Determine the following: A. P(X > 654) for N(650, 10) B. P(Z < 0.72) Solution: A. 1 – pnorm(654,650,10) = 0.3445783 B. qnorm(0.72) = 0.5828415 What was done wrong in this solution?

Answers

Answer 1

Answer:

a) We have the following distribution [tex] X \sim N(\mu =650, \sigma =10)[/tex]

And we want to calculate:

[tex] P(X>654) [/tex]

And in order to calclate this in the ti 84 we can use the following code

2nd> Vars>DISTR

And then we need to use the following code:

1-normalcdf(-1000,654,650,10)

And we got:

[tex] P(X>654)=0.3445783 [/tex]

b) For this case we assume a normal standard distribution and we want to calculate:

[tex] P(z<0.72)[/tex]

And using the following code in the Ti84 or using the normal standard table we got:

normalcdf(-1000,0.72,0,1)

[tex] P(z<0.72)=0.76424[/tex]

So this part was the wrong solution from the solution posted,

Step-by-step explanation:

Part a

We have the following distribution [tex] X \sim N(\mu =650, \sigma =10)[/tex]

And we want to calculate:

[tex] P(X>654) [/tex]

And in order to calclate this in the ti 84 we can use the following code

2nd> Vars>DISTR

And then we need to use the following code:

1-normalcdf(-1000,654,650,10)

And we got:

[tex] P(X>654)=0.3445783 [/tex]

Part b

For this case we assume a normal standard distribution and we want to calculate:

[tex] P(z<0.72)[/tex]

And using the following code in the Ti84 or using the normal standard table we got:

normalcdf(-1000,0.72,0,1)

[tex] P(z<0.72)=0.76424[/tex]

So this part was the wrong solution from the solution posted,


Related Questions

The weights of steers in a herd are distributed normally. The standard deviation is 200lbs and the mean steer weight is 1300lbs. Find the probability that the weight of a randomly selected steer is between 939 and 1417lbs. Round your answer to four decimal places.

Answers

Answer:

Probability that the weight of a randomly selected steer is between 939 and 1417 lbs is 0.68389 .

Step-by-step explanation:

We are given that the weights of steers in a herd are distributed normally. The standard deviation is 200 lbs and the mean steer weight is 1300 lbs.

So, Let X = weights of steers in a herd ,i.e.; X ~ N([tex]\mu,\sigma^{2}[/tex])

Here, [tex]\mu[/tex] = population mean = 1300 lbs

         [tex]\sigma[/tex] = population standard deviation = 200 lbs

The z score area distribution is given by;

            Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)

So, Probability that the weight of a randomly selected steer is between 939 and 1417 lbs = P(939 lbs < X < 1417 lbs)

P(939 lbs < X < 1417 lbs) = P(X < 1417) - P(X <= 939)

P(X < 1417) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{1417-1300}{200}[/tex] ) = P(Z < 0.58) = 0.71904

P(X <= 939) = P( [tex]\frac{X-\mu}{\sigma}[/tex] <= [tex]\frac{939-1300}{200}[/tex] ) = P(Z <= -1.81) = 1 - P(Z < 1.81)

                                                       = 1 - 0.96485 = 0.03515

Therefore,  P(939 lbs < X < 1417 lbs) = 0.71904 - 0.03515 = 0.68389 .

n San Francisco, 30% of workers take public transportation daily. In a sample of 10 workers, what is the probability that exactly three workers take public transportation daily?

Answers

Answer:

[tex]X \sim Binom(n=10, p=0.30)[/tex]

And we want to find this probability:

[tex] P(X=3)[/tex]

And using the probability mass function we got:

[tex] P(X=3) = (10C3) (0.3)^3 (1-0.3)^{10-3]= 0.2668[/tex]

Step-by-step explanation:

Previous concepts

A Bernoulli trial is "a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted". And this experiment is a particular case of the binomial experiment.

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

The probability mass function for the Binomial distribution is given as:  

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]  

Where (nCx) means combinatory and it's given by this formula:  

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]  

The complement rule is a theorem that provides a connection between the probability of an event and the probability of the complement of the event. Lat A the event of interest and A' the complement. The rule is defined by: [tex]P(A)+P(A') =1[/tex]

Solution to the problem

Let X the random variable of interest "workers that take public transportation daily", on this case we now that:

[tex]X \sim Binom(n=10, p=0.30)[/tex]

And we want to find this probability:

[tex] P(X=3)[/tex]

And using the probability mass function we got:

[tex] P(X=3) = (10C3) (0.3)^3 (1-0.3)^{10-3]= 0.2668[/tex]

Consider the following experiment. Pick a random integer from 1 to 1012 . (a) What is the probability that it is either a perfect square (1, 4, 9, 16, …) or a perfect cube (1, 8, 27, 64,…)? (b) What is the probability that it is either a perfect fourth power (1, 16, 81, 256, …) or a perfect sixth power (1, 64, 729, 4096,…)?

Answers

Answer:

a.) 0.0402

b.) 0.00789

Step-by-step explanation:

In between the numbers 1 and 1012,

The number of perfect squares we have is 31, that is all numbers between 1 and 31 inclusive have their squares between the numbers 1 and 1012

The number of perfect cubes we have is 10, that is all numbers between 1 and 10 Inclusive have their perfect cube between the numbers 1 and 1012.

The number of perfect Fourth we have is 5, that is all numbers between 1 and 5 inclusive have their perfect fourth between the numbers 1 and 1012.

The number of perfect Sixth we have is 3, that is all numbers between 1 and 3 inclusive have their perfect sixth between the numbers 1 and 1012.

Hence,

a.) probability of choosing a perfect square = 31/1012

Probability of choosing a perfect cube = 10/1012

Probability of choosing a perfect square or a perfect cube = (31/1012) + (10/1012) - [(31/1012)*(10/1012)]

=41/1012 - 310/1024144

=0.0405 - 0.0003

=0.0402.

b.) Probability of choosing a perfect fourth or a perfect Sixth = (5/1012) + (3/1012) - [(5/1012)*(3/1012)]

= 8/1012 - 15/1024144

= 0.00789.

verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.
I. x2 + xy - y2 = 1, (2,3) (10)
II x2 + y2 = 25, (3,-4)
III. x3y2 = 9, (-1,3)
IV. y2 – 2x – 4y - 1 = 0, (-2, 1)

Answers

For each curve, plug in the given point [tex](x,y)[/tex] and check if the equality holds. For example:

(I) (2, 3) does lie on [tex]x^2+xy-y^2=1[/tex] since 2^2 + 2*3 - 3^2 = 4 + 6 - 9 = 1.

For part (a), compute the derivative [tex]\frac{\mathrm dy}{\mathrm dx}[/tex], and evaluate it for the given point [tex](x,y)[/tex]. This is the slope of the tangent line at the point. For example:

(I) The derivative is

[tex]x^2+xy-y^2=1\overset{\frac{\mathrm d}{\mathrm dx}}{\implies}2x+x\dfrac{\mathrm dy}{\mathrm dx}+y-2y\dfrac{\mathrm dy}{\mathrm dx}=0\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2x+y}{2y-x}[/tex]

so the slope of the tangent at (2, 3) is

[tex]\dfrac{\mathrm dy}{\mathrm dx}(2,3)=\dfrac74[/tex]

and its equation is then

[tex]y-3=\dfrac74(x-2)\implies y=\dfrac74x-\dfrac12[/tex]

For part (b), recall that normal lines are perpendicular to tangent lines, so their slopes are negative reciprocals of the slopes of the tangents, [tex]-\frac1{\frac{\mathrm dy}{\mathrm dx}}[/tex]. For example:

(I) The tangent has slope 7/4, so the normal has slope -4/7. Then the normal line has equation

[tex]y-3=-\dfrac47(x-2)\implies y=-\dfrac47x+\dfrac{29}7[/tex]

Final answer:

The points (2,3) and (-1,3) are not on their respective curves, so there are no tangent or normal lines to find. The point (3,-4) lies on the curve. The tangent line at (3,-4) has the equation y = (3/4)x - (25/4) and the normal line has the equation y = (-4/3)x - (8/3). The point (-2,1) also lies on the curve. The tangent line at (-2,1) has the equation y = (-3/2)x - 2 and the normal line has the equation y = (2/3)x + 7/3.

Explanation:

Question: Verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.

I. x2 + xy - y2 = 1, (2,3)

To verify if the given point (2,3) lies on the curve, substitute x=2 and y=3 into the equation:

22 + 2(2)(3) - 32 = 4 + 12 - 9 = 7 ≠ 1

Since the expression on the left side doesn't equal 1, the point (2,3) is not on the curve. Therefore, there are no tangent or normal lines to find.

II. x2 + y2 = 25, (3,-4)

To verify if the given point (3,-4) lies on the curve, substitute x=3 and y=-4 into the equation:

32 + (-4)2 = 9 + 16 = 25

Since the expression on the left side is equal to 25, the point (3,-4) lies on the curve. To find the tangent line, take the derivative of the equation and evaluate it at the point (3,-4). The derivative of the equation is:

2x + 2y(dy/dx) = 0

Substituting x=3 and y=-4 into the derivative equation:

2(3) + 2(-4)(dy/dx) = 0
6 - 8(dy/dx) = 0
-8(dy/dx) = -6
dy/dx = 6/8 = 3/4

The slope of the tangent line at the point (3,-4) is 3/4. Using the point-slope form of a line, the equation of the tangent line is:

y - (-4) = (3/4)(x - 3)

Simplifying the equation:

y + 4 = (3/4)x - (9/4)
y = (3/4)x - (9/4) - (16/4)
y = (3/4)x - (25/4)

To find the normal line, we need to find the negative reciprocal of the slope of the tangent line. The negative reciprocal of 3/4 is -4/3. Using the point-slope form of a line, the equation of the normal line is:

y - (-4) = (-4/3)(x - 3)

Simplifying the equation:

y + 4 = (-4/3)x + (12/3)
y = (-4/3)x + (4/3) - (12/3)
y = (-4/3)x - (8/3)

III. x3y2 = 9, (-1,3)

To verify if the given point (-1,3) lies on the curve, substitute x=-1 and y=3 into the equation:

(-1)3(3)2 = -1(9) = -9 ≠ 9

Since the expression on the left side doesn't equal 9, the point (-1,3) is not on the curve. Therefore, there are no tangent or normal lines to find.

IV. y2 – 2x – 4y - 1 = 0, (-2, 1)

To verify if the given point (-2,1) lies on the curve, substitute x=-2 and y=1 into the equation:

(1)2 – 2(-2) – 4(1) - 1 = 1 + 4 - 4 - 1 = 0

Since the expression on the left side is equal to 0, the point (-2,1) lies on the curve. To find the tangent line, take the derivative of the equation and evaluate it at the point (-2,1). The derivative of the equation is:

-2 - 4y(dy/dx) – 4 = 0

Substituting x=-2 and y=1 into the derivative equation:

-2 - 4(1)(dy/dx) – 4 = 0
-6 - 4(dy/dx) = 0
-4(dy/dx) = 6
dy/dx = 6/-4 = -3/2

The slope of the tangent line at the point (-2,1) is -3/2. Using the point-slope form of a line, the equation of the tangent line is:

y - 1 = (-3/2)(x + 2)

Simplifying the equation:

y - 1 = (-3/2)x - 3
y = (-3/2)x - 3 + 1
y = (-3/2)x - 2

To find the normal line, we need to find the negative reciprocal of the slope of the tangent line. The negative reciprocal of -3/2 is 2/3. Using the point-slope form of a line, the equation of the normal line is:

y - 1 = (2/3)(x + 2)

Simplifying the equation:

y - 1 = (2/3)x + 4/3
y = (2/3)x + 4/3 + 1
y = (2/3)x + 7/3

Learn more about Tangent and Normal Lines here:

https://brainly.com/question/35115203

#SPJ11

Write the given differential equation in the form L(y) = g(x), where L is a linear differential operator with constant coefficients. If possible, factor L. (Use D for the differential operator.) y(4) + 8y' = 6

Answers

Answer:

The differential equation will be like the one shown below

Step-by-step explanation:

Data:

Let the equation be given as:

y(4) + 8y' = 6

The equation will be expressed linearly as follows:

y(4) + 8[tex]\frac{dy}{dx} = 6[/tex]

[tex]8\frac{dy}{dx}+ 4y = 6[/tex]

This is the linear form of the differential equation.

Answer:

Step-by-step explanation:

Given the differential equation

y^(4) + 8y' = 6

We want to write this in the form

L(y) = g(x)

Where L is a linear differential operator with constant coefficient.

A linear differential operator of the nth order is a linear combination of derivative operators up to n.

L = D^n + a_1D^(n-1) + a_2D^(n-2) + ... + a_n,

defined by

Ly = y^n + a_1y^(n-1) + a_2y^(n-2) + ... + a_(n-1)y' + a_ny

Where a_i are continuous functions of x.

Now, we have

y^(4) + 8y' = 6

Let d/dx = D

Then

D^4 y + 8Dy = 6

D(D³ + 8)y = 6

Consider

D(D³ + 8)y = 0

The auxiliary equation is

m(m³ + 8) = 0

m = 0

Or

m³ + 8 = 0

=> m³ = -8

=> m = -2

The complimentary solution is

y = C1 + (C2 + C3x + C4x²)e^(-2x)

The particular integral is

y_p = Ax

y' = A

y'' = y''' = y^(4) = 0

Using these

0 + 8A = 6

A = 6/8 = 3/4

So

y = C1 + (C2 + C3x + C4x²)e^(-2x) + 3/4

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to cone back to the skipped part. The half-life of cesium-137 is 30 years. Suppose we have a 30 mg sample. Exercise
(a) Find the mass that remains after t years. Step 1 Let y(t) be the mass (in mg) remaining after t years. Then we know the following Stop 2 Since the half-life is 30 years, then y(30) - More Information m Your answer cannot be understood or graded Submit Skie (you cannot come back) Exercise
(b) How much of the sample remains after 20 years? Step 1 After 20 years we have the following (20) 30 mg (Round your answer to two decimal places.)

Answers

Answer:

(a)y(t)=30exp(-0.0231t)

(b)y(20)=18.9mg

Step-by-step explanation:

At a particular time t, the mass of a radioactive substance like Cesium-137 is governed by the equation:

N=N₀e⁻ᵏᵗ where k=ln 2/half life

(a)Mass that remains after t years

Half Life= 30 years

k= ln2/30=0.0231

Initial Mass, N₀=30mg

Therefore the mass N that remains at time t

N=N₀e⁻ᵏᵗ

N=30exp(-0.0231t)

y(t)=30exp(-0.0231t)

(b)We want to determine how much of the sample remains after 20 years.

At t=20 years

y(t)=30exp(-0.0231t)

y(20)=30exp(-0.0231X20)

=30 X 0.63

y(20)=18.9mg

Final answer:

23.81 mg of the original 30 mg sample remaining, rounded to two decimal places.

Explanation:

The half-life of a radioactive isotope like cesium-137 is time it takes for half of the original amount of the substance to decay. For cesium-137, this period is 30 years. To find out how much of a sample remains after a specific amount of time, such as 20 years in the given question, we use the decay formula.

Step 1: Let y(t) be the mass remaining after t years.
Step 2: The decay formula is y(t) = y(0) · (1/2)^(t/half-life), where y(0) is the initial mass and t is the time in years.

For cesium-137 after 20 years: y(20) = 30 mg · (1/2)^(20/30).
Calculating the remaining mass: y(20) = 30 mg · (1/2)^(2/3) ≈ 30 mg · 0.7937 ≈ 23.81 mg.

For each call to the following method, indicate what console output is produced:public void mysteryXY(int x, int y) { if (y == 1) { System.out.print(x); } else { System.out.print(x * y + ", "); mysteryXY(x, y - 1); System.out.print(", " + x * y); }} mysteryXY(4, 1); mysteryXY(4, 2); mysteryXY(8, 2); mysteryXY(4, 3); mysteryXY(3, 4);

Answers

Final answer:

The mysteryXY method on Java demonstrates recursion, and calls to this method generate a sequence of multiplications based on the values of x and y, with the results printed in a particular format.

Explanation:

The console output for each call to the mysteryXY method can be determined by following the recursion and evaluating the output statements. The method prints a series of multiplications, interspersed with commas, by recursively calling itself with a decremented y until y reaches 1.

Calling mysteryXY(4, 1) will output 4 since y is 1.Calling mysteryXY(4, 2) will output 8, 4, 4 because it prints 4 × 2, then calls itself with y-1 (which is 1, printing 4), and then prints 4 × 2 again after the recursive call.Calling mysteryXY(8, 2) will output 16, 8, 8 for the same reasons as the previous call but with x equal to 8.Calling mysteryXY(4, 3) will output 12, 8, 4, 4, 8, 12 which includes two recursive calls, printing 4 × 3, 4 × 2, then 4 × 1, and then 4 × 2 and 4 × 3 after the reversals of the calls.Finally, calling mysteryXY(3, 4) will output 12, 9, 6, 3, 3, 6, 9, 12 with three recursive calls and their reversals.

The average age of CEOs is 56 years. Assume the variable is normally distributed. If the SD is four years, find the probability that the age of randomly selected CEO will be between 50 and 55 years old.

Answers

Answer: the probability that the age of randomly selected CEO will be between 50 and 55 years old is 0.334

Step-by-step explanation:

Assuming that the age of randomly selected CEOs is normally distributed, we would apply the formula for normal distribution which is expressed as

z = (x - µ)/σ

Where

x = age of randomly selected CEOs.

µ = mean age

σ = standard deviation

From the information given,

µ = 56 years

σ = 4 years

We want to find the probability that the age of randomly selected CEO will be between 50 and 55 years old. It is expressed as

P(50 ≤ x ≤ 55)

For x = 50,

z = (50 - 56)/4 = - 1.5

Looking at the normal distribution table, the probability corresponding to the z score is 0.067

For x = 55,

z = (55 - 56)/4 = - 0.25

Looking at the normal distribution table, the probability corresponding to the z score is 0.401

Therefore,

P(50 ≤ x ≤ 55) = 0.401 - 0.067 = 0.334

For this assignment, your group will utilize the preliminary data collected in the Topic 2 assignment. Considering the specific requirements of your scenario, complete the following steps using Excel. The accuracy of formulas and calculations will be assessed.

Select the appropriate discrete probability distribution. If using a binomial distribution, use the constant probability from the collected data and assume a fixed number of events of 20. If using a Poisson distribution, use the applicable mean from the collected data.
Identify the following: the probability of 0 events occurring, the probability of <5 events occurring, and the probability of ≥10 events occurring.
Using the mean and standard deviation for the continuous data, identify the applicable values of X for the following: Identify the value of X of 20% of the data, identify the value of X for the top 10% of the data, and 95% of the data lies between two values of X.

How would I Calculate and do #3 and can it be explained step by step so I can better understnd?

Answers

Answer:

See the attached file.

Step-by-step explanation:

see the attached file for explanation.

Consider a binomial probability distribution with pequals=0.6 and nequals=8

Determine the probabilities below.

​1)Upper P left parenthesis x equals 2 right parenthesisP(x=2)

​2)Upper P left parenthesis x less than or equals 1 right parenthesisP(x≤1)

​3)Upper P left parenthesis x greater than 6 right parenthesisP(x>6)

Answers

Answer:

(1) The probability of the event X = 2 is 0.0413.

(2) The probability of the event X ≤ 1 is 0.009.

(3) The probability of the event X < 6 is 0.6846.

Step-by-step explanation:

Let the random variable X follow a Binomial distribution with parameter n = 8 and p = 0.60.

The probability mass function of the Binomial distribution is:

[tex]P(X=x)={n\choose x}p^{x}(1-p)^{n-x};\ x=0, 1, 2,...[/tex]

(1)

Compute the probability of the event X = 2 as follows:

[tex]P(X=2)={8\choose 2}(0.60)^{2}(1-0.60)^{8-2}\\=\frac{8!}{2!(8-2)!}\times (0.60)^{2}\times(0.40)^{6}\\=28\times0.36\times0.004096\\=0.0413[/tex]

Thus, the probability of the event X = 2 is 0.0413.

(2)

Compute the probability of the event X ≤ 1 as follows:

P (X ≤ 1) = P (X = 0) + P (X = 1)

[tex]={8\choose 0}(0.60)^{0}(1-0.60)^{8-0}+{8\choose 1}(0.60)^{1}(1-0.60)^{8-1}\\=\frac{8!}{0!(8-0)!}\times (0.60)^{0}\times(0.40)^{8}+\frac{8!}{1!(8-1)!}\times (0.60)^{1}\times(0.40)^{7}\\=(1\times1\times0.00066)+(8\times0.60\times0.00164)\\=0.008532\approx0.009[/tex]

Thus, the probability of the event X ≤ 1 is 0.009.

(3)

Compute the probability of the event X < 6 as follows:

P (X < 6) = 1 - P (X ≥ 6)

              = 1 - P (X = 6) - P (X = 7) - P (X = 8)

    [tex]=1-{8\choose 6}(0.60)^{6}(1-0.60)^{8-6}+{8\choose 7}(0.60)^{7}(1-0.60)^{8-7}+{8\choose 8}(0.60)^{8}(1-0.60)^{8-8}\\=1-\frac{8!}{6!(8-6)!}\times (0.60)^{6}\times(0.40)^{2}+\frac{8!}{7!(8-7)!}\times (0.60)^{7}\times(0.40)^{1}\\+\frac{8!}{8!(8-8)!}\times (0.60)^{8}\times(0.40)^{0}\\=1-0.2090-0.0896-0.0168\\=0.6846[/tex]

Thus, the probability of the event X < 6 is 0.6846.

The probabilities for a binomial distribution with p=0.6 and n=8 for different scenarios such as P(x=2), P(x≤1), and P(x>6), which involves combinations and powers of success and failure probabilities is equal to 0.2799, 0.0888, and 0.0332 respectively.

1) Upper P(x = 2):

To find P(x = 2), we can use the formula for the binomial probability:

P(x = 2) = (8 choose 2) × (0.6)² × (0.4)⁶= 0.2799

2) Upper P(x ≤ 1):

P(x ≤ 1) = P(x = 0) + P(x = 1) = (8 choose 0)×  (0.6)⁰ ×(0.4)⁸ + (8 choose 1) ×(0.6)¹ ×(0.4)⁷ = 0.0888

3) Upper P(x > 6):

P(x > 6) = 1 - P(x ≤ 6) = 1 - (P(x = 0) + P(x = 1) + ... + P(x = 6)) = 1 - 0.9668 = 0.0332

The Bruin Stock Fund sells Class A shares that have a front-end load of 4.8 percent, a 12b-1 fee of 0.42 percent, and other fees of 1.3 percent. There are also Class B shares with a 5 percent CDSC that declines 1 percent per year, a 12b-1 fee of 1.95 percent, and other fees of 1.3 percent. Assume the portfolio return is 11 percent per year. What is the value of $1 invested in each share class if your investment horizon is 3 years? Class A $ Class B $ What if your investment horizon is 20 years?

Answers

Answer:

Step-by-step explanation:

Investment Amount Net of Front end Load (1 - 0.048) = $0.952

The value of $1 invested in each share class if investment horizon is 3 years

After 3 years: (For every dollar invested)Class A: 0.952 x (1+0.11-0.0042-0.013)^3 = $1.24Class B: (1 x (1+0.11-0.0195-0.013)^3) x (1-0.02) = $1.23

SIMILARLY,

The value of $1 invested in each share class if investment horizon is 20 years

After 20 years: (For every dollar invested)Class A: 0.952 x (1+0.11-0.0042-0.013)^20 = $5.62Class B: 1 x (1+0.11-0.0195-0.013)^20 = $4.45

Answer:

Part 1 :

The total investment for,

Class A =  $1.24

Class B = $ 1.23

Part 2:

The total investment for,

Class A = $ 5.62

Class B = $ 4.45

           

Step-by-step explanation:

The amount of investment Net of Front end Load,

[tex]= 1 - 0.048[/tex]

[tex]= $0.952[/tex]

Part 1:

If the investment horizon is 3 years, the value of $1 invested in each share class for Class A become,

[tex]= (0.952)(1 + 0.11 - 0.0042 - 0.013)^{3}[/tex]

[tex]= $1.24[/tex]

The value of $1 invested in each share class for Class A is $1.24.

If the investment horizon is 3 years, the value of $1 invested in each share class for Class B become,

[tex]= ((1)(1 + 0.11 - 0.0195 - 0.013)^{3} )(1-0.02)[/tex]

[tex]= $1.23[/tex]

The value of $1 invested in each share class for Class B is $1.23.

Part 2:

If the investment horizon is 20 years, the value of $1 invested in each share class for Class A become,

[tex]= (0.952)(1 + 0.11 - 0.0042 - 0.013)^{20}[/tex]

[tex]= 5.62[/tex]

The value of $1 invested in each share class for Class A is $5.62.

If the investment horizon is 20 years, the value of $1 invested in each share class for Class B become,

[tex]= (1)(1 + 0.11 - 0.0195 - 0.013)^{20}[/tex]

[tex]= $4.45[/tex]

The value of $1 invested in each share class for Class B is $4.45.

Engineers must consider the breadths of male heads when designing helmets. The company researchers have determined that the population of potential clientele have head breadths that are normally distributed with a mean of 6.1-in and a standard deviation of 1-in. Due to financial constraints, the helmets will be designed to fit all men except those with head breadths that are in the smallest 2.3% or largest 2.3%.


What is the minimum head breadth that will fit the clientele?

min =


What is the maximum head breadth that will fit the clientele?

max =


Enter your answer as a number accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

Answers

Answer:

a) The minimum head breadth that will fit the clientele = 4.105 inches to 3d.p = 4.1 inches to 1 d.p

b) The maximum head breadth that will fit the clientele = 8.905 inches to 3 d.p = 8.9 inches to 1 d.p

Step-by-step explanation:

This is normal distribution problem.

A normal distribution has all the data points symmetrically distributed around the mean in a bell shape.

For this question, mean = xbar = 6.1 inches

Standard deviation = σ = 1 inch

And we want to find the lowermost 2.3% and uppermost 2.3% of the data distribution.

The minimum head breadth that will fit the clientele has a z-score with probability of 2.3% = 0.023

Let that z-score be z'

That is, P(z ≤ z') = 0.023

Using the table to obtain the value of z'

z' = - 1.995

P(z ≤ - 1.995) = 0.023

But z-score is for any value, x, is that value minus the mean then divided by the standard deviation.

z' = (x - xbar)/σ

- 1.995 = (x - 6.1)/1

x = -1.995 + 6.1 = 4.105 inches

The maximum head breadth that will fit the clientele has a z-score with probability of 2.3% also = 0.023

Let that z-score be z''

That is, P(z ≥ z'') = 0.023

Using the table to obtain the value of z''

P(z ≥ z") = P(z ≤ -z")

- z'' = - 1.995

z" = 1.995

P(z ≥ 1.995) = 0.023

But z-score is for any value, x, is that value minus the mean then divided by the standard deviation.

z'' = (x - xbar)/σ

1.995 = (x - 6.1)/1

x = 1.995 + 6.1 = 8.905 inches

Final answer:

Using z-scores for the smallest and largest 2.3% of the normal distribution, and a formula that accounts for the mean and standard deviation of head breadths, we can calculate that the helmets need to accommodate head breadths between 4.1 inches (minimum) and 8.1 inches (maximum).

Explanation:

To determine the minimum and maximum head breadths that will fit the clientele, we need to find the z-scores that correspond to the smallest 2.3% and the largest 2.3% of the normal distribution. Then we can use these z-scores to calculate the specific head breadths.

First, we find the z-scores using a standard z-table or a calculator since the normal distribution table typically provides the area to the left of a z-score. For the smallest 2.3%, we need the z-score that has 0.023 to its left. This value is approximately z = -2. Conversely, for the largest 2.3%, since the normal distribution is symmetric, the z-score will have the same absolute value but be positive, which would be z = 2. However, to be precise, one should use statistical tables or software to find the exact z-scores close to these values.

To convert the z-scores to specific head breadths, we use the formula:


X = μ + (z * σ)

where X is the head breadth, μ is the mean, and σ is the standard deviation.

The minimum head breadth (Xmin) is calculated as follows:

Xmin = 6.1 + (-2 * 1) = 6.1 - 2 = 4.1 inches

The maximum head breadth (Xmax) is calculated as follows:

Xmax = 6.1 + (2 * 1) = 6.1 + 2 = 8.1 inches

Therefore, the minimum head breadth that will fit the clientele is 4.1 inches, and the maximum head breadth is 8.1 inches.

Anna goes to a frozen yogurt shop. She can choose from any of the following toppings: peanuts, caramel sauce, butterscotch chips, strawberries, and cookie dough bits. How many different variations of yogurt and toppings can be made?

Answers

Answer:

32 variations

Step-by-step explanation:

Anna can choose any number from 0 to 5 different toppings, which is the sum of the combinations of 0 out of 5, 1 out of 5, 2 out of 5, 3 out of 5, 4 out of 5 and 5, out of 5. The number of different variations is:

[tex]n = \frac{5!}{(5-0)!0!} + \frac{5!}{(5-1)!1!}+ \frac{5!}{(5-2)!2!} +\frac{5!}{(5-3)!3!} +\frac{5!}{(5-4)!4!} +\frac{5!}{(5-5)!5!}\\ n=1+5+10+10+5+1\\n=32[/tex]

There are 32 different variations of yogurt and toppings.

Final answer:

The question involves combinatorics, a branch of Mathematics. For each topping, Anna can decide to either have it or not, generating 2^5 possible combinations. Subtracting the option with no toppings, there are 31 different yogurt and toppings combinations.

Explanation:

When Anna goes to the frozen yogurt shop, she has five options for toppings: peanuts, caramel sauce, butterscotch chips, strawberries, and cookie dough bits. In this scenario, she could have her yogurt with any possible combination of these five toppings. We're entering the domain of combinatorics, a branch of Mathematics. For each topping, Anna can decide to either have it or not. Therefore, the problem is essentially a set of five binary decisions, which means there are 2^5 possible outcomes. However, one of these possibilities is that she chooses no toppings at all, leaving us with 2^5 - 1 = 31 different combinations of toppings that she can choose.

Learn more about Combinatorics here:

https://brainly.com/question/32015929

#SPJ11

Suppose you like to keep a jar of change on your desk. Currently, the jar contains the following: 5 Pennies 26 Dimes 18 Nickels 12 Quarters What is the probability that you reach into the jar and randomly grab a quarter and then, without replacement, a penny? Express your answer as a fraction or a decimal number rounded to four decimal places.

Answers

Answer:

Step-by-step explanation:

number of pennies = 5

number of dimes = 26

number of nickels = 18

number of quarters = 12

Total = 5 + 26 + 18 + 12 = 61

Probability to take out a quarter = 12 / 61 = 0.1967

Probability to take out a penny without replacement = 5 / 60 = 0.0833

Total probability to take out a quarter and then penny without replacement                                    

                               = 0.1967 x 0.0833 = 0.0164

The probability of pulling out a quarter and then a penny from the jar without replacement is 0.0131, calculated by multiplying the individual probabilities of each event.

To calculate the probability of pulling out a quarter and then a penny from the jar without replacement, we need to consider the total number of coins and the number of each kind of coin. Initially, the jar contains 5 pennies, 26 dimes, 18 nickels, and 12 quarters, for a total of 61 coins.

First, let's find the probability of picking a quarter. There are 12 quarters out of 61 coins, so the probability is 12/61. After picking a quarter, we do not replace it; thus, there are now 60 coins left in the jar, including only 4 pennies. Now, the probability of picking a penny is 4/60 or 1/15.

We find the combined probability of these two events occurring in sequence by multiplying their probabilities: (12/61) * (1/15).

Probability of picking a quarter then a penny without replacement = (12/61)  * (1/15)
= 12/(61 * 15)
= 12/915
= 0.0131 (when rounded to four decimal places)

A rock is thrown upward from a bridge that is 57 feet above a road. The rock reaches its maximum height above the road 0.76 seconds after it is thrown and contacts the road 3.15 seconds after it was thrown.
(a) Write a Function (f) that determines the rock's height above the road (in feet) in terms of the number of seconds t since the rock was thrown.

Answers

The function that determines the rock's height above the road in terms of the number of seconds since it was thrown is f(t) = -16t² + 24.32t + 57. This quadratic function accounts for the initial upward velocity and the constant downward acceleration due to gravity.

To determine the rock's height above the road as a function of time after it was thrown, we can use the standard equation of motion under constant acceleration due to gravity, which in this case is downward. The formula for the height f(t) of the rock at time t seconds after it is thrown is:

f(t) = -16t² + vt + s

where:

-16t² represents the effect of gravity (in feet per second squared), because acceleration due to gravity is approximately 32 feet per second squared downward, and we use -16 because the height is measuring upward distance from the road,v is the initial velocity of the rock in feet per second (upward positive), ands is the initial height above the road in feet.

Since the rock reaches its maximum height 0.76 seconds after it is thrown, the initial velocity v can be calculated using the fact that the velocity at the peak height is 0 (the rock stops moving upward for an instant before descending).

At maximum height, the velocity v had decreased by 32 feet/second for 0.76 seconds, which is v - 32(0.76) = 0. Solving for v, we find that v = 32(0.76).

The rock contacts the road 3.15 seconds after it was thrown, meaning it falls 57 feet in that time. Plugging these values into the formula:

f(t) = -16t² + 32(0.76)t + 57

which simplifies to:

f(t) = -16t² + 24.32t + 57

This function f(t) gives the rock's height in feet above the road at any time t measured in seconds since it was thrown, assuming negligible air resistance.

The correct function for the rock's height above the road in terms of the number of seconds [tex]\( t \)[/tex] since the rock was thrown is: [tex]\[ f(t) = -16t^2 + v_0t + 57 \][/tex] where [tex]\( v_0 \)[/tex] is the initial velocity of the rock in feet per second.

To derive this function, we use the kinematic equation for the vertical motion of an object under constant acceleration due to gravity, which is:

[tex]\[ h(t) = h_0 + v_0t - \frac{1}{2}gt^2 \][/tex]

Given that the bridge is 57 feet above the road, [tex]\( h_0 = 57 \)[/tex] feet. The acceleration due to gravity is [tex]\( g = 32 \)[/tex] feet per second squared. Plugging these values into the kinematic equation, we get:

[tex]\[ h(t) = 57 + v_0t - \frac{1}{2}(32)t^2 \][/tex]

Simplifying the equation by multiplying [tex]\( \frac{1}{2} \)[/tex] with 32 gives us:

[tex]\[ h(t) = 57 + v_0t - 16t^2 \][/tex]

This simplifies to the function [tex]\( f(t) \)[/tex] as provided above. Note that [tex]\( v_0 \)[/tex] is still unknown and will need to be determined using additional information given in the problem, such as the time it takes for the rock to reach its maximum height.

To find [tex]\( v_0 \)[/tex], we can use the fact that at the maximum height, the velocity of the rock is zero. The kinematic equation relating velocity and time under constant acceleration is:

[tex]\[ v(t) = v_0 - gt \][/tex]

Setting [tex]\( v(t) = 0 \)[/tex] at the maximum height and solving for [tex]\( v_0 \)[/tex] gives us:

[tex]\[ 0 = v_0 - gt_{\text{max}} \][/tex]

[tex]\[ v_0 = gt_{\text{max}} \][/tex]

Given that the rock reaches its maximum height 0.76 seconds after it is thrown, [tex]\( t_{\text{max}} = 0.76 \)[/tex] seconds. Plugging this into the equation for [tex]\( v_0 \)[/tex], we get:

[tex]\[ v_0 = 32 \times 0.76 \][/tex]

[tex]\[ v_0 = 24.32 \][/tex]

Now we can write the complete function with the known values:

[tex]\[ f(t) = -16t^2 + 24.32t + 57 \][/tex]

This function represents the height of the rock above the road as a function of time since it was thrown.

Let X denote the amount of time a book on two-hour reserve is actually checked out, and suppose the cdf is the following.



0 , x<0

f(x) = ((x^2)/4) , 0 <= x <= 2

1 , 2<= x


Use the cdf to obtain the following. (If necessary, round your answer to four decimal places.)

(a) P(X %u2264 1)

(b) P(0.5 %u2264 X %u2264 1)

(c) P(X > 1.5)

(d) The median checkout duration [solve 0.5 = F(mew)]

(e) Use F'(x) to obtain the density function f(x)
(f) Calculate E(X)

(g) Calculate V(X) and %u03C3x
(h) If the borrower is charged an amount h(X) = X2 when checkout duration is X, compute the expected charge

E[h(X)].

Answers

Final answer:

This is a set of solutions for a series of problems related to a given cumulative distribution function of a random variable X. The answers provide ways to calculate various probabilities, the median, the density function, the expected value, the variance and standard deviation, and the expected charge.

Explanation:

Given that the cumulative distribution function (cdf) of the random variable X, which denotes the amount of time a book on two-hour reserve is checked out, is f(x) = (x^2)/4 for 0 <= x <= 2.

(a) P(X <= 1) can be obtained by substituting x = 1 into the cdf, which yields (1^2)/4 = 0.25.

(b) P(0.5 <= X <= 1) is the probability that x is between 0.5 and 1. This can be calculated by subtracting P(X <= 0.5) from P(X <= 1), giving (1^2)/4 - (0.5^2)/4 = 0.1875.

(c) P(X > 1.5) can be obtained by subtracting P(X <= 1.5) from 1, giving 1 - (1.5^2)/4 = 0.375.

(d) For the median, we need to solve (m^2)/4 = 0.5, yielding a median of sqrt(2).

(e) The density function f(x) is the derivative of the cdf, and so we need to calculate F'(x). This gives f(x) = x/2.

(f) The expected value E(X) can be calculated as ∫xf(x)dx from 0 to 2, yielding 4/3.

(g) The variance V(X) can be calculated as ∫(x-E(x))^2*f(x)dx from 0 to 2, yielding 4/45, and the standard deviation σx is the square root of the variance, which is 2sqrt(10)/15.

(h) If the borrower is charged an amount h(X) = X^2 when the checkout duration is X, the expected charge E[h(X)] can be calculated as ∫x^2f(x) dx from 0 to 2, yielding 4/5.

Learn more about Cumulative Distribution Function here:

https://brainly.com/question/30402457

#SPJ12

A survey of magazine subscribers showed that 45.2% rented a car during the past 12 months for business reasons, 56% rented a car during the past 12 months for personal reasons, and 32% rented a car during the past 12 months for both business and personal reasons. (a) What is the probability that a subscriber rented a car during the past 12 months for business or personal reasons? (b) What is the probability that a subscriber did not rent a car during the past 12 months for either business or personal rea

Answers

Answer:

a. 0.692 or 69.2%; b. 0.308 or 30.8%.

Step-by-step explanation:

This is the case of the probability of the sum of two events, which is defined by the formula:

[tex] \\ P(A \cup B) = P(A) + P(B) - P(A \cap B)[/tex] (1)

Where [tex] \\ P(A \cup B)[/tex] represents the probability of the union of both events, that is, the probability of event A plus the probability of event B.

On the other hand, [tex] \\ P(A \cap B)[/tex] represents the probability that both events happen at once or the probability of event A times the probability of event B (if both events are independent).

Notice the negative symbol for the last probability. The reason behind it is that we have to subtract those common results from event A and event B to avoid count them twice when calculating [tex] \\ P(A \cup B)[/tex].

We have to remember that a sample space (sometimes denoted as S) is the set of the all possible results for a random experiment.

Calculation of the probabilities

From the question, we have two events:

Event A: event subscribers rented a car during the past 12 months for business reasons.

Event B: event subscribers rented a car during the past 12 months for personal reasons.

[tex] \\ P(A) = 45.2\%\;or\;0.452[/tex]

[tex] \\ P(B) = 56\%\;or\;0.56[/tex]

[tex] \\ P(A \cap B) = 32\%\;or\;0.32[/tex]

With all this information, we can proceed as follows in the next lines.

The probability that a subscriber rented a car during the past 12 months for business or personal reasons.

We have to use here the formula (1) because of the sum of two probabilities, one for event A and the other for event B.

Then

[tex] \\ P(A \cup B) = P(A) + P(B) - P(A \cap B)[/tex]

[tex] \\ P(A \cup B) = 0.452 + 0.56 - 0.32[/tex]

[tex] \\ P(A \cup B) = 0.692\;or\;69.2\%[/tex]

Thus, the probability that a subscriber rented a car during the past 12 months for business or personal reasons is 0.692 or 69.2%.

The probability that a subscriber did not rent a car during the past 12 months for either business or personal reasons.

As we can notice, this is the probability for the complement event that a subscriber did not rent a car during the past 12 months, that is, the probability of the events that remain in the sample space. In this way, the sum of the probability for the event that a subscriber rented a car plus the event that a subscriber did not rent a car equals 1, or mathematically:

[tex] \\ P(\overline{A \cup B}) + P(A \cup B)= 1[/tex]

[tex] \\ P(\overline{A \cup B}) = 1 - P(A \cup B)[/tex]

[tex] \\ P(\overline{A \cup B}) = 1 - 0.692[/tex]

[tex] \\ P(\overline{A \cup B}) = 0.308\;or\;30.8\%[/tex]

As a result, the requested probability for a subscriber that did not rent a car during the past 12 months for either business or personal reasons is 0.308 or 30.8%.

We can also find the same result if we determine the complement for each probability in formula (1), or:

[tex] \\ P(\overline{A}) = 1 - P(A) = 1 - 0.452 = 0.548[/tex]

[tex] \\ P(\overline{B}) = 1 - P(B) = 1 - 0.56 = 0.44[/tex]

[tex] \\ P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - 0.32 = 0.68[/tex]

Then

[tex] \\ P(\overline{A \cup B}) = P(\overline{A}) + P(\overline{B}) - P(\overline{A\cap B})[/tex]

[tex] \\ P(\overline{A \cup B}) = 0.548 + 0.44 - 0.68[/tex]

[tex] \\ P(\overline{A \cup B}) = 0.308[/tex]

Final answer:

The probability of a magazine subscriber renting a car in the past 12 months for business or personal reasons is 69.2%, and the probability of not renting for either reason is 30.8%.

Explanation:

To solve the question: What is the probability that a subscriber rented a car during the past 12 months for business or personal reasons? and What is the probability that a subscriber did not rent a car during the past 12 months for either business or personal reasons?, we can use the principle of inclusion-exclusion in probability.

(a) The probability of renting a car for either reason can be calculated by adding the probabilities of renting for each reason and then subtracting the probability of renting for both reasons (to avoid double counting). Hence, the formula is: P(Business or Personal) = P(Business) + P(Personal) - P(Both).

Substituting the given values: P(Business or Personal) = 45.2% + 56% - 32% = 69.2%.

(b) The probability that a subscriber did not rent a car for either business or personal reasons is the complement of the probability calculated in part (a). Hence, it is calculated as 100% - 69.2% = 30.8%.

If cos B = 3/5 , then what is the positive value of cos 1/2 B , in simplest radical form with a rational denominator?

Answers

Final answer:

To find cos(1/2 B) given cos B = 3/5, we can use the double angle identity for cosine. The positive value of cos(1/2 B) in simplest radical form with a rational denominator is (2√5) / 5.

Explanation:

If cos B = 3/5, we are looking to find cos(1/2 B) in simplest radical form. To find this, we can use the double angle identity for cosine, which tells us that cos(2θ) = 2cos^2(θ) - 1. If we let θ = 1/2 B, then B = 2θ and the identity becomes cos(B) = 2cos^2(1/2 B) - 1. We can solve for cos(1/2 B) by rearranging into 2cos^2(1/2 B) = cos(B) + 1. Substituting the known value of cos(B) gives us:

2cos^2(1/2 B) = 3/5 + 1 = 8/5

So,

cos^2(1/2 B) = 8/10

cos^2(1/2 B) = 4/5

Taking the positive square root, since cosine is positive in the question:

cos(1/2 B) = √(4/5)

cos(1/2 B) = √4 / √5

cos(1/2 B) = 2 / √sqrt(5)

To rationalize the denominator, we multiply the numerator and denominator by √5:

cos(1/2 B) = (2√5) / 5

Therefore, the positive value of cos(1/2 B), in simplest radical form with a rational denominator, is (2√5) / 5.

The positive value of [tex]$\cos \frac{1}{2}B$[/tex] in simplest radical form with a rational denominator is [tex]$\frac{2}{\sqrt{5}}$[/tex].

To find the value of [tex]$\cos \frac{1}{2}[/tex][tex]B$ given $\cos B[/tex][tex]= \frac{3}{5}$[/tex], we can use the half-angle formula for cosine:

[tex]\[ \cos \frac{1}{2}B = \pm\sqrt{\frac{1 + \cos B}{2}} \][/tex]

Since we are looking for the positive value, we will use the positive square root. Plugging in the given value of [tex]$\cos B$[/tex]:

[tex]\[ \cos \frac{1}{2}B = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{5}{5} + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{8}{5}}{2}} = \sqrt{\frac{8}{5} \cdot \frac{1}{2}} = \sqrt{\frac{8}{10}} = \sqrt{\frac{4}{5}} \][/tex]

Now, we can simplify the square root of a fraction by taking the square root of the numerator and the denominator separately:

[tex]\[ \cos \frac{1}{2}B = \frac{\sqrt{4}}{\sqrt{5}} = \frac{2}{\sqrt{5}} \][/tex]

This is the simplest radical form with a rational denominator. Note that we do not need to rationalize the denominator since the question only asks for a rational denominator, not necessarily an integer denominator. The answer[tex]$\frac{2}{\sqrt{5}}$[/tex] is already in the required form."

Sara is the recipient of a trust that will pay her $500 on the first day of each month, starting immediately and continuing for 40 years. What is the value of this inheritance today if the applicable discount rate is 7.3 percent, compounded monthly

Answers

Answer:

The value of this inheritance is $78,192.28

Step-by-step explanation:

The monthly payments Sara will receive  starting today for next 40 years is $500.

Annual Interest Rate = 7.3%

Monthly Interest Rate = Annual Interest Rate/12

                                    =7.3/12

Monthly Interest Rate = 0.6083%

Present Value = $500 + $500/1.006083 + $500/1.006083^2 + $500/1.006083^3 + ... + $500/1.006083^479

Present Value = $500 * 1.006083 * (1 - (1/1.006083)^480) / 0.006083

Present Value = $500 * 156.39156

Present Value = $78,192.28

Thus, the value of this inheritance is $78,192.28

A poll conducted in 2013 found that 52% of U.S. adult Twitter user get at least some news on Twitter, and the standard error for this estimate was 2.4%. Identify each of the following statements as true or false. Provide an explanation justify each of your answers.

a) the data provide statistically significant evidence that more than half U.S. adult twitter users get some news throught Twitter. Use a significance level of alpha = 0.01

b) Since the standard error is 2.4%, we can conclude that 97.6% of all U.S. adult Twitter users were included in the study.

c) If we want to reduce the standard error of estimate, we should collect less data.

d) If we construct a 90% confidence interval for the perventage of U.S. adults Twitter suers who get some news through Twitter, this confidene interval will be wider than a corresponding 99% confidence interval.

Answers

Answer:

a) FALSE we obtain a NOT significant results after conduct the hypothesis tes.

b) FALSE, the standard error is not associated to a certain % of people included in the study

c) FALSE. if we want to reduce the standard error we need to increase the sample size or data

d) FALSE, always if we have a higher confidence level the confidence interval associated to this level would be wider than for a lower confidence interval

Step-by-step explanation:

Data given and notation n  

n represent the random sample taken

[tex]\hat p=0.52[/tex] estimated proportion of U.S. adult Twitter user get at least some news on Twitter

[tex]p_o=0.5[/tex] is the value that we want to test

[tex]\alpha=0.01[/tex] represent the significance level

Confidence=99% or 0.99

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that more than half U.S. adult twitter users get some news throught Twitter:  

Null hypothesis:[tex]p\leq 0.5[/tex]  

Alternative hypothesis:[tex]p > 0.5[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

The standard error is given:

[tex] SE = \sqrt{\frac{p_o (1-p_o)}{n}}=0.024[/tex]

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.52 -0.5}{0.024}=0.833[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level assumed is [tex]\alpha=0.01[/tex]. The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

[tex]p_v =P(z>0.833)=0.2024[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis.

Now let's idendity the statements

a) FALSE we obtain a NOT significant results after conduct the hypothesis tes.

b) FALSE, the standard error is not associated to a certain % of people included in the study

c) FALSE. if we want to reduce the standard error we need to increase the sample size or data

d) FALSE, always if we have a higher confidence level the confidence interval associated to this level would be wider than for a lower confidence interval

Final answer:

The statement a) is true because the data is statistically significant. Statements b), c) and d) are false because: standard error doesn't reflect the portion of the population included in the study; standard error reduces with more data; and a higher confidence level results in a wider interval, not narrower.

Explanation:

a) This statement is true. The data can be considered statistically significant as long as the percentage is not within the standard error range below 50%. In this case, 52% minus 2.4% (standard error) = 49.6% which is below 50%. However, at a significance level of alpha = 0.01, it would be statistically significant since it is more than one standard error away from 50%.

 

b) This statement is false. The standard error is not an indication of what portion of the population is included in the study. Instead, it's a measure of statistical accuracy of the estimate.

c) This statement is false. The standard error of the estimate would typically decrease as we collect more data. As more data is collected, estimates are usually more accurate.

d) This statement is false. A 90% confidence interval is narrower than a 99% confidence interval. The larger the confidence level, the wider the interval to factor in more uncertainty.

Learn more about Statistical Significance here:

https://brainly.com/question/33838241

#SPJ3

The annual per capita consumption of bottled water was 34.5 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 34.5 and a standard deviation of 11 gallons. a. What is the probability that someone consumed more than 35 gallons of bottled​ water? b. What is the probability that someone consumed between 25 and 35 gallons of bottled​ water? c. What is the probability that someone consumed less than 25 gallons of bottled​ water? d. 97.5​% of people consumed less than how many gallons of bottled​ water?

Answers

Answer:

(a) 0.48006

(b) 0.3251

(c) 0.19489

(d) 97.5​% of people consumed less than 56 gallons of bottled​ water.

Step-by-step explanation:

We are given that the per capita consumption of bottled water is approximately normally distributed with a mean of 34.5 and a standard deviation of 11 gallons.

Let X = per capita consumption of bottled water

So, X ~ N([tex]\mu = 34.5,\sigma^{2} =11^{2}[/tex])

The z score probability distribution is given by;

            Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)

(a) Probability that someone consumed more than 35 gallons of bottled​ water = P(X > 35)

   P(X > 35) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{35-34.5}{11}[/tex] ) = P(Z > 0.05) = 1 - P(Z [tex]\leq[/tex] 0.05)

                                                   = 1 - 0.51994 = 0.48006

(b) Probability that someone consumed between 25 and 35 gallons of bottled​ water = P(25 < X < 35)

   P(25 < X < 35) = P(X < 35) - P(X [tex]\leq[/tex] 25)

   P(X < 35) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{35-34.5}{11}[/tex] ) = P(Z < 0.05) = 0.51994

   P(X [tex]\leq[/tex] 25) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{25-34.5}{11}[/tex] ) = P(Z [tex]\leq[/tex] -0.86) = 1 - P(Z < 0.86)

                                                   = 1 - 0.80511 = 0.19489

Therefore, P(25 < X < 35) = 0.51994 - 0.19489 = 0.3251

(c) Probability that someone consumed less than 25 gallons of bottled​ water = P(X < 25)

     P(X < 25) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{25-34.5}{11}[/tex] ) = P(Z < -0.86) = 1 - P(Z [tex]\leq[/tex] 0.86)

                                                   = 1 - 0.80511 = 0.19489

(d) We have to find that 97.5​% of people consumed less than how many gallons of bottled​ water, which means ;

    P(X < x) = 0.975

    P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{x-34.5}{11}[/tex] ) = 0.975

    P(Z > [tex]\frac{x-34.5}{11}[/tex] ) = 0.975

Now in the z table the critical value of X which have an area less than 0.975 is 1.96, i.e.;

           [tex]\frac{x-34.5}{11}[/tex] = 1.96

        [tex]x[/tex] - 34.5 = [tex]1.96 \times 11[/tex]

                  [tex]x[/tex]  = 34.5 + 21.56 = 56.06 ≈ 56 gallons of bottled water

So, 97.5​% of people consumed less than 56 gallons of bottled​ water.

Final answer:

a. The probability that someone consumed more than 35 gallons of bottled water is approximately 52.12%. b. The probability that someone consumed between 25 and 35 gallons of bottled water is approximately 9.58%. c. The probability that someone consumed less than 25 gallons of bottled water is approximately 42.51%. d. 97.5% of people consumed less than approximately 57.56 gallons of bottled water.

Explanation:

a. To find the probability that someone consumed more than 35 gallons of bottled water, we need to standardize the value of 35 using the formula z = (x - mean) / standard deviation, where x is the value we want to find the probability for. In this case, x = 35. Plugging in the values, we get z = (35 - 34.5) / 11 = 0.045. Using a standard normal distribution table, the probability (area under the curve) to the right of 0.045 is approximately 0.5212. Therefore, the probability that someone consumed more than 35 gallons of bottled water is 0.5212 or 52.12%.

b. To find the probability that someone consumed between 25 and 35 gallons of bottled water, we need to find the probability to the right of 25 (P(x > 25)) and subtract the probability to the right of 35 (P(x > 35)). Following the same process as in part (a), we find that P(x > 25) ≈ 0.5746 and P(x > 35) ≈ 0.4788. Therefore, the probability that someone consumed between 25 and 35 gallons of bottled water is approximately 0.5746 - 0.4788 = 0.0958 or 9.58%.

c. To find the probability that someone consumed less than 25 gallons of bottled water, we need to find the probability to the left of 25 (P(x < 25)). Using the standard normal distribution table, we find that P(x < 25) ≈ 0.4251. Therefore, the probability that someone consumed less than 25 gallons of bottled water is approximately 0.4251 or 42.51%.

d. To find the value at which 97.5% of people consumed less than, we need to find the z-score that corresponds to the 97.5th percentile of the standard normal distribution. Using the standard normal distribution table, we find that the z-score corresponding to the 97.5th percentile is approximately 1.96. Now we can use the formula z = (x - mean) / standard deviation to solve for x. Plugging in the values, we get 1.96 = (x - 34.5) / 11. Solving for x, we find x ≈ 1.96 * 11 + 34.5 ≈ 57.56. Therefore, 97.5% of people consumed less than approximately 57.56 gallons of bottled water.

Learn more about Probability and Statistics here:

https://brainly.com/question/35203949

#SPJ3

Mark each statement as True or False?
a) The sine rule is used when we are given either a) two angles and one side, or b) two sides and a non-included angle.
b) The cosine rule is used when we are given either a) three sides or b) two sides and the included angle.

Answers

Answer:

a.True

b. True

Step-by-step explanation:

a. #Given two angles and one side

Let the given angles be A° and B° and side x, the angle and two remaining sides can be calculated as:

[tex]\frac{a}{sin \ A\textdegree}=\frac{b}{sin \ B\textdegree}=\frac{x}{sin \ (180-A-B)\textdegree}[/tex]

#Given two sides and one non-included angle.

Let the given angle A°  and sides x and y, the angle  remaining sideand angle can be calculated as:

[tex]\frac{x}{sin \ A\textdegree}=\frac{y}{sin \ B}=\frac{c}{sin \ C\textdegree}[/tex]

b.#Given three sides

Let the given sides be a, b and c:

The angles can be calculated as:

[tex]a^2=b^2+c^2-2bc\ cos \ A\\\\b^2=a^2+c^2-2ac\ cos \ C\\\\c^2=a^2+b^2-2ab\ cos \ B[/tex]

#Given  two sides and the included angle

Let the sides given be c, b and the angle A, the remaining sides can be calculated by substituting values in the equation;

[tex]a^2=b^2+c^2-2bc\ cos \ A\\\\[/tex]

Find the equilibrium point for the pair of demand and supply functions. Here q represents the number of units​ produced, in​ thousands, and x is the​ price, in dollars. ​Demand: qequals=59005900minus−6060x ​Supply: qequals=400400plus+5050x

Answers

Answer:

Q = 2,900 units

x = $50

Step-by-step explanation:

At the equilibrium point the quantity demanded and supplied at the equilibrium price are the same. The demand and supply functions are:

[tex]D: Q=590 - 60x\\S: Q=400+50x[/tex]

When the quantity is the same, the selling price x is:

[tex]5900 - 60x=400+50x\\x=\frac{5,500}{110}\\ x=\$50[/tex]

And the equilibrium quantity is:

[tex]Q = 400+50*50\\Q=2,900\ units[/tex]

Every month, there are 1000 independent TIE ghter ights, and each TIE ghter ight crashes with a probability of 0.0035. (a) What is the probability that at least 2 crashes occur in the next month

Answers

Answer:

86.46% probability that at least 2 crashes occur in the next month.

Step-by-step explanation:

For each TIE ghter ights, there are only two possible outcomes. Either it crashes, or it does not. The probability of a TIE ghter ights crashing is independent from other TIE ghter ights. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Every month, there are 1000 independent TIE ghter ights, and each TIE ghter ight crashes with a probability of 0.0035.

This means that [tex]n = 1000, p = 0.0035[/tex]

(a) What is the probability that at least 2 crashes occur in the next month?

Either less than 2 crashes occur, or at least 2 do. The sum of the probabilities of these events is decimal 1. So

[tex]P(X < 2) + P(X \geq 2) = 1[/tex]

We want [tex]P(X \geq 2)[/tex]

So

[tex]P(X \geq 2) = 1 - P(X < 2)[/tex]

In which

[tex]P(X < 2) = P(X = 0) + P(X = 1)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{1000,0}.(0.0035)^{0}.(0.9965)^{1000} = 0.0300[/tex]

[tex]P(X = 1) = C_{1000,1}.(0.0035)^{1}.(0.9965)^{999} = 0.1054[/tex]

[tex]P(X < 2) = P(X = 0) + P(X = 1) = 0.0300 + 0.1054 = 0.1354[/tex]

[tex]P(X \geq 2) = 1 - P(X < 2) = 1 - 0.1354 = 0.8646[/tex]

86.46% probability that at least 2 crashes occur in the next month.

The value of a house is increasing by 1900 per year. If it is worth 180,000 today, what will it be worth in five years?

Answers

It will be worth 189,500 in five years

Answer: the population in 5 years is

187600

Step-by-step explanation:

The value of a house is increasing by 1900 per year. This means that it is increasing in an arithmetic progression. The formula for determining the nth term of an arithmetic sequence is expressed as

Tn = a + d(n - 1)

Where

a represents the first term of the sequence.

d represents the common difference.

n represents the number of terms in the sequence.

From the information given,

a = 180000

d = 1900

n = 5

We want to determine the value of the 5th term, T5. Therefore,

T5 = 180000 + 1900(5 - 1)

T5 = 180000 + 7600

T5 = 187600

According to an​ article, 47​% of adults have experienced a breakup at least once during the last 10 years. Of 9 randomly selected​ adults, find the probability that the​ number, X, who have experienced a breakup at least once during the last 10 years is a

Answers

Answer:

a) [tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

b) [tex]P(X=0)=(9C0)(0.47)^0 (1-0.47)^{9-0}=0.0033[/tex]

And replacing we got:

[tex]P(X \geq 1)= 1-P(X<1) = 1-P(X=0)=1-0.0033= 0.9967[/tex]

c) [tex]P(X=4)=(9C4)(0.47)^4 (1-0.47)^{9-4}=0.257[/tex]

[tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

[tex]P(X=6)=(9C6)(0.47)^6 (1-0.47)^{9-6}=0.135[/tex]

And adding we got:

[tex] P(4 \leq X \leq 6)= 0.257+0.228+0.135=0.620 [/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=9, p=0.47)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

Assuming the following questions:

a. exactly five

For this case we can use the probability mass function and we got:

[tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

b. at least one

For this case we want this probability:

[tex] P(X \geq 1)[/tex]

And we can use the complement rule and we got:

[tex]P(X \geq 1)= 1-P(X<1) = 1-P(X=0)[/tex]

[tex]P(X=0)=(9C0)(0.47)^0 (1-0.47)^{9-0}=0.0033[/tex]

And replacing we got:

[tex]P(X \geq 1)= 1-P(X<1) = 1-P(X=0)=1-0.0033= 0.9967[/tex]

c. between four and six, inclusive.

For this case we want this probability:

[tex] P(4 \leq X \leq 6)[/tex]

[tex]P(X=4)=(9C4)(0.47)^4 (1-0.47)^{9-4}=0.257[/tex]

[tex]P(X=5)=(9C5)(0.47)^5 (1-0.47)^{9-5}=0.228[/tex]

[tex]P(X=6)=(9C6)(0.47)^6 (1-0.47)^{9-6}=0.135[/tex]

And adding we got:

[tex] P(4 \leq X \leq 6)= 0.257+0.228+0.135=0.620 [/tex]

It seems like your question was cut off at the end. You did not specify the exact number of adults out of the 9 randomly selected ones that have experienced a breakup. However, I can help you understand how to approach this kind of problem generally using the binomial probability formula.
When we randomly select adults and we are interested in those who have experienced a breakup, with a probability of 47% (or 0.47), this can be modeled as a binomial distribution because:
1. There are a fixed number of trials (n = 9).
2. Each trial has only two possible outcomes (experienced a breakup or did not experience a breakup).
3. The probability of experiencing a breakup is the same for each trial (p = 0.47).
4. Each trial is independent of the others.
The probability of exactly x adults (out of 9) having experienced a breakup can be calculated using the binomial probability formula:
P(X = x) = (n choose x) * p^x * (1 - p)^(n - x)
Where:
- "n choose x" is the binomial coefficient C(n, x) = n! / [x!(n - x)!],
- p is the probability of success on any given trial (in this case, 0.47),
- x is the number of successes out of n trials,
- n! denotes the factorial of n,
- x! denotes the factorial of x.
Because you didn't specify the value of x in your question, I can't give you the exact probability. However, if you give me a specific number of adults who have experienced a breakup (x), I can provide the calculation for that scenario.
For now, if you'd like to calculate this probability for a certain number of adults x, you would plug your values for x and n into the formula and calculate accordingly.
Let's say you wanted to find the probability that exactly 4 out of 9 adults have experienced a breakup, for example. You would calculate it as follows:
P(X = 4) = C(9, 4) * (0.47)^4 * (0.53)^(9 - 4)
         = 126 * (0.47)^4 * (0.53)^5
C(9, 4) is the number of combinations of 9 things taken 4 at a time, which is 9! / (4!(9 - 4)!) = 126.
You would then calculate (0.47)^4, (0.53)^5, and multiply these by 126 to get the probability.
For other values of x, you would undergo a similar process, using the appropriate value of x in the formula.

Biologists stocked a lake with 160 fish and estimated the carrying capacity (the maximal population for the fish of that species in that lake) to be 4,000. The number of fish tripled in the first year. (a) Assuming that the size of the fish population satisfies the logistic equation, find an expression for the size of the population after t years. P

Answers

Answer:

Therefore logistic equation is

[tex]P(t) = \frac{4000}{1+ 24(\frac{36}{11})^t}[/tex]

Step-by-step explanation:

The logistic equation is

[tex]\frac{dP}{dt}= kP(1-\frac{P}{k})[/tex]

The analytic solution is

[tex]P(t)= \frac{K}{1+Ae^{-kt}}[/tex] ; [tex]A=\frac{K-P_0}{P_0}[/tex]

P(t) = the population at time t.

K = the carrying capacity = 4,000

k= constant proportionality

t= time

[tex]P_0[/tex] = 160.

The number of fish tripled in the first year.

P(1) = 3×160 =480

[tex]A= \frac{4000-160}{160}[/tex] =24

[tex]\therefore P(t) =\frac{4000}{1+24 e^{-kt}}[/tex] .....(1)

When t= 1 , P(1)=480

[tex]480=\frac{4000}{1+24 e^{-k}}[/tex]

[tex]\Rightarrow 1+24e^{-k} =\frac{4000}{480}[/tex]

[tex]\Rightarrow 24e^{-k} =\frac{4000}{480} -1[/tex]

[tex]\Rightarrow 24e^{-k}= \frac{25}{3}-1[/tex]

[tex]\Rightarrow 24e^{-k}=\frac{22}{3}[/tex]

[tex]\Rightarrow e^{-k} = \frac{22}{3\times 24}[/tex]

[tex]\Rightarrow e^{-k} = \frac{11}{36}[/tex]

taking ln both sides

[tex]\Rightarrow ln e^{-k} =ln \frac{11}{36}[/tex]

[tex]\Rightarrow {-k} = ln\frac{11}{36}[/tex]

[tex]\Rightarrow k = -ln\frac{11}{36}[/tex]

Putting the value of k in equation (1)

[tex]P(t)=\frac{4000}{1+24e^{ln\frac{36}{11}t}}[/tex]

[tex]\Rightarrow P(t) = \frac{4000}{1+24 (e^{ln\frac{36}{11}})^t}[/tex]

[tex]\Rightarrow P(t) = \frac{4000}{1+ 24(\frac{36}{11})^t}[/tex]

Therefore logistic equation is

[tex]P(t) = \frac{4000}{1+ 24(\frac{36}{11})^t}[/tex]

B. Calculate the distance Kinsey jogs if
she jogs'mile each day for 9 days.

Answers

Answer:

9x miles

Step-by-step explanation:

Distance covered per day = x mile per day

Number of days = 9days

Unknown:

Distance covered for 9 days = ?

Solution:

This is a simple problem.

Since Kinsey covered a distance of x mile/day, in 9 days:

                 x mile is covered in 1 day;

                         

               1 day, Kinsey covers x mile

               9 days, she will cover  9 x  (x) miles = 9x miles

Final answer:

Kinsey has jogged 9 miles in total over the 9 days.

Explanation:

The question asks us to calculate the distance Kinsey jogs if she jogs 1 mile each day for 9 days.

To find the total distance, we simply need to multiply the daily distance by the number of days she jogs.

To calculate:

Identify the daily distance jogged: 1 mile.

Identify the number of days jogged: 9 days.

Multiply the daily distance by the number of days: 1 mile/day  imes 9 days.

After performing the multiplication, we find that Kinsey has jogged 9 miles in total over the 9 days.

Eli, a pretty smart ape in the Salt Lake City zoo, has correctly picked the winner of the last 7 Super Bowls. Read about Eli's prowess at selecting winners here. Question. If Eli is guessing when he chooses a Super Bowl winner (that is, he mentally flips a fair coin to decide which team he chooses as the winner), what is the probability that Eli chooses 7 winners in a row

Answers

Answer:

0.0078125

Step-by-step explanation:

If the probability of flipping a fair coin (mentally) correctly for 1 row is 0.5, then the probability of flipping it correctly for 2 rows is

0.5 * 0.5 = 0.25

for 3 rows: 0.5*0.5*0.5 = 0.125

...

For 7 rows:

[tex]0.5*0.5*0.5*0.5*0.5*0.5*0.5 = 0.5^7 = 0.0078125[/tex]

If sin⁡ θ=− 8/17 and 270°<θ<360°, what is cos⁡ θ?

Answers

Final answer:

To determine cos θ when sin θ is -8/17 and θ is in the fourth quadrant, use the Pythagorean identity; the result is cos θ = 15/17.

Explanation:

Given the information that sin θ is -8/17 and the angle θ is between 270° and 360°, we need to determine the cos θ. In the given range, θ lies in the fourth quadrant where sine is negative and cosine is positive.

Using the Pythagorean identity sin2 θ + cos2 θ = 1, we can find cos θ. Since sin θ = -8/17, we have:

sin2 θ = (-8/17)2 = 64/289

cos2 θ = 1 - sin2 θ = 1 - 64/289 = 225/289

cos θ = √(225/289)

cos θ = 15/17 (since cosine is positive in the fourth quadrant)

Therefore, cos θ = 15/17.

Other Questions
Find the area of the isosceles triangle with legs 12 and base 17. Simplify all radicalsa2+b2=c2 Which of the following do fossils represent and what do they tell us? a. extant species that tell the story of human origins b. extinct organisms that provide a record of the history of life on the planet c. plants that provide proof of catastrophism d. organisms that demonstrate the age of the Earth through the process of uniformitarianism What is the coordinating conjunction in this sentence?Marcel is a talented artist but a horrible singer.Please answer ASAP!! The department in which you work in your company has 24 employees: 10 women and 14 men. A team of 4 employees must be selected to represent the department at a companywide meeting in the headquarters of the company. The team must have two women and two men. How many different teams of 4 can be selected Consider the following. (a) Explain why 0.41 cannot be the probability of some event. A probability must be between zero and one. A probability must be greater than one. A probability must be an integer. To deal with the problems in analyzing and interpreting research information in an international market, a marketing researcher must possess three talents. What is one of these talents? Please help! Which type of foreign policy is most directly connected with U.S. efforts to gain control over the Panama Canal?1) liberal internationalism2) dollar diplomacy3) big stick diplomacy4) progressive imperialism What is the relationship between the number oflikes a post receives and the perception that peoplehave of a social media post? Use evidence from thetext in your response. What does The Bureau of Consumer Protection do for consumers? Write T for True and F for False. Correct any false statements to make them true.1. Discrimination against African Americans stopped after the Civil War.2Jim Crow laws separated black Americans from white Americans in public placeslike theaters, schools, and restaurants.3. Trains and buses were not segregated under Jim Crow laws.4 Homer Plessy was an African American who challenged a Jim Crow law.5. Homer Plessy was put in jail for eating in a 'Whites Only restaurant.6. The events in the Plessy v. Ferguson case took place in Massachusetts.7. The Plessy v. Ferguson case was not heard by the U.S. Supreme Court.8. The Plessy v. Ferguson case confirmed that separate facilities for blacks andwere legal as long as they were equal. The rate constant for a certain reaction is kkk = 8.70103 s1s1 . If the initial reactant concentration was 0.150 MM, what will the concentration be after 19.0 minutes? Another unit cube with the same length, width, and height as the unit cube shown would have the same volume. ANSWER TO BE NAMED BRAINLIEST GET A THANK YOU AND 5 STAR VOTE FOR YOUR ANSWERPLZ HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ALSO I WILL FRIEND REQUEST U Find the area of trapezoid ABCD.A) 80 cm2 B) 96 cm2 C) 104 cm2 D) 112 cm2 Which expression is equivalent to 9/10 what two perfect squares are the closest to 175 True or False: Deadweight loss is the loss in total surplus that occurs whenever an action reduces the quantity transacted below the efficient market equilibrium. This is _____. Jackson flipped a coin ten time. He flipped heads 4 times and tails 6 times. What is the experimental probability that Jackson will flip heads on his next flip ? 3. In the way Mayella behaves on the witness stand, what evidence is there thatshe is lying? A local civic group gave the county government $25,000 cash to be used to pay the utility bills of persons with income below the poverty level. The city should account for the $25,000 contribution in:a.An investment trust fund.b.The General Fund.c.A permanent fund.d.Private-purpose trust fund. A corporate Web site contains errors on 50 of 1000 pages. If 100 pages are sampled randomly, without replacement, approximate the probability that at least 2 of the pages in error are in the sample. (Use normal approximation to the binomial distribution.)