Answer:
[tex]^2_1H+^2_1H->^3_2He+^1_0n[/tex]Explanation:
Remember that the atomic number of an element is the number of protons and the mass number is the number of protons plus neutrons.
1) Deuterium representation:
Hydrogen: ⇒ HOne proton: ⇒ [tex]_1H[/tex]One neutron: ⇒ add 1 to the mass number = 1 + 1 = 2 ⇒ [tex]^2_1H[/tex]2) Helium-3 representation:
He atom with 1 neutron: ⇒ mass number = 2 + 1 ⇒ [tex]^3_He[/tex]3) Neutron representation
Atomic number 0 and mass number 1: ⇒ [tex]^1_0n[/tex]4) Nuclear equation:
[tex]^2_1H+^2_1H->^3_2He+^1_0n[/tex] ← answerAnswer:
the answer is D. on edg 2020
Explanation:
Balance the following reaction. 2Ca3(PO4)2 + C + 6SiO2 → CaSiO3 + P4 + CO
Answer:
2Ca₃(PO₄)₂ + 10C + 6SiO₂ → 6CaSiO₃ + P₄ + 10CO.
Explanation:
To balance a chemical reaction, we should apply the law of conservation of mass.Law of conversation of mass states that the no. of atoms is equal in both sides of the chemical reaction.So, the balanced chemical reaction is:2Ca₃(PO₄)₂ + 10C + 6SiO₂ → 6CaSiO₃ + P₄ + 10CO.
that 2 mol of Ca₃(PO₄)₂ react with 10 mol of C and 6 mol of SiO₂ to produce 6 mol of CaSiO₃, 1 mol of P₄ and 10 mol of CO.
Answer:
First one is (10) , second one is (6) , and third one is (10).
Explanation: 10 , 6 , 10 is the correct order!
Two liquids are poured into a beaker. After a few seconds, the beaker becomes warm.
Which of the following best describes this reaction?
A. an exothermic reaction
B. a decomposition reaction
C. an endothermic reaction
D. a single-displacement reaction
Answer:
A. an exothermic reaction
Explanation:
an exothermic reaction releases energy in the form of heat, therefore making the beaker warm.
Answer: A. an exothermic reaction
Explanation:
A. Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat. The temperature of the vessel rises.
B. Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
Example: [tex]Li_2CO_3\rightarrow Li_2O+CO_2[/tex]
C. Single displacement reaction is a chemical reaction in which more reactive element displaces the less reactive element from its salt solution.
Example: [tex]Zn+2HCl\rightarrow ZnCl_2+H_2[/tex]
D. Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat.The temperature of the vessel drops.
An unknown substance has been shown to have weak covalent bonds.
Which of the following is most likely a property of this substance?
A. high pH
B. high conductivity
C. low melting point
D. low flammability
Answer:
Low melting point.
Explanation:
We cannot link the pH of a substance from it bonds directly.
Ionic compounds have strong ionic bonds but we cannot say that they will have high or low pH.
High conductivity is a feature of ionic compounds generally (also metals)
low melting point means the bonds are weak so they can be weak covalent bonds.
Low flammability is not related to bonding.
What is the formula for heat of fusion?
Answer:
The formula used to calculate heat of fusion:
q = m·ΔH f
Explanation:
The formula used to calculate heat of fusion:
q = m·ΔH f
Answer:
q = m·ΔH f
Explanation:
What phase of matter has particles that are held together but can flow past each other and takes the shape of a container, filling it from the bottom up?
Answer:
Liquid
Explanation:
Liquid has particles that are held together but can flow past each other and takes the shape of a container, filling it from the bottom up.
Hope this helps!
Answer: Liquid
Explanation:
Solid state : It is a state in which the particles are closely packed and does not have any space between them. They have least kinetic energy due to restricted movement. This state has a definite shape and volume.
Liquid state : It is a state in which the particles are present in random and irregular pattern. The particles are closely arranged but they can move from one place to another and thus have higher kinetic energy as compared to solids. This state has a definite volume but does not have a fixed shape. It takes the shape of the container.
Gaseous state : It is a state in which the particles are loosely arranged and have a lot of space between them. They have highest kinetic energy. This state has indefinite volume as well as shape.
Thus the phase mentioned is liquid phase.
Compare and contrast solutions and suspensions
Contrast:
Solutions are clear, transparent, and homogeneous.
Suspensions are cloudy, heterogeneous, and at least two substances are visable
Compare: one similarity is that neither of their particles settle.
The element that has the greatest electronegativity is
Hello There!
On the periodic table, fluorine is the most electronegative element. On the periodic table, its symbol is F.
ATOMIC NUMBER "9"
ATOMIC MASS "18.998404" (19)
NEUTRONS "19-10=9" (9)
PROTONS "9"
ELECTRONS "9"
Fluorine is corrosive and a pale yellow gas.
Where in the lungs does gas exchange occur
Answer: Between the alveoli and a network of tiny blood vessels called capillaries, which are located in the walls of the alveoli.
Gas exchange in the lungs occurs in the alveoli. Oxygen diffuses from the alveoli into the blood, while carbon dioxide diffuses from the blood into the alveoli.
Gas exchange in the lungs, also referred to as pulmonary gas exchange, primarily occurs in the alveoli. The alveoli are tiny, grape-like clusters surrounded by networks of thin-walled pulmonary capillaries.
Here is a step-by-step explanation of the gas exchange process:
When you inhale, air enters the alveoli, which have a higher concentration of oxygen compared to the blood in the surrounding capillaries.Oxygen diffuses from the alveoli into the blood because of this concentration gradient.Conversely, the blood in the capillaries has a higher concentration of carbon dioxide than the alveoli, causing carbon dioxide to diffuse into the alveoli.This exchange of gases allows oxygenated blood to travel through the pulmonary veins to the rest of the body, while carbon dioxide is expelled when you exhale.The vast number of alveoli (around 300 million per lung) provides a large surface area, maximizing the efficiency of gas exchange.
What is the IMA of the 1 st class lever in the graphic given?
2
3
0.5
Answer:
I believe the answer isT 2.
Explanation:
he formula for IMA of a first-class lever is effort-distance/resistance-distance.
Answer:
IMA = 2
Explanation:
IMA= din/dout
IMA= 3/1.5
IMA= 2
Rank the compounds below from slowest to Fastest rate of hydration. 1) formaldehyde 2) 3,3-dimethyIbutan-2-one 3) propanal 4)3-methylbutan-2-one 5) butan-2-one
The compounds ranked from the slowest to fastest rate of hydration are 3,3-dimethylbutan-2-one, 3-methylbutan-2-one, butan-2-one, propanal, and formaldehyde. Steric hindrance plays a crucial role in determining the reactivity of carbonyl compounds towards nucleophilic hydration reactions.
The rate of hydration for carbonyl compounds, such as aldehydes and ketones, is influenced by their reactivity towards nucleophilic attack. This reactivity is mainly determined by the electron-withdrawing or -donating nature of substituents on the carbonyl carbon and steric effects.
In this context, we can rank the compounds based on their rates of hydration:
Formaldehyde (CH2O): Formaldehyde is the simplest aldehyde, and its high reactivity is attributed to the lack of steric hindrance. The absence of bulky substituents allows nucleophiles to approach the carbonyl carbon easily, resulting in a fast rate of hydration.
Propanal (CH3CH2CHO): Propanal has a moderately reactive carbonyl group. The presence of a linear alkyl chain provides some steric hindrance compared to formaldehyde, slowing down the hydration rate slightly.
Butan-2-one (CH3COCH2CH3): Butan-2-one, also known as methyl ethyl ketone, has a more substituted carbonyl carbon due to the ethyl group. This increased steric hindrance results in a slower rate of hydration compared to propanal.
3-Methylbutan-2-one (CH3COCH(CH3)2): The presence of a branched methyl group in the 3-position introduces additional steric hindrance. This bulky substituent slows down the nucleophilic attack, leading to a slower rate of hydration.
3,3-Dimethylbutan-2-one (CH3COCH(CH3)2CH3): This compound has the highest steric hindrance among the given options due to two methyl groups in the 3-position. The bulkiness significantly hinders the approach of nucleophiles, resulting in the slowest rate of hydration.
Hydration rates are influenced by steric hindrance and the reactivity of the molecule. Formaldehyde is the fastest to hydrate due to minimal steric hindrance and high reactivity, while 3,3-dimethylbutan-2-one, having the most steric hindrance, is the slowest.
Explanation:When ranking the compounds from slowest to fastest rate of hydration, we need to consider the factors that affect hydration rates such as structure, size, and functional group. Hydration involves the addition of water to the compound, and this process is generally faster for molecules that can better stabilize the transition state. Formaldehyde is highly reactive and can form a hydrate readily, despite its small size, due to its high reactivity and the lack of steric hindrance. For ketones, increased steric hindrance and a decrease in polarization of the carbonyl group result in slower hydration rates.
Based on these considerations, the ranking from slowest to fastest rate of hydration for the given compounds would be: 3,3-dimethylbutan-2-one (most steric hindrance and least reactive), 3-methylbutan-2-one, butan-2-one, propanal, and formaldehyde (least steric hindrance and most reactive).
An engineer wants to determine an efficient method for condensing large amounts of steam into liquid water. Which constant should she use?
Hfus
–Hvap
Hvap
–
Answer:
The second choice: - Hvap.Explanation:
Condensing steam into liquid water is the reverse process of vaporizing liquid water into steam.
The heat or enthalpy of vaporization, also called latent heat of vaporization, of liquid water is the amount of heat that the water absorbs when changes from liquid state to steam (vapour) at certain pressure and it is a constant at every pressure.
The symbol of the latent heat of vaporization is Hvap or ΔHvap.
Thus, being being condensing the reverse process of vaporization, the heat of condensing will be the same magnitude but in reverse direction, i.e. the heat will be released instead of absorbed, and the engineer will have to use the negative of the latent heat of vaporization: - Hvap or - ΔHvap.
Answer:
b) -hvap
Explanation:
edge 2021
A baseball player hits a ball. Which is the best description of the energy of the ball as it flies over the pitcher's head? chemical mechanical kinetic thermal
Answer:
The answer is KINETIC energy
Explanation:
The baseball is moving and Kinetic energy correlates to movement.
An engineer that designs buildings is a(n) _____.
A) civil engineer
B) mechanical engineer
C) Chemical engineer
D) aerospace engineer
Answer: It's a civil engineer
Explanation:
An engineer that designs buildings is a(n) A) civil engineer
Civil engineering is an engineering discipline that deals with the design and development of infrastructure like buildings, roads, bridges, and railways.
Civil engineers not only design and develop new infrastructure, but they also play an important role in rebuilding projects in instances like natural disaster
What are engineers that build houses called?Civil engineering deals in building houses, buildings, roads, bridges, and dams. So, the civil engineers are trained to handle all sorts of projects; simple to complex houses.
Who designs buildings and bridges?Architect: A person whose profession is designing and drawing plans for buildings, bridges and houses, as well as many other structures.
To learn more about Civil engineers, refer
https://brainly.com/question/12244613
#SPJ2
The energy from 0.02 moles of butane is used to heat 328 grams of water. The temperature of the water rose from 298 K to 343 K. (The specific heat capacity of water is 4.18 J/K g.) What is the enthalpy of combustion? A. 1,578.01 J B. 3,084,840.0 J C. 23,513,336 J
Answer:
c
Explanation:
C4H10 + 13/2 O2 = 4CO2 + 5H2O
0.02 = 328*4.18*45
1= x
making x the subject of the formula you'll get 3084840.0J
Answer:
B) The enthalpy of combustion = 3,084,840 J
Explanation:
Given:
Moles of butane = 0.02
Mass of water, m = 328 g
Initial temperature T1 = 298 K
Final temperature T2 = 343 K
Specific heat of water, c = 4.18 J/g-K
To determine:
Enthalpy of combustion
Explanation:
Heat lost during combustion of butane = heat gained by water
Heat gained (q) by water is given as:
q = mc\Delta T = mc(T2-T1)
substituting for m, c, T2 and [tex]q = 328g*4.18J/g-K*(343-298)K = 61697.8 \ J[/tex]T1
[tex]Enthalpy \ of \ combustion = \frac{q}{moles\ of\ butane} \\\\= \frac{61697.8}{0.02} = 3,084,890\ J[/tex]
ListenBase your answer to the question on the information below.Soil pH can affect the development of plants. For example, a hydrangea plant produces blue flowers when grown in acidic soil but pink flowers when grown in basic soil. Evergreen plants can show a yellowing of foliage, called chlorosis, when grown in soil that is too basic.Acidic soil can be neutralized by treating it with calcium hydroxide, Ca(OH)2, commonly called slaked lime. Slaked lime is slightly soluble in water.Which equation correctly shows the neutralization of the ions in acidic soil by the ions released by slaked lime in water?Ca(OH)2(s) + H2O → Ca(OH)2(aq)H3O+(aq) + OH−(aq) → 2H2O(l)Ca(OH)2(s) + H2O → Ca+2 + 2OH−2H2O(l) → H3O+(aq) + OH−(aq)
Answer:
[tex]\boxed{\text{H$_{3}$O$^{+}$ + OH$^{-} \longrightarrow$ 2H$_{2}$O}}[/tex]
Explanation:
1. "Molecular" equation
[tex]\rm Ca(OH)$_{2}$ + 2H$_{3}$O$^{+} \longrightarrow \,$ Ca$^{2+}$ + 4H$_{2}$O[/tex]
2. Ionic equation
[tex]\rm \textbf{Ca}$^{2+}$ + 2OH$^{-}$ + 2H$_{3}$O$^{+}$ \longrightarrow \textbf{Ca}$^{2+}$ + 4H$_{2}$O[/tex]
3. Net ionic equation
Cancel all ions that appear on both sides of the reaction arrow (in boldface).
[tex]\rm 2OH$^{-}$ + 2H$_{3}$O$^{+} \longrightarrow$ 4H$_{2}$O[/tex]
Divide every coefficient by 2.
[tex]\rm OH$^{-}$ + H$_{3}$O$^{+} \longrightarrow$ 2H$_{2}$O[/tex]
Fluorine has nine protons and nine electrons. It is in column 17 on the periodic table. How many valence electrons does hydrogen have? 2 5 7 9
Answer:
Hydrogen has one electron
Explanation:
Hydrogen is the first element in the Periodic Table, so it has only one valence electron.
For elements in Groups 13 to 18, then number of valence electrons equals the Group number – 10.
Fluorine is in Group 17, so it has seven valence electrons.
Answer:
7 i just did the test and got it right
Explanation:
Assume that 8.5 L of iodine gas (I2) are produced at STP according to the following balanced equation:
2KI(aq) + Cl2(g) → 2KCl(aq) + I2(g)
How many moles of I2 are produced?
mol
How many moles of Cl2 are used?
mol
How many grams of Cl2 (g) are used?
grams
Answer:
a) 0.38 mol.
b) 0.38 mol.
c) 26.94 g.
Explanation:
For the balanced equation:2KI(aq) + Cl₂(g) → 2KCl(aq) + I₂(g),
It is clear that 2 mol of KI react with 1 mol of Cl₂ to produce 2 mol of KCl and 1 mol of I₂.
a) How many moles of I₂ are produced?
Firstly, we need to calculate the no. of moles of 8.5 L of produced I₂:It is known that every 1.0 mol of any gas occupies 22.4 L at STP conditions.
Using cross multiplication:
1 mol of I₂ occupies → 22.4 L, at STP.
??? mol of I₂ occupies → 8.5 L, at STP.
∴ The no. of moles of I₂ produced = (1 mol)(8.5 mol)/(22.4 L) = 0.38 mol.
b) How many moles of Cl₂ are used?
Using cross multiplication:
1 mol of Cl₂ produces → 1 mol of I₂, from stichiometry.
∴ 0.38 mol of Cl₂ produces → 0.38 mol of I₂.
So, the no. of moles of Cl₂ are used = 0.38 mol.
c) How many grams of Cl₂(g) are used?
∴ The "no. of grams" of Cl₂(g) are used = (no. of moles of Cl₂)(molar mass of Cl₂) = (0.38 mol)(70.9 g/mol) = 26.94 g.
Let an n-protic acid be an acid that can donate n hydrogen ions and has the formula HnX. If 0.600 L of 0.400 M sodium hydroxide is required to titrate 0.400 L of a 0.300 M HnX to the equivalence point, what is n in HnX?
Answer:
2, the acid is H₂X.
Explanation:
It is known at equivalence point: the no. of millimoles of base is equal to the no. of millimoles of acid.∴ (nMV) of NaOH = (nMV) for HnX.
where, n is the no. of producible H⁺ or OH⁻ of the acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
For NaOH:n = 1, M = 0.4 M, V = 0.6 L.
For HnX:n = ???, M = 0.3 M, V = 0.4 L.
∴ n for HnX = (nMV) of NaOH / (MV) for HnX = (1)(0.4 M)(0.6 L)/(0.3 M)(0.4 L) = 2.
∴ the acid is H₂X.
The value of n in HnX is 1, making it a monoprotic acid.
Explanation:This question is related to acid-base titration. In this case, 0.400 L of a 0.300 M HnX is being titrated with 0.600 L of 0.400 M sodium hydroxide (NaOH) to the equivalence point.
From the given information, we can use the concept of stoichiometry to determine the value of n in HnX. Since NaOH is a strong base and reacts with HnX in a 1:1 ratio, we can set up the following equation:
0.400 L x 0.300 M HnX = 0.600 L x 0.400 M NaOH
Solving for n, we find that n = 1. Therefore, HnX is a monoprotic acid.
Learn more about Acid-base titration here:https://brainly.com/question/40172894
#SPJ11
How do van der waals forces hold molecules together?
Answer:
Electrostatic Van de Waals forces act between molecules to form weak bonds. The types of Van der Waals forces, strongest to weakest, are dipole-dipole forces, dipole-induced dipole forces and the London dispersion forces. The hydrogen bond is based on a type of dipole-dipole force that is especially powerful. These forces help determine the physical characteristics of materials.
Van der Waals forces are weak intermolecular forces caused by temporary dipoles due to electron density fluctuations, playing a crucial role in the structure of proteins and the behavior of non-ideal gases.
Van der Waals forces are residual forces that hold molecules together. Unlike strong covalent or ionic bonds, these intermolecular forces are relatively weak and are caused by slight fluctuations in electron densities within molecules. These fluctuations lead to temporary dipoles, allowing molecules to attract each other when they are in very close proximity. Van der Waals forces include attractions between permanent dipoles, induced dipoles, and instantaneous dipoles.
These weak attractions are essential for the three-dimensional structure of proteins in our cells, contributing to their proper function alongside covalent, ionic, and hydrogen bonds. The van der Waals force is likened to Velcro®, where individual interactions are weak, but collectively they can have a significant effect. This is an important concept when considering the behavior of real gases versus the ideal gas model, where van der Waals forces are not accounted for.
In a gas, as two molecules approach each other, their electron densities interact, causing temporary dipoles and resultant attractions between the molecules. These interactions are termed van der Waals forces and are critical for understanding the properties of gases and many biological molecules.
If oil spills continue, all of the following should be expected except (2 points)
death of aquatic life.
polluted groundwater.
decreased soil productivity.
increased global temperatures.
Answer:
Polluted ground water.
Explanation:
The rocks through which water flows into the ground sieves most of the contaminants whose molecules are larger than most bacteria. Such molecules include but are not limited oil molecules. Therefore as it descends to the lower levels of the soil profile, water is subjected to continuous filtration by the layers and it is the least susceptible to contamination by oil spills.
Answer: Increased global temperature
Explanation:
There is no direct effect of oil spillage on climate or global unless the spillage does not caught fire.
Only in this case, huge amount of carbon dioxide will be released which affect the climate locally else oil spillage has no effect on the global temperature.
Death of aquatic animals, polluted ground water, decreased soil productivity are some of the consequences that can be seen in case of oil spillage.
What is the percent by mass of oxygen in fe2o3
You are making a solution of calcium chloride dissolved in water. you add solid, stir, and it dissolves. you add just a spatula tip full, stir, and the solid does not dissolve. how could you describe the solutions before and after adding the spatula tip amount
Answer:
Before adding the spatula tip amount: saturated solution.
After adding the spatula tip amount: super saturated solution.
Explanation:
A saturated solution is when the solute can dissolve in the solvent. For example, if you have an amount of water and you put calcium chloride into the water, and it dissolves, the solution is saturated.A supersaturated solution is when you put the calcium chloride into the solvent and the solute doesn't dissolve.So,Before adding the spatula tip amount: the solution is saturated.
After adding the spatula tip amount: the solution is super saturated.
Explanation:
When small amount of solute is added to a solvent and if it readily dissolves then this type of solution is known as an unsaturated solution.
For example, in the given situation when calcium chloride is first dissolved in water then it completely dissolves and this makes the solution unsaturated.
And, a saturated solution is defined as a solution which contains maximum amount of solute.
So, when a spatula tip full of calcium chloride is added into water then it is unable to dissolve the solute. This means the solution has become saturated.
Thus, we can conclude that solution before adding the spatula tip amount is unsaturated and after adding the spatula tip amount the solution becomes saturated.
At STP, which substance is the best conductor of electricity? a. nitrogen b. neon c. sulfur d. silver
Answer:
Silver
Explanation:
because it is a trasition metal and are good condutors
Among nitrogen, neon, sulfur, and silver, silver is the best conductor of electricity at STP because it's a metal and carries free electrons that allow electrical flow.
Explanation:At Standard Temperature and Pressure (STP), the best conductor of electricity among the options provided (nitrogen, neon, sulfur, and silver) is silver. This is because electrical conductivity is a property of metals and silver is a metal, while nitrogen, neon, and sulfur are non-metals. Metals have 'free electrons' that move around and allow the flow of electricity, and among many metals, silver is known for its high electrical conductivity.
Learn more about Conductivity here:https://brainly.com/question/35882137
#SPJ6
Help please, 44 to 45, calculate the answers to the following problems. Use the following equation as the basis of your calculations.
44. How many liters of CO2 would be produced if 32 grams of CH4 are combined with oxygen?
45. How many grams of H2O would be produced when the 32 grams of CH4 are burned?
Answer: 44,8 l. of CO2 and 72 g. of water will be produced
Explanation:
Answer:44.8l
Explanation:i hope u find my explanation in the attachment
Which of the following is the best explanation why some reactions appear to stop before all the reactants are converted to products?
The reaction goes to completion.
The reaction reaches equilibrium and the products stop being formed.
The reversible reaction occurs at the same rate.
The limiting reactant prevents the forward reaction occurring.
Answer:
I think its The reaction reaches equilibrium and the products stop being formed.
Answer:
Option C is true.
Explanation:
We are given that some reactions appear to stop before all the reactants are converted to products
We have to find the best explanation in given option why some reactions appear to stop before all the reactant are converted to products.
Reverse reaction : It is defined as the reaction in which reactants and products exist in a state of equilibrium.
Rate of froward reaction is equal to rate of backward reaction when the reaction is in equilibrium condition.
The reaction is not actually stop but it appear that the reaction to stop before all the reactants are concerted to products.
Hence, the reversible reaction occurs at the same rate occurs at the rate is best explanation for some reaction appear to stop before all the reactants are converted to products.
Option C is true.
At an ocean depth of 76.2 m, the pressure is about 8.4 atm. Convert the pressure to mmHg and torr units.
Final answer:
To convert 8.4 atm to mmHg and torr, multiply by 760 resulting in a pressure of 6384 mmHg and 6384 torr, as 1 torr equals 1 mmHg.
Explanation:
To convert the pressure at an ocean depth of 76.2 m, which is about 8.4 atm, into mmHg and torr units, we use the conversion factor 1 atm = 760 mmHg = 760 torr. For the presented example, the calculation would be:
Pressure in mmHg = 8.4 atm × 760 mmHg/atm = 6384 mmHg
Since 1 torr is exactly equivalent to 1 mmHg, this also means that:
Pressure in torr = 6384 torr
Thus, the pressure at an ocean depth of 76.2 m, when expressed in mmHg and torr, is 6384 mmHg and 6384 torr, respectively.
A reaction in which products can react to re-form reactants is
Which is/are true?
[mark all correct answers]
a. Li has valence electrons in the n = 1 energy level.
b. Si has valence electrons in the n = 3 energy level.
c. Ga has valence electrons in the n = 3 energy level.
d. Xe has valence electrons in the n = 5 energy level.
e. P has valence electrons in the n = 2 energy level.
Answer:
b. Si has valence electrons in the n= 3 energy level.
d. Xe has valence electrons in the n=5 energy level
Explanation:
A silicon atom has 14 electrons and 14 protons in its structure. Therefore it has a simple electron configuration of 2.8.4
It therefore has 3 energy levels. The outermost 4 electrons are the valence electrons.
A xenon has an electron configuration of 2.8.18.18.8 = 5 energy levels. The outermost 8 electrons are the valence electrons.
A sample of cold water was mixed with a sample of hot water inside a calorimeter, and 13,160 joules of heat energy were absorbed by the cold water. Which statement is true about the hot water in the calorimeter?
A. It released 26,320 joules.
B. It released 13,160 joules.
C. It absorbed 26,320 joules.
D. It absorbed 13,160 joules.
Answer:
B. It released 13,160 joules.
Explanation:
It is known that when mixing hot water with cold water at equilibrium:The amount of heat released from hot water = the amount of heat absorbed by cold water.
∵ 13,160 joules of heat energy were absorbed by the cold water.
∴ The hot water release 13,160 joules.
So, the right choice is: B. It released 13,160 joules.
Answer: Option (B) is the correct answer.
Explanation:
Two bodies of different temperature when come in contact with each other then heat is transferred from hot body to cold body until a thermal equilibrium is maintained between them.
So, when a sample of hot and cold water are mixed together then energy will be released by hot water which is actually absorbed by the cold water till temperature of both the liquids become equal.
Hence, when hot water has 13,160 joules of energy then this energy will be absorbed by a sample cold water. This means that hot water has released 13,160 joules of energy.
Hence, we can conclude that the true statement about the hot water in the calorimeter is that it released 13,160 joules.
_____ is A property is a characteristic of a substance that can be observed and does not change the identity of the substance.