall thickness is 3/8 in., determine the maximum sheer stress developed in the shaft. Also, what is the "wind up," or angle of twist in the shaft at full power?

Answers

Final answer:

The maximum shear stress developed in the shaft is approximately 7.57 MPa. The angle of twist in the shaft at full power is approximately 3.00°.

Explanation:

To determine the maximum shear stress developed in the shaft, we can use the formula:



Shear stress (τ) = Torque (T) / Polar Moment of Inertia (J)



To find the torque, we can use the formula:



Torque (T) = Power (P) / Angular Velocity (ω)



We are given that the power is 2500 hp and the angular velocity is 1700 rpm. Converting these values to W and rad/s respectively, we have:



Power (P) = 2500 hp * 745.7 W/hp ≈ 1,864,250 W

Angular Velocity (ω) = 1700 rpm * 2π rad/minute ≈ 17897.37 rad/s



Substituting these values into the torque formula, we have:



Torque (T) = 1,864,250 W / 17897.37 rad/s ≈ 103.98 N*m



Next, we need to find the polar moment of inertia (J) of the shaft. The polar moment of inertia for a solid shaft can be calculated using the formula:



J = (π/2) * (outer diameter^4 - inner diameter^4)



Converting the diameter to meters, we have:



Diameter (d) = 8 in * 0.0254 m/in = 0.2032 m



Substituting this value into the polar moment of inertia formula, we have:



J = (π/2) * (0.2032^4 - (0.2032 - 2 * 3/8)^4)

= (π/2) * (0.2032^4 - 0.1926^4)

0.013743 m^4

Finally, we can calculate the maximum shear stress using the formula:

Shear stress (τ) = 103.98 N*m / 0.013743 m^4 ≈ 7.57 MPa


As for the angle of twist, we can use the formula:

Angle of twist (θ) = T * L / (G * Given that the length of the shaft is 100 ft and Young's modulus (G) for A-36 steel is approximately 200 GPa, we can calculate the angle of twist as follows:

Angle of twist (θ) = 103.98 N*m * 100 ft * 0.3048 m/ft / (200 GPa * 0.013743 m^4)

≈ 0.0524 radians or 3.00°

What temperature increase is necessary to increase the power radiated from an object by a factor of 8?
a. 8 Kb. 2 Kc. 100%d. about 68%

Answers

To solve this problem it is necessary to apply the concepts related to the Power defined from the Stefan-Boltzmann equations.

The power can be determined as:

[tex]P = \sigma T^4[/tex]

Making the relationship for two states we have to

[tex]\frac{P_1}{P_2} = \frac{T_1^4}{T_2^4}[/tex]

Since the final power is 8 times the initial power then

[tex]P_2 = 8P_1[/tex]

Substituting,

[tex]\frac{1}{8} = \frac{T_1^4}{T_2^4}[/tex]

[tex]T_2 = T_1 8*(\frac{1}{4})[/tex]

[tex]T_2 = 1,68T_1[/tex]

The temperature increase would then be subject to

[tex]\Delta T = T_2-T_1[/tex]

[tex]\Delta T = 1.68T_1 -T_1[/tex]

[tex]\Delta T = 0.68T_1[/tex]

The correct option is D, about 68%

Final answer:

The correct option is (c) 100%. To increase the power radiated from an object by a factor of 8, the temperature must be doubled, corresponding to a 100% increase. This is based on the Stefan-Boltzmann law.

Explanation:

The question relates to the physics concept of radiation and how it varies with temperature. Specifically, it involves the Stefan-Boltzmann law, which states that the power radiated from an object is proportional to the fourth power of its absolute temperature.

If the power radiated from an object is to increase by a factor of 8, we use the relationship P ≈ T^4, where P is power and T is the temperature in Kelvin. To calculate the necessary temperature increase, if the initial power is P and the final power is 8P, then (T_final)^4 = 8 × (T_initial)^4.

By taking the fourth root on both sides, we find that T_final = 2× T_initial. Therefore, the temperature must be doubled, or the temperature increase is by 100%. Hence, the correct answer is option (c) 100%

A standard 14.16-inch (0.360-meter) computer monitor is 1024 pixels wide and 768 pixels tall. Each pixel is a square approximately 281 micrometers on each side. Up close, you can see the individual pixels, but from a distance they appear to blend together and form the image on the screen.

If the maximum distance between the screen and your eyes at which you can just barely resolve two adjacent pixels is 1.30 meters, what is the effective diameter d of your pupil? Assume that the resolvability is diffraction-limited. Furthermore, use lambda = 550 nanometers as a characteristic optical wavelength.

Answers

The  effective diameter d of your pupil should be considered as the 0.0031 when maximum distance should be 1.30 meters.

Calculation of the effective diameter:

Since

y = Length of pixel = 281 μm

L = Distance to screen = 1.3 m

Wavelength = 550 nm

d = Pupil diameter

So,

[tex]tan = y / l\\\\= tan^-1 * 281*10^-6/1.3[/tex]

Now

sin = 1.22 wavelength / d

d = 1.22 * wavelength / sin

[tex]= 1.22*550*10^-9/ sin ( tan^-1 * 281*10^-6/1.3)[/tex]

= 0.0031 m

hence, The  effective diameter d of your pupil should be considered as the 0.0031 when maximum distance should be 1.30 meters.

Learn more about wavelength here: https://brainly.com/question/20069636

Final answer:

The effective diameter of the pupil of one's eye when barely able to resolve two adjacent pixels on a computer screen from a certain distance, where the point of resolution is diffraction limited, is approximately 1.7 mm.

Explanation:

This question involves the use of the formula for the resolution of an optical system, which is the Rayleigh’s criterion. The formula can be written as follows: θ = 1.22 * λ/D, where θ is the smallest angular separation that can be resolved, λ is the wavelength of light, and D is the diameter of the aperture (i.e., the pupil in this case).

In this question, the pixel’s size and the distance from the screen allow us to calculate θ. The tangent of θ is approximately equal to the ratio of the pixel size to the viewing distance. Hence, θ = arctan((281 * 10^-6 m) / 1.3 m).

By substituting θ, and λ (550 * 10^-9 m) into the formula and solve for D, the effective diameter of the pupil, we get: D = 1.22 * λ / θ. The result is around 0.0017 meters or 1.7 mm.

Learn more about Optical Resolution here:

https://brainly.com/question/34643982

#SPJ6

The process of vision involves 4 basic steps in an appropriate order. Of the options listed below, what is correct order in the process of vision? a) gathering light, within the eye processing, transduction, and brain processing b) without the eye processing, gather light, transfusion, and brain processing c) photo-production, gathering light, within the eye processing, and transduction d) gathering light, photo-production, transfusion, and within the eye processing e) light collection, photo-production, hoarding light, and brain processing

Answers

Answer:

Option (a) is correct.

Explanation:

For us to be able to visualize an object, there are basic processes that takes place in a split second.

First Light which strike the object reflect into our eye. This reflected light passes through the pupil as the iris gives way for it. This light moves through other layers and impinges on the retina and stimulates it. This is the process of within the eye processing. The light is then converted to a signal by the optic nerve and sent to the brain for interpretation. The image produced by the retina is inverted. The brain helps to interpret this image as upright. This is the reason why we see objects just the way they are

The two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1965 kg and car B has a mass of 1245 kg. The cars become entangled and move off together with a common velocity in the direction indicated. If car A was traveling 52 km/h at the instant of impact, compute the corresponding velocity of car B just before impact.

Answers

Answer:

U2 = 47.38m/s = initial velocity of B before impact

Explanation:

An example of the diagram is shown in the attached file because of missing angle of direction in the question

Mass A, B are mass of cars

A = 1965

B =1245

U1 = initial velocity of A = 52km/hr

U2 = initial velocity of B

V = common final velocity of two cars

BU2 = (A + B)*V sin ¤ ...eq1 y plane

AU1 = (A + B) *V cos ¤ ....equ 2plane

From equ 2

V = AU1/(A + B)*cos ¤

Substitute V into equation 1

We have

U2 = (AU1/B)tan ¤ where ¤ = angle of direction which is taken to be 30°

Substitute all parameters to get

U2 = (1965/1245)*52 * tan 30°

U2 = 47.38m/s

Final answer:

To find the corresponding velocity of car B just before impact, we can use the principle of conservation of momentum. By equating the total momentum before the collision to the total momentum after the collision, we can solve for the velocity of car B. Plugging in the given values and calculating, we can find the corresponding velocity of car B just before impact.

Explanation:

To solve this problem, we can use the principle of conservation of momentum. Since the two cars stick together after the collision, the total momentum before the collision is equal to the total momentum after the collision.


Let's define the velocity of car A just before impact as vA and the velocity of car B just before impact as vB.


Using the principle of conservation of momentum, we can write:

(mass of car A * velocity of car A) + (mass of car B * velocity of car B) = (total mass * common velocity)

Plugging in the given values, we have:

(1965 kg * 52 km/h) + (1245 kg * vB) = (3210 kg * common velocity)     (Note: Convert km/h to m/s)

Simplifying the equation, we get:

101820 kg * km/h + 1245 kg * vB = 3210 kg * common velocity

Now, we can solve for the velocity of car B just before impact:

vB = (3210 kg * common velocity - 101820 kg * km/h) / 1245 kg

By substituting the values and calculating, we can find the corresponding velocity of car B just before impact.

Other Questions
Ecologists refer to the maximum sustainable population for an area as _____________. Select one: a. exponential growth. b. lag phase. c. carrying capacity. d. None of these are correct. IF an Axonal Membrane transiently becomes very permeable to Na+ ions then the membrane potential of the cell wall will approach:a. (+)132 mVb. (+)50 mVc. (-)60 mVd. (+)70 mVe. (-)94 mV $13,957 is invested, part at 7% and the rest at 6%. If the interest earned from the amount invested at 7% exceeds the interest earned from the amount invested at 6% by $833.73, how much is invested at each rate? Following her 18th birthday, Madison began investing $24 at the end of each week in an account earning 7% per year compounded weekly. She plans to continue making weekly investments until she turns 68. If she had waited until she turned 47, how much would she have to invest weekly in order to have the same retirement nest egg at age 68? Round to the nearest cent. (Hint: Find the size of the retirement nest egg, then use that to solve for CF under the shorter investment scenario) A defined contribution retirement plan such as a 401k that is "top heavy" is one which:A. permits larger contributions for employees that are highly compensated and smaller contributions for employees that have lower compensation levelsB. is over weighted in securities that have above average risk and must be rebalanced under the "prudent investor" ruleC. provides a disproportionately large retirement benefit to highly compensated key employees that can void the plan's tax qualificationD. has a greater number of employees than that disclosed in the plan's trust document _____________: Designating a lower rate of the target behavior, which is the criterion for providing a powerful reinforcer to the group. The target rate may be for either the individual client's behavior or a group's level of behavior or performance. What is the solution set to the inequality 7z+5>47 Which of the following optical media (BD-R, Blu-Ray, DVD-RW, and DVD DS [Double-Sided] ): a) is capable of multiple rewrites and b) has the largest capacity? Suppose an ecologist collects data on the weights and basal trunk diameters of a randomly selected sample of felled trees. The ecologist fits a simple linear regression model, predicting tree weight from the trunk's cross-sectional area. After ensuring that all assumptions of the linear model are met, the ecologist computes a 95% confidence interval for the predicted mean weight of trees with a trunk cross-sectional area of 452 in?. Select the correct interpretation of this confidence interval. a. The weight of another tree with a trunk cross-sectional area of 452 in- sampled at random from the same population will fall in the ecologist's interval with 95% probability. b.The true mean weight for trees in the population with a trunk cross-sectional area of 452 in- will fall within the ecologist's interval with 95% probability. c.The weight of 95% of trees in the population with a trunk cross-sectional area of 452 inwill fall within the ecologist's interval. d. The ecologist's interval has a 95% chance of containing the true sample mean weight of trees with a trunk cross- sectional area of 452 in. e. There is a 95% chance that the ecologist's interval contains the true mean weight of trees in the population with a trunk cross-sectional area of 452 in?. Organic matter with a _______ ratio results in a low net release of nutrients during decomposition. This is because microbial growth is more limited by _______ than it is by _______. low C:N; energy; N supply high C:N; N supply; energy high C:H2O; water supply; energy low C:H2O; energy; water supply low N:H2O; N supply; water supply As urbanization increases and natural soil surfaces are covered, the groundwater supply is reduced due to? Identify and explain the eight general forecasts that experts believe are likely to occur in the area of computer crime. aaaaaaa help me with chemistryBases:are generally proton acceptorsproduce OH ions in solutionare electron pair donorsmay include all of these characteristics Which of the following statements is FALSE?A. We can use Modigliani and Miller's first proposition to derive an explicit relationship between leverage and the equity cost of capital. B. The total market value of the firm's securities is equal to the market value of its assets, whether the firm is unlevered or levered. C. Although debt does not have a lower cost of capital than equity, we can consider this cost in isolation. D. While debt itself may be cheap, it increases the risk and therefore the cost of capital of the firm's equity. Political parties and candidates tend to focus the least amount of attention on which type of issues A Chinese restaurant has a large goldfish pond. Suppose that an inlet pipe and a hose together can fill the pone in 9 hours. The inlet pipe alone can Complete the job in one hour less time than the hose alone. Find the time that the hose can complete the job alone and the time that the inlet pipe can complete the job aloneThe time that the hose can complete the job alone is______ hour The time that the inlet pipe can complete the job alone is______ hours. The newshole ______. Group of answer choicesa. is news content (not space used by ads) that takes up about 35 to 50 percent of the space in a typical metropolitan daily newspaperb. refers to those parts of the public agenda that are ignored by news mediac. refers to a story that is somewhat incomplete but printed anywayd. is a form of yellow journalisme. refers to the space for advertising left over after the news content goes into the paper Which of the following characteristics are true of social and popular dances from the 1950s to present (hip-hop, voguing, rock, etc.)? a sound is recorded at 19 decibels what is the intensity of the sound Which body changes occur during adolescence?A) sexual maturity and growth spurts onlyB) puberty and growth spurts onlyC) sexual maturity and puberty onlyD) growth spurts, puberty, and sexual maturity Steam Workshop Downloader