Determine the average and rms values for the function, y(t)=25+10sino it over the time periods (a) 0 to 0.1 sec and (b) 0 to 1/3 sec. Discuss which case represents the long-term behavior of the signal (Hint, consider the period of the signal).

Answers

Answer 1

Answer:

Explanation:

AVERAGE: the average value is given as

[tex]\frac{1}{0.1} \int\limits^\frac{1}{10} _0 {25+10sint} \, dt = \frac{1}{0.1} [ 25t- 10cos\ t]_0^{0.1}[/tex]

=[tex]\frac{1}{0.1} ([2.5-10]-10)=-175[/tex]

RMS= [tex]\sqrt{\int\limits^\frac{1}{3} _0 {y(t)^2} \, dt }[/tex]

[tex]y(t)^2 = (25 + 10sin \ t)^2 = 625 +500sin \ t + 10000sin^2 \ t[/tex]

[tex]\frac{1}{\frac{1}{3} } \int\limits^\frac{1}{3} _0 {y(t)^2} \, dt =3[ 625t -500cos \ t + 10000(\frac{t}{2} - \frac{sin2t}{4} )]_0^{\frac{1}{3} }[/tex]

=[tex]3[[\frac{625}{3} - 500 + 10000(\frac{1}{6} - 0.002908)] + 500] = 2845.92\\[/tex]

therefore, RMS = [tex]\sqrt{2845.92} = 53.3[/tex]


Related Questions

A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenly exposed to combustion products at 800°C. Determine the time of exposure necessary for the surface to reach the ignition temperature of 400°C, assuming the convection heat transfer coefficient between the wall and the products to be 20 W/m2 K. At that time, what is the temperature 1 cm below the surface? (Note: use an appropriate equation for the semi-infinite wall case; compare equations 18.20 and 18.21 in the text).

Answers

Answer:

Explanation:

The detailed calculation and appropriate equation with substitution is as shown in the attached file.

The design for a new cementless hip implant is to be studied using an instrumented implant and a fixed simulated femur.
Assuming the punch applies an average force of 2 kN over a time of 2 ms to the 200-g implant, determine (a) the velocity of the implant immediately after impact, (b) the average resistance of the implant to penetration if the implant moves 1 mm before coming to rest.

Answers

Answer:

a) the velocity of the implant immediately after impact is 20 m/s

b) the average resistance of the implant is 40000 N

Explanation:

a) The impulse momentum is:

mv1 + ∑Imp(1---->2) = mv2

According the exercise:

v1=0

∑Imp(1---->2) = F(t2-t1)

m=0.2 kg

Replacing:

[tex]0+F(t_{2} -t_{1} )=0.2v_{2}[/tex]

if F=2 kN and t2-t1=2x10^-3 s. Replacing

[tex]0+2x10^{-3} (2x10^{-3} )=0.2v_{2} \\v_{2} =\frac{4}{0.2} =20m/s[/tex]

b) Work and energy in the system is:

T2 - U(2----->3) = T3

where T2 and T3 are the kinetic energy and U(2----->3) is the work.

[tex]T_{2} =\frac{1}{2} mv_{2}^{2} \\T_{3} =0\\U_{2---3} =-F_{res} x[/tex]

Replacing:

[tex]\frac{1}{2} *0.2*20^{2} -F_{res} *0.001=0\\F_{res} =40000N[/tex]

A heat engine operates between a source at 477°C and a sink at 27°C. If heat is supplied to the heat engine at a steady rate of 65,000 kJ/min, determine the maximum power output of this heat engine.

Answers

Answer:

[tex] T_C = 27+273.15 = 300.15 K[/tex]

[tex] T_H = 477+273.15 = 750.15 K[/tex]

And replacing in the Carnot efficiency we got:

[tex] e= 1- \frac{300.15}{750.15}= 0.59988 = 59.98 \%[/tex]

[tex] W_{max}= e* Q_H = 0.59988 * 65000 \frac{KJ}{min}= 38992.2 \frac{KJ}{min}[/tex]

Explanation:

For this case we can use the fact that the maximum thermal efficiency for a heat engine between two temperatures are given by the Carnot efficiency:

[tex] e = 1 -frac{T_C}{T_H}[/tex]

We have on this case after convert the temperatures in kelvin this:

[tex] T_C = 27+273.15 = 300.15 K[/tex]

[tex] T_H = 477+273.15 = 750.15 K[/tex]

And replacing in the Carnot efficiency we got:

[tex] e= 1- \frac{300.15}{750.15}= 0.59988 = 59.98 \%[/tex]

And the maximum power output on this case would be defined as:

[tex] W_{max}= e* Q_H = 0.59988 * 65000 \frac{KJ}{min}= 38992.2 \frac{KJ}{min}[/tex]

Where [tex] Q_H[/tex] represent the heat associated to the deposit with higher temperature.

2. If you have 10 ft3 of an ideal gas stored at 75 F and at 12 psia that is expanded to 15 ft3 , what is the resulting pressure? 3. The atmospheric pressure is 14.3 psi. How many inches of mercury (s=13.6) does the National Weather Service report this pressure as? Pressure = __________________

Answers

Answer:

2. The decrease in pressure will be 8psia

3. The NWS will report the pressure to be 0.0657inchHg

Explanation:

2. This is an isothermal system because it was only the volume of the gas that was increased, and temperature was constant. To find the pressure, use the Boyle's law equation below.

P1V1 ÷ P2V2..............(1)

make P2 the subject of the formula

P2 = P1V1 ÷ V2 ..............(2)

P1 = 12psia

V1 = 10ft3

V2 = 15ft3

Using equation 2

P2 = (12 × 10) ÷ 15 = 8psia

Therefore, the resulting pressure of the gas will decrease to 8psia, which obeys Boyle's law that states that pressure is inversely proportion to volume in a given mass of gas. That means, as volume increases pressure should decrease.

3. The National weather Service report, are the national agency that forecast the weather, to report how the climate will change. To report the pressure of a weather, their use a pressure barometer, and reports the reading in the pressure barometer, which is the hight the Mercury in the barometer increased to.

Using a pressure barometer.

Patm = pgh..............(3)

Make h the subject of formula

h = Patm ÷ pg ..............(4)

Patm is the Atmospheric pressure = 4.3psi

p is the density of Mercury = 13.6

g is the force of gravity = 9.8

h is the hight of the Mercury in the barometer, which is the pressure that is measured.

Using equation 4

h = 4.3 ÷ (13.6 × 9.8) = 0.0322629psi

To convert Pound- force per square inch to inch of mecury (that's is psi to inchHg)

1psi = 2.03602inchHg

Therefore

0.0322629psi = 0.065689399inchHg

The NWS will report the pressure to be 0.0657inchHg

Pro-Cut Rotor Matching Systems provide a non-directional finish without performing additional swirl sanding — true or false?

Answers

Answer:True

Explanation:Rotor matching is a term used to describe the process through a brake rotor is aligned to the hub and bearing assembly to produce a smooth, flat, and straight friction surface.

Rotor matching is an essential process which is required to prevent swirling of a break when a vehicle is stopping, rotor matching is needed for efficient and effective break system performance as it is one of the main determinant factors for accidents arising from break failures.

This report contains three fields: the label of the vending machine, what percentages of the beverages it was last stocked with are sold, and how many total dollars of sales has this generated. You will need to create a new dictionary where the keys are the vending machine labels, and the values are a new type of object called a `MachineStatus`. For each instance, the `MachineStatus` class should store:

Answers

Answer:

the label of a vending machinethe total amount of beverages the vending machine was previously stocked withthe total amount of beverages currently in stock in the vending machinethe total income of the machine from the last time it was stocked until now (note: beverages have different prices, so you cannot simply multiply the change in stock times $1.50 to get the total income)

Explanation:

For each instance, the `MachineStatus` class should store: the label of a vending machine the total amount of beverages the vending machine was previously stocked with the total amount of beverages currently in stock in the vending machine the total income of the machine from the last time it was stocked until now.

Water at 158C (r 5 999.1 kg/m3 and m 5 1.138 3 1023 kg/m·s) is flowing steadily in a 30-m-long and 5-cm-diameter horizontal pipe made of stainless steel at a rate of 9 L/s. Determine (a) the pressure drop, (b) the head loss, and (c) the pumping power requirement to overcome this pressure drop.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

(a) the pressure drop is [tex]\Delta P_L = 100.185\ kPa[/tex]

(b) the head loss is the [tex]h_L =10.22\ m[/tex]

(c) the pumping power requirement to overcome this pressure drop [tex]W_p = 901.665\ W[/tex]

Explanation:

So the question we are told that the water is at a temperature of 15°C

 And also we are told that the density of the water is [tex]\rho=999.1\ kg/m^3[/tex]

 We are also told that the dynamic viscosity of the water is                                        [tex]\mu = 1.138 *10^{-3} kg/m \cdot s[/tex]

   From the diagram the length of the pipe is [tex]L=[/tex] 30 m    

  The diameter is given as [tex]D=[/tex] 5 cm [tex]\frac{5}{100} m = 0.05m[/tex]

   The volumetric flow rate is given as  [tex]Q=[/tex] 9 L/s [tex]= \frac{9}{1000} m^3/ s = 0.009\ m^3/s[/tex]

Now the objective of this solution is to obtain

      i the pressure drop,  ii the head loss iii  the pumping power requirement to overcome this pressure drop

to obtain this we need to get the cross-sectional area of the pipe which will help when looking at the flow analysis

       So mathematically the cross-sectional area is

                               [tex]A_s =\frac{\pi}{4} D^2[/tex]

                                    [tex]= \frac{\pi}{4} (5*10^{-2})[/tex]

                                   [tex]=1.963*10^{-3} m^2[/tex]

Next thing to do is to obtain average flow velocity which is mathematically represented as

                 [tex]v = \frac{Q}{A_s}[/tex]

                 [tex]v =\frac{9*10^{-3}}{1.963*10^{-3}}[/tex]

                  [tex]=4.585 \ m/s[/tex]

 Now to determine the type of flow we have i.e to know whether it a laminar flow , a turbulent flow or an intermediary flow

  We use the Reynolds number

if it is below [tex]4000[/tex] then it is a laminar flow but if it is higher then it is a turbulent flow ,now when it is exactly the value then it is an intermediary flow

     This Reynolds number is mathematically represented as

                           [tex]Re = \frac{\rho vD}{\mu}[/tex]

                                [tex]=\frac{(999.1)(4.585)(0.05)}{1.138*10^{-3}}[/tex]

                               [tex]=2.0127*10^5[/tex]

Now since this number is greater than 4000 the flow is turbulent

So we are going to be analyse the flow using the Colebrook's  equation which is mathematically represented as

                [tex]\frac{1}{\sqrt{f} } =-2.0\ log [\frac{\epsilon/D_h}{3.7} +\frac{2.51}{Re\sqrt{f} } ][/tex]

 Where f is the friction  factor , [tex]\epsilon[/tex] is the surface roughness ,

Now generally the surface roughness for stainless steel is

                                             [tex]\epsilon = 0.002 mm = 2*10^{-6} m[/tex]

Now substituting the values into the equation we have

                                   [tex]\frac{1}{\sqrt{f} } =-2.0\ log [\frac{2*10^{-6}/5*10^{-2}}{3.7} +\frac{2.51}{(2.0127*10^{5})\sqrt{f} } ][/tex]

So solving to obtain f we have

                                  [tex]\frac{1}{\sqrt{f} } =-2.0\ log [\frac{4*10^{-5}}{3.7} +\frac{2.51}{(2.0127*10^{5})\sqrt{f} } ][/tex]

                                 [tex]= -2.0log[1.0811 *10^{-5} +\frac{1.2421*10^{-5}}{\sqrt{f} } ][/tex]

                              [tex]f = 0.0159[/tex]

Generally the pressure drop is mathematically represented as

                                            [tex]\Delta P_L =f\ \frac{L}{D} \ \frac{\rho v^2}{2}[/tex]

Now substituting values into the equation

                                           [tex]= 0.0159 [\frac{30}{5*10^{-5}} ][\frac{(999.1)(4.585)}{2} ][/tex]

                                           [tex]=100.185 *10^3 Pa[/tex]

                                           [tex]=100.185 kPa[/tex]  

Generally the head loss in the pipe is mathematically represented as

                        [tex]h_L =\frac{\Delta P_L}{\rho g}[/tex]

                            [tex]= \frac{100.185 *10^3}{(999.1)(9.81)}[/tex]

                             [tex]=10.22m[/tex]

Generally the power input required to overcome this pressure drop is mathematically represented as

                     [tex]W_p = Q \Delta P_L[/tex]

                         [tex]=(9*10^{-3}(100.185*10^3))[/tex]

                         [tex]= 901.665\ W[/tex]

       

Define the Artist class in Artist.py with a constructor to initialize an artist's information. The constructor should by default initialize the artist's name to "None" and the years of birth and death to 0. Define the Artwork class in Artwork.py with a constructor to initialize an artwork's information. The constructor should by default initialize the title to "None", the year created to 0, and the artist to use the Artist default constructor parameter values. Add an import statement to import the Artist class. Add import statements to main.py to import the Artist and Artwork classes.

Answers

The codes for the files are:

File: Artist.py

This file will contain the Artist class with a constructor initializing the artist's name, birth year, and death year.

# Artist. py

class Artist:

   def __init__(self, name="None", birth_year=0, death_year=0):

       self.name = name

       self. birth_year = birth_year

       self. death_year = death_year

File: Artwork.py

This file will define the Artwork class and import the Artist class from Artist.py. It initializes the artwork's title, year of creation, and artist.

# Artwork. py

from Artist import Artist

class Artwork:

   def __init__(self, title="None", year_created=0, artist=Artist()):

       self. title = title

       self. year_created = year_created

       self. artist = artist

File: main. py

This file will import both Artist and Artwork classes and create instances of them to demonstrate their usage.

# main. py

from Artist import Artist

from Artwork import Artwork

# Creating an instance of Artist

artist1 = Artist("Vincent van Gogh", 1853, 1890)

# Creating an instance of Artwork using the artist instance

artwork1 = Artwork("Starry Night", 1889, artist1)

# Printing artist and artwork details to verify

print(f"Artist: {artwork1. artist. name}, Born: {artwork1. artist. birth_year}, Died: {artwork1. artist. death_year}")

print(f"Artwork: {artwork1. title}, Created in: {artwork1. year_created}")

Execution and Output

When you run the main.py script, it will create an Artist object for Vincent van Gogh and an Artwork object for one of his most famous pieces, "Starry Night". The script will then print the details of both the artist and the artwork.

Expected Output:

Artist: Vincent van Gogh, Born: 1853, Died: 1890

Artwork: Starry Night, Created in: 1889

The contents of a tank are to be mixed with a turbine impeller that has six flat blades. The diameter of the impeller is 3 m. If the temperature is 20°Cand the impeller is rotated at 30 rpm (rev/min), what will be the power consumption? Use power number (Np) of 3.5

Answers

Answer:

P=3.31 hp (2.47 kW).

Explanation:

Solution

Curve A in Fig1. applies under the conditions of this problem.

S1 = Da / Dt ; S2 = E / Dt ; S3 = L / Da ; S4 = W / Da ; S5 = J / Dt and S6 = H / Dt

The above notations are with reference to the diagram below against the dimensions noted. The notations are valid for other examples following also.

32.2

Fig. 32.2 Dimension of turbine agitator

The Reynolds number is calculated. The quantities for substitution are, in consistent units,

D a =2⋅ft

n= 90/ 60 =1.5 r/s

μ = 12 x 6.72 x 10-4 = 8.06 x 10-3 lb/ft-s

ρ = 93.5 lb/ft3 g= 32.17 ft/s2

NRc = (( D a) 2 n ρ)/ μ = 2 2 ×1.5×93.5 8.06× 10 −3 =69,600

From curve A (Fig.1) , for NRc = 69,600 , N P = 5.8, and from Eq. P= N P × (n) 3 × ( D a )5 × ρ g c

The power P= 5.8×93.5× (1.5) 3 × (2) 5 / 32.17 =1821⋅ft−lb f/s requirement is 1821/550 = 3.31 hp (2.47 kW).

randomFactory public static Shape randomFactory(int canvas_width, int canvas_height) Create a random shape. Create a random shape to fit on a canvas of the given size. The shape will be no larger than half the size of the canvas and will fit completely on it. Parameters: canvas_width - the width of the canvas being used. canvas_height - the height of the canvas being used. Returns: the generated shape.

Answers

Answer:

import java.awt.Color;

import java.awt.Canvas;

import java.awt.Button;

import java.awt.Image;

import java.awt.Graphics;

import java.awt.Frame;

import java.awt.event.*;

import java.util.*;

/**

  * Check attached images for the continuation of the code

  * 5000 characters exceeded

  * It appears that your answer contains either a link or inappropriate words error

  */

piston cylinder has 5kg water at 500kPa and 300c. Heated by 100V and 4A that operates for 500 secs. It's cooled to a saturated liquid. what is the boundary work and heat lost?

Answers

Answer: boundary work is 1.33kJ and heat lost is 200kJ

Explanation: mass of water m = 5kg

Molar mass of water mm = 18kg/mol

No of moles n = 5/18 = 0.28

Pressure P = 500x10^3

Temperature T = 300°c = 573K

R = 8.314pa.m3/mol/k a constant.

Using PV = nRT

V = nRT/P

V = (0.28x8.314x573)÷(500x10^3)

V = 0.00266m3

Work on boundary w = PV

W = 500x10^3 x 0.00266 = 1330 J

= 1.33kJ

Heat lost on cooling is equal to electrical heat Q used to heat the water initially

Q =Ivt

I = current = 4A

v = voltage = 100

T = time = 500sec

Q = 4x100x500 = 200000 = 200kJ

Please write the following code in Python 3. Also please show all output(s) and share your code.

Below is a for loop that works. Underneath the for loop, rewrite the problem so that it does the same thing, but using a while loop instead of a for loop. Assign the accumulated total in the while loop code to the variable sum2. Once complete, sum2 should equal sum1.


sum1 = 0

lst = [65, 78, 21, 33]

for x in lst:
sum1 = sum1 + x

Answers

Final answer:

Explanation of rewriting code from for loop to while loop in Python.

Explanation:

To rewrite the given code using a while loop instead of a for loop, you can iterate over the list indices and manually accumulate the total.

Here is the code:

sum1 = 0
lst = [65, 78, 21, 33]
index = 0
sum2 = 0
while index < len(lst):
   sum2 += lst[index]
   index += 1

By using this code snippet, the sum accumulated using the while loop will be stored in the variable sum2, which should equal the sum1 calculated using the for loop.

A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below.
Note: The gas constant for air is R=0.287 kJ/kg-K.

--Given Values--
T1 (K) = 306
P1 (kPa) = 140
r = 10
rc = 1.75

a) Determine the specific internal energy (kJ/kg) at state 1.
Your Answer =
b) Determine the relative specific volume at state 1.
Your Answer =
c) Determine the relative specific volume at state 2.
Your Answer =
d) Determine the temperature (K) at state 2.
Your Answer =
e) Determine the pressure (kPa) at state 2.
Your Answer =
f) Determine the specific enthalpy (kJ/kg) at state 2.
Your Answer =
g) Determine the temperature (K) at state 3.
Your Answer =
h) Determine the pressure (kPa) at state 3.
Your Answer =
i) Determine the specific enthalpy (kJ/kg) at state 3.
Your Answer =
j) Determine the relative specific volume at state 3.
Your Answer =
k) Determine the relative specific volume at state 4.
Your Answer =
l) Determine the temperature (K) at state 4.
Your Answer =
m) Determine the pressure (kPa) at state 4.
Your Answer =
n) Determine the specific internal energy (kJ/kg) at state 4.
Your Answer =
o) Determine the net work per cycle (kJ/kg) of the engine.
Your Answer =
p) Determine the heat addition per cycle (kJ/kg) of the engine.
Your Answer =
q) Determine the efficiency (%) of the engine.
Your Answer =

help A through Q

Answers

Answer:

Explanation: see attachment

This assignment covers the sequential circuit component: Register and ALU. In this assignment you are supposed to create your own storage component for two numbers using registers. Those two numbers are then passed into a custom ALU that calculates the result of one of four possible operations. Key aspect of this assignment is to understand how to control registers, how to route signals and how to design a custom ALU.

Answers

Answer:

The part I called command in the first diagram has been renamed to opcode, or operation code. This is a set of bits (a number) that will tell the ALU which action to perform. I can get the LC-3 opcodes for ADD and NOT and ADD from the book, so I'm not too worried.

Note the #? comment by the switch above opcode. This means I'm not sure how many switches I will need. How many bits do I need to perform all the operations I want? The textbook will tell me.

Materials

Now I make a list of all the materials you have accumulated so far. This list is just an example; yours may be different.

Two 4-bit inputs

One 4-bit output

Two keypads for 4-bit input

Three 7-segment displays (2 for input, 1 for output)

A bunch of switches for opcode (could use a keypad, I guess, but switches are so much more geeky)

A bunch of lights too

The "is zero" LED

One button for clock

One button for reset

One switch for carry-in

Include logic to perform a SUB instruction. That is, subtract the second operand from the first (out = in1 - in2). All three values -- both inputs and the output -- must be two's complement numbers (negative numbers must be represented). Your design may work in one (8 points) or two (4 points) clock cycles.

Explanation:

You are allowed to use the Logisim built-in registers.

The clear input of the register should not be used (do not connect anything to

them).

Custom ALU

Use the provided subcircuit in the template to implement your ALU. You do not have to create additional subcircuits to do this. The ALU has a total of three inputs: First number, second number and select operation input. And one output: Result. The first and second number are used as input for the operations the ALU performs. The select input decides which operation result will be on the single output of the ALU. The ALU is supposed to calculate: NumberA OPERATION NumberB. Register 1 of the storage contains NumberA and Register 2 contains NumberB. The ALU must be able to compute signals with a 4-bit width. Make sure to add labels to all inputs and outputs.

The following operations should be performed for each select input combination (s1s0): • 00: Logic Bitwise XOR

• 01: Multiplication

• 10: Division

• 11: Addition Notes:

You can change the inputs bit width / data bits of any gate to more that 1-bit.

The Logic Bitwise XOR operation can be done with a single XOR gate.

You are also allowed to use the built-in arithmetic logic components and multi- plexer provided by Logisim.

If the result is larger than 4 bits, it will be truncated (only 4 LSB will be shown). This behavior is intended for this assignment. Also, negative results do not have to be considered.

Once you have implemented the ALU circuit, connect the wires in the main circuit properly and test all four operations of your ALU in combination with the storage component.

1. A wood board is one of a dozen different parts in a homemade robot kit. The width, depth, and height dimensions of the board are 7.5 x 14 x 1.75 inches, respectively. The board is made from southern yellow pine, which has an air dry weight density of .025 lb/in.3. a. What is the volume of the wood board? Precision = 0.00

Answers

Answer:

183.75 cubic inches.

Explanation:

The volume of the wood board is determine by means of this expression:

[tex]V = w \cdot h \cdot l[/tex]

By replacing variables:

[tex]V = (7.5 in) \cdot (14 in) \cdot (1.75 in)\\V = 183.75 in^{3}[/tex]

Using the Distortion-Energy failure theory: 8. (5 pts) Calculate the hydrostatic and distortional components of the stress 9. (10 pts) Calculate the von Mises stress and the factor of safety. 10. (10 pts) Of the two factors of safety computed, which one is more realistic? What failure theory should you use if you want to be conservative? 11. (10 pts) Suppose all the principal stresses are equal in magnitude and sign, and larger than Sy. What are the predicted safety factors by the maximum shear stress and distortion energy failure theories? Calculate your results and explain them. What do you think would happen in reality?

Answers

Answer:

Detailed solution is given below:

A 2.0-in-thick slab is 10.0 in wide and 12.0 ft long. Thickness is to be reduced in three steps in a hot rolling operation. Each step will reduce the slab to 75% of its previous thickness. It is expected that for this metal and reduction, the slab will widen by 3% in each step. If the entry speed of the slab in the first step is 40 ft/min, and roll speed is the same for the three steps.

Calculate:

a) lenghtb) exit velocity of the final slab

Answers

Answer:

L_f = 26.025 ft

v_f = 51.77 ft/min

Explanation:

Given:-

- The thickness of the slab initially, t_o = 2 in

- The width of the slab initially, w_o = 10 in

- The Length of the slab initially, L_o = 12.0 ft

- The reduction in thickness in each of three steps, r = 75%

- The widening of the slab in each of three steps , m = 3%

- The entry speed vi = 40 ft/min

- The roll speed remains the same

Find:-

a) length

b) exit velocity

Of the final slab

Solution:-

- The final thickness (t_f) after three passes is as follows:

                      t_f =  ( r / 100 )^n * t_o

Where, n = number of passes.

                     t_f = ( 75 / 100 ) ^3 * ( 2.0 )

                    t_f = 0.844 in

- The final width (w_f) after three passes is as follows:

                      w_f =  ( m / 100 + 1 )^n * w_o

Where, n = number of passes.

                     w_f = ( 3 / 100 + 1 ) ^3 * ( 10.0 )

                     w_f = 10.927 in

- Assuming the Volume of the slab remains the same. Zero material Loss. The final length of slab can be determined:

                    t_o*w_o*L_o = t_f*w_f*L_f

                    L_f = ( 2 * 10 * 12 ) / ( 0.844 * 10.927 )

                    L_f = 26.025 ft

- We can use the volume rate equation as the roll speed remains constant i.e change in rate of volume is zero. Hence, we can write the before and after the 3rd step formulation:

                   t_i*w_i*v_i = t_f*w_f*v_f

Where, v_i : The entry step speed

            v_f : Third step exit speed.

                   (0.75)^2 * 2 * (1.03)^2 * 10 * 40 =  (0.844)*(10.927)*v_f

                  v_f = 51.77 ft/min    

If you stretch a rubber hose and pluck it, you can observe a pulse traveling up and down the hose. What happens to the speed of the pulse if you stretch the hose more tightly

Answers

Answer:

Explanation:if you stretch the hose more tightly the speed of the pulse will reduce..

The flow of a liquid in a 2 inch nominal diameter steel pipe produces a pressure drop due to friction of 78.86 kPa. The length of pipe is 40 m and the mean velocity is 3 m/s. if the density of the liquid is 1000 kg/m^3, then a) determine the reynolds number b) determind if the flow is laminar or tubulent c) compute viscosity of the liquid d) compute the mass flow rate (assume ?, equivalent roughness factor, for Steel pipe to be 45.7 x 10-6 m)

Answers

Answer:

Explanation:

The detailed steps and careful analysis is as shown in the attached file.

Based on the calculations, the Reynolds number is equal to [tex]2.9 \times 10^3[/tex]

Given the following data:

Length of pipe = 40 meters.Diameter of pipe = 2 inches to m = 0.0508 m.Pressure drop = 78.86 kPa.Mean velocity = 3 m/s.Density of liquid = 1000 [tex]kg/m^3[/tex].Roughness factor = [tex]45.7 \times 10^{-6}[/tex] m.

How to calculate the Reynolds number.

Reynolds number has a direct relationship with friction factor. Thus, we would determine the friction factor by using this formula:

[tex]f=\frac{2 \Delta P D}{ \rho Lu^2}[/tex]

Where:

D is the diameter.L is the length.[tex]\Delta P[/tex][tex]\DeltaP[/tex][tex]\DeltaP[/tex] is the pressure drop.u is the mean velocity.[tex]\rho[/tex] is the density.

Substituting the given parameters into the formula, we have;

[tex]f=\frac{2 \times 78.86 \times 10^3 \times 0.0508}{ 1000 \times 40 \times 3^2}\\\\f=\frac{8012.176}{360000}[/tex]

f = 0.0223.

For the Reynolds number:

[tex]N_{Re}=\frac{64}{f} \\\\N_{Re}=\frac{64}{0.0223}[/tex]

Reynolds number = [tex]2.9 \times 10^3[/tex]

Note: Fluid flow is turbulent when Reynolds number is greater than 2000 ([tex]N_{Re} > 2000[/tex]) and it is laminar when it is lesser than 2000 ([tex]N_{Re} < 2000[/tex]).

b. The flow of this liquid is turbulent.

c. To determine the viscosity:

[tex]V=\frac{\rho uD}{N_{Re}} \\\\V=\frac{1000 \times 3 \times 0.0508}{2.9 \times 10^3} \\\\V=\frac{152.4}{2.9 \times 10^3}[/tex]

V = 0.0526 Kgm/s.

d. To determine the mass flow rate:

[tex]m=\rho A u=\rho u\frac{\pi}{4} D^2\\\\m=1000 \times 3 \times 0.7854 \times 0.0508^2[/tex]

m = 6.081 Kg/s.

Read more on Reynolds number here: https://brainly.com/question/14306776

If block A of the pulley system is moving downward at 6 ft>s while block C is moving down at 18 ft>s, determine the relative velocity of block B with respect to C.

Answers

Answer:

Explanation:

The detailed steps and appropriate calculation with analysis is as shown in the attachment.

The final answer is "39 ft/s".

Determine the string's length.

[tex]S_A +2S_B +2S_C = Constant[/tex]

Calculate the equation in terms of time.

[tex]v_A+2v_B +2v_c =0 \\\\6 +2v_B +2(18)=0 \\\\2v_B = -42 \\\\V_B =-21 \frac{ft}{s}[/tex]

Calculate the relative velocity of B with respect to C.[tex]V_B = v_c + V_{\frac{B}{C}} \\\\-21=18+ V_{\frac{B}{C}} \\\\ V_{\frac{B}{C}}= -39 \ \frac{ft}{s} = 39 \ \frac{ft}{s} \uparrow[/tex]

Find out more information about the velocity here:

brainly.com/question/15088467

An equal-tangent vertical curve is to be constructed between grades of -2% (initial) and 1% (final). The PVI is at station 110 00 and at elevation 420 ft. Due to a street crossing the roadway, the elevation of the roadway at station 112 00 must be at 424.5 ft. Design the curve, and determine the elevations and stations for PVC and PVI.

Answers

Answer:

The curve length (L) will be = 1218 ft

The elevations and stations for PVC and PVI

a. station of PVC = 103 + 91.00

b. station of PVI = 116 + 09.00

c. elevation of PVC = 432.18ft

d. elevation of PVI = 426.09ft

Explanation:

First calculate for the length (L)

To calculate the length, use the formula of "elevation at any point".

where, elevation at any point = 424.5.

and ∴ PVC Elevation = (420 + 0.01L)

Then, calculate for Station of PVC and PVI and elevation of PVC and PVI

In many problems where the potential energy is considered between two objects, the potential energy is defined as zero when the particles are in infinite distance apart. Using the definition of potential energy, explain why the potential energy would be positive if the force between the particles is repulsive and negative if the force between the particles is attractive for noninfinite distances.

Answers

Answer:

potential energy=ε Qq/r. Putting values of charge along with sign and calculating the potential energy will tell whether the resultant force is attractive or repulsive.

Explanation:

potential energy=ε Qq/r

q and Q are charges on each particle

So in case the particles have attractive force between them, one particle will be negative and the other will be positiive. The result will be negative.

In case the particles have repulsive forces, the charge on both particles will be either positive or negative. The result will be positive

Which has the capability to produce the most work in a closed system;
1 kg of steam at 800 kPa and 180°C or 1 kg of R–134a at 800 kPa and 180°C? Take T0 = 25°C and P0 = 100 kPa.

Answers

Answer:

note:

solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment

Final answer:

The amount of work produced by 1 kg of steam and 1 kg of R–134a would be the same in a closed system at the given conditions.

Explanation:

In a closed system, the amount of work produced depends on the change in internal energy of the system. The change in internal energy is given by the formula ΔU = Q - W, where Q is the heat added to the system and W is the work done by the system. Since both 1 kg of steam and 1 kg of R–134a are at the same temperature and pressure, their internal energy changes would be the same for the same amount of heat added. Therefore, the amount of work produced by both substances would also be the same in a closed system.

Learn more about work produced in a closed system here:

https://brainly.com/question/34701684

#SPJ3

One-dimensional plane wall of thickness 2L=80 mm experiences uniform thermal generation of q dot =1000 W/m^3 and is convectively cooled at x=±40m by an ambient fluid characterized by T [infinity] = 30 degrees C. If the steady-state temperature distribution within the wall is T(x) = a(L2-x2)+b where a = 15o C/m^2 and b=40oC, what is the thermal conductivityof the wall? What is the value of the convection heat transfer coefficient?

Answers

Answer:

Thermal Conductivity (K) = 33.33 W/m. ° C

The value of the convection heat transfer coefficient = 3 W/m².° C

Explanation:

The attached document file gives a detailed and clear explanation about the question.

A group of n Ghostbusters is battling n ghosts. Each Ghostbuster carries a proton pack, which shoots a stream at a ghost, eradicating it. A stream goes in a straight line and terminates when it hits the ghost. The Ghostbusters decide upon the following strategy. They will pair off with the ghosts, forming n Ghostbuster-ghost pairs, and then simultaneously each Ghostbuster will shoot a stream at his chosen ghost. As we all know, it is very dangerous to let streams cross, and so the Ghostbusters must choose pairings for which no streams will cross. Assume that the position of each Ghostbuster and each ghost is a fixed point in the plane and that no three positions are collinear.Give an O(n 2 lg n)-time algorithm to pair Ghostbusters with ghosts in such a way that no streams cross. Provide a step by step algorithm for this question.

Answers

Answer:

Using the above algorithm matches one pair of Ghostbuster and Ghost. On  each side of the line formed by the pairing, the number of Ghostbusters and Ghosts are  the same, so use the algorithm recursively on each side of the line to find pairings. The  worst case is when, after each iteration, one side of the line contains no Ghostbusters  or Ghosts. Then, we need n/2 total iterations to find pairings, giving us an P([tex]n^{2} lg n[/tex])-  time algorithm.

Final answer:

The described problem requires creating non-crossing pairings between points in a plane, utilizing a divide and conquer algorithm similar to finding the closest pair of points. The algorithm involves sorting, recursively pairing, checking for potential crossings, and merging pairs in O(n^2  lg n) time.

Explanation:

The problem described is one of computational geometry, specifically related to the pairing of points (representing Ghostbusters and ghosts) in the plane so that the lines (streams) connecting the pairs do not cross. An O(n^2  lg n)-time algorithm to solve this can be designed by utilizing a divide and conquer strategy similar to the one used in the closest pair of points problem.

Sort all the points by their x-coordinates.Divide the set of points into two halves by drawing a vertical line through the median x-coordinate.Recursively pair off Ghostbusters and ghosts in each half. Ensure that each pair consists of one Ghostbuster and one ghost from the same half.Find potential cross-stream pairs by examining Ghostbusters and ghosts that are close to the dividing line. This step identifies pairs that may cause crossing streams after the recursive step.For each Ghostbuster on one side of the dividing line, pair with the closest ghost on the other side such that the pair does not cause a stream cross with already established pairs. Utilize a data structure to dynamically check for intersections while pairing.Repeat this for all unpaired Ghostbusters adjacent to the dividing line.Merge the pairs from both halves along with the Ghostbuster-ghost pairs across the divide.

Steps 4 to 6 are critical in ensuring that no streams cross and contribute to the O(n lg n) complexity for pairing across the divide. The overall complexity is O(n^2  lg n) due to the recursive nature of the algorithm and the added complexity of checking for crossing streams.

The structure supports a distributed load of w. The limiting stress in rod (1) is 370 MPa, and the limiting stress in each pin is 220 MPa. If the minimum factor of safety for the structure is 2.10, determine the maximum distributed load magnitude w that may be applied to the structure plus the stresses in the rod and pins at the maximum w.

Answers

Final answer:

In engineering, the maximum load a structure can withstand while maintaining a factor of safety can be calculated based on material properties and stress limits. Analyzing stress distributions in rods and pins under maximum loads is crucial for ensuring the structural integrity of a system.

Explanation:

The maximum distributed load magnitude w that may be applied to the structure can be determined using the concept of factor of safety, which is the ratio of the materials' strength to the maximum stress it is subjected to. The factor of safety is given as 2.10, limiting stress in rod (1) as 370 MPa, and limiting stress in each pin as 220 MPa. By setting up equations based on these data, you can calculate the maximum load w.

To calculate the stresses in the rod and each pin at the maximum w, you would need to consider the equilibrium of forces acting on the structure with the maximum load applied. By analyzing the forces acting on the rod and pins, you can determine the stresses within them when the structure is subjected to the maximum load.

Example: Assuming the structure consists of multiple rods and pins, each experiencing different loads, you can analyze the stress distribution within the structure by considering the individual material properties and load distributions to ensure structural integrity.

An online music platform, S record, is planning to implement a database to enhance its data management practice and ultimately advance its business operations. The initial planning analysis phases have revealed the following system requirements:

Each album has a unique Album ID as well as the following attributes: Album Title, Album Price, and Release Date. An album contains at least one song or more songs. Songs are identified by Song ID. Each song can be contained in more than one album or not contained in any of them at all and has a Song Title and Play Time. Each song belongs to at least one genre or multiple genres. Songs are written by at least an artist or multiple artists. Each artist has a unique Artist ID, and an artist writes at least one song or multiple songs, to be recorded in the database. Data held by each artist includes Artist Name and Debut Date.

Each customer must sign up as a member to make a purchase on the platform. The customer membership information includes Customer ID, Customer Name, Address (consisting of City, State, Postal Code), Phone Number, Birthday, Registration Date. Customers place orders to purchase at least one album or more albums. They can purchase multiple quantities of the same album, which should be recorded as Quantities Ordered. Each order is identified by an Order IDand has Order Date, Total Price, Payment Method, and Delivery Option.

Q1. Draw an ER diagram for Statement 1 (You can add notes to your diagram to explain additional assumptions, if necessary).

File format: asgmt1_q1_ lastname_firstname.pdf

Answers

Answer:

Explanation:

We would be taking a breakdown of the following entities.

online music platform database can have the following entities:

1. Artist

has the following attributes:

Artists Name

Artist ID

Debut Date

2. Albums

has the following attributes

:

Album ID

Title

Release Date  

Price

3. Song

 has the following attributes

:

Song ID

Play Time

Title

genres

4. Items

This represents the items the customers purchased with several albums and quantity.

this shows the following attributes

Album ID

Qty

 

5. Orders

has the following attributes

The Order ID

The Order Date

Total Price

Payment Method

Delivery Option

6. Customer

has the following attributes

Customer ID

Customer Name

Address - City, State, Postal code

Phone Number

Birthday

Registration Date

NB. the uploaded image shows the ER Diagram.

cheers i hope this helps.

The 1000-lb elevator is hoisted by the pulley system and motor M. The motor exerts a constant force of 500 lb on the cable. The motor has an efficiency of ε = 0.65. Determine the power that must be supplied to the motor at the instant the load has been hoisted s = 27 ft starting from rest.

Answers

The power that must be supplied to the motor is 136 hp

Explanation:

Given-

weight of the elevator, m = 1000 lb

Force on the table, F = 500 lb

Distance, s = 27 ft

Efficiency, ε = 0.65

Power  = ?

According to the equation of motion:

F = ma

[tex]3(500) - 1000 = \frac{1000}{32.2} * a[/tex]

a = 16.1 ft/s²

We know,

[tex]v^2 - u^2 = 2a (S - So)\\\\v^2 - (0)^2 = 2 * 16.1 (27-0)\\\\v = 29.48m/s[/tex]

To calculate the output power:

Pout = F. v

Pout = 3 (500) * 29.48

Pout = 44220 lb.ft/s

As efficiency is given and output power is known, we can calculate the input power.

ε = Pout / Pin

0.65 = 44220 / Pin

Pin = 68030.8 lb.ft/s

Pin = 68030.8 / 500 hp

     = 136 hp

Therefore, the power that must be supplied to the motor is 136 hp

Final answer:

To calculate the power supplied to the motor, we use the work done by the motor and the motor efficiency. However, without the time, it takes to lift the elevator, a crucial piece of information is missing, thus preventing an exact calculation.

Explanation:

To determine the power that must be supplied to the motor at the instant the 1000-lb elevator has been hoisted 27 ft from rest, we must first calculate the useful power output. Since the motor has an efficiency of 0.65 and exerts a constant force of 500 lb, we can use the work-energy principle along with the efficiency to find the required power.

The work done by the motor on the elevator is the force applied times the distance moved. The useful work is W = force × distance = 500 lb × 27 ft.

The useful power output, or work done per unit time, can be found by P = W / t. However, the time is not provided directly in this scenario; we assume this process occurs instantaneously, which is not realistic for real-world scenarios.

Since power supplied is equal to the useful power output divided by the efficiency, we have Power supplied = Useful power / ε.

Assumptions in the CalculationWe would normally need time to calculate power, which is work done or energy converted per unit time.The efficiency of the motor is used to calculate the actual power supplied versus the useful power output.The actual lifting process takes time, and an instantaneous lift is not realistic.

Due to missing time information, the exact numerical answer cannot be provided without assumptions or additional data concerning how quickly the elevator is lifted.

The elastic cords used for bungee jumping are designed to endure large strains. Consider a bungee cord that stretches to a maximum length 3.85 times the original length. There are different ways to report this extensional deformation. Calculate how 'wrong' the engineering strain is compared to the true strain by evaluating the ratio:

εtrue / εengr = __________

Answers

Answer:

(εtrue/εengr) = (1.3481/2.85) = 0.473

This shows that the engineering strain is truly a bit far off the true strain.

Explanation:

εengr

Engineering strain is a measure of how much a material deforms under a particular load. It is the amount of deformation in the direction of the applied force divided by the initial length of the material.

ε(engineering) = ΔL/L₀

Lf = final length = 3.85 L₀

L₀ = original length = L₀

ΔL = Lf - L₀ = 3.85 L₀ - L₀ = 2.85 L₀

ε(engineering) = ΔL/L₀ = (2.85L₀)/L₀ = 2.85

εtrue

True Strain measures instantaneous deformation. It is obtained mathematically by integrating strain over small time periods and Running them up. Hence,

ε(true) = In (Lf/L₀)

Lf = 3.85L₀

L₀ = L₀

ε(true) = In (Lf/L₀) = In (3.85L₀/L₀) = In 3.85 = 1.3481

(εtrue/εengr) = (1.3481/2.85) = 0.473

Air flows steadily between two sections in a long, straight portion of 10-cm inside diameter pipe. The uniformly distributed temperature and pressure at each section are given. The average air velocity at Sections (1) and (2) are 66 m/s and 300 m/s, respectively. Assume uniform velocity distributions. Determine the frictional force (Rx) exerted by the pipe wall on the airflow between the sections. At section (1), p1 = 7 MPa, T1 = 25°C, and V1 = 66 m/s. At section 2, p2 = 1.3 MPa, T1 = -20°C, and V2 = 300 m/s. (5 pt)

Answers

Answer:

solution attached below

Explanation:

Other Questions
Why is it important to learn letter writing skills even in the days of email 1. Young men arriving at an army boot camp are about to enter a (an)a. total institutionb. orientation coursec. open institutiond. social institution Hi, I need help with my math please Wild-type bacteria can grow on minimal medium. Four mutants that cannot grow on minimal medium but can grow on minimal medium supplemented with the nutrient "H" are isolated. It is suspected that metabolites T, P, and A are in the biochemical pathway for synthesis of H, so each mutant is tested for the ability to grow on minimal medium supplemented with these metabolites:A.Mutant 1: can grow on minimal medium supplemented with T, but not P or AB.Mutant 2: is unable to grow on minimal medium supplemented with T, P, or AC.Mutant 3: is able to grow on minimal medium supplemented with A or T, but not PD.Mutant 4: can grow on minimal medium supplemented with T, P, or A. "Suppose two independently assorting genes are involved in the pathway that determines fruit color in squash. These genes interact with each other to produce the squash colors seen in the grocery store. At the first locus, the W allele codes for a dominant white phenotype, whereas the w allele codes for a colored squash. At the second locus, the allele Y codes for a dominant yellow phenotype, and the allele y codes for a recessive green phenotype. The phenotypes from the first locus will always mask the phenotype produced by the second locus if the dominant allele (W) is present at the first locus. This masking pattern is known as dominant epistasis. A dihybrid squash, Ww Yy, is selfed and produces 320 offspring. How many offspring are expected to have the white, yellow, and green phenotypes Which of the following scenarios would provide the best evidence that human traits are a result of lifestyle choices? A. Matt had been naturally right-handed since birth. In high school, he decided to start throwing left-handed after reading that there was a shortage of left-handed pitchers in the major leagues. Matt is now left-handed. B. Lisa and Anita are identical twin sisters. Lisa went grew up in New York; Anita grew up in Florida. Both sisters used to catch cold easily, but now, Lisa does not. Both sisters used to sunburn easily, but now, Anita does not. C. Tanya's mother has blonde hair. Tanya's father has black hair. Tanya's hair is brown. D. Arnold's parents and grandparents all have heart disease. Although Arnold has always exercised, avoided unhealthy foods, and followed doctor's instructions, he also has heart disease. Thyroid hormone is essential for the synthesis of adrenergic receptors; therefore, in the absence of thyroid hormone, epinephrine cannot trigger bronchodilation. This concept is known as __________. Greg's ceiling fan rotates 30 degrees and then stops. How many more times does it need to rotate to make a full rotation? What was the community's reaction to the Little Rock Nine integrating an Arkansas high school?ADeadly violence erupted as the students entered the building.B. Local politicians came to encourage integration.C. People gathered at the high school to intimidate the students.D. The Little Rock Nine was a rare case in which integration was accepted. What was Daniel Webster's position on slavery?A. He argued that slavery was necessary, benefiting both slaves and slave ownersB. He was against slaveryC. He was against slavery but owned slaves Where did the power start to shot to during the high middle ages Purchases Transactions Nieman Company purchased merchandise on account from a supplier for $9,600, terms 1/10, n/30. Nieman Company returned $1,500 of the merchandise and received full credit. a. If Nieman Company pays the invoice within the discount period, what is the amount of cash required for the payment You have a device that takes temperature measurements and runs off of solar power. How often it is programmed to take a measurement will affect how much power it uses--more frequent measurements, more power. You have one installed at the equator and one installed in the Antarctic. During which season of the year can you set each device to take more frequent measurements You played hard in Pe today and didnt get a chance to rehydrate after class. You fell tired and sluggish. How does your body regulate your dehydration? List five body systems that interact with the situation How did Alexander the Great Hellenize his empire? An ice cube and a rubber ball are both placed at one end of a warm cookie sheet, and the sheet is then tipped up. The ice cube slides down with virtually no friction, and the ball rolls down without slipping. The ball and the ice cube have the same inertia. Which one reaches the bottom first? Why did France have so much debt by 1789? On your first trip to Planet X you happen to take along a 290g mass, a 40-cm-long spring, a meter stick, and a stopwatch. You're curious about the free-fall acceleration on Planet X, where ordinary tasks seem easier than on earth, but you can't find this information in your Visitor's Guide. One night you suspend the spring from the ceiling in your room and hang the mass from it. You find that the mass stretches the spring by 21.1cm . You then pull the mass down 11.2cm and release it. With the stopwatch you find that 11 oscillations take 18.2sCan you now satisfy your curiosity?what is the new g? Compare asexual and sexual reproduction. Place each sentence into the correct box. Amoeba reproduce by dividing into two cells. Cherry trees can be grown from cherry seeds. Pineapple plants can be grown from stem cuttings. Hydras reproduce by budding. Chickens reproduce by laying eggs. Asexual reproduction Sexual reproduction WILL MARK BRAINLIEST!How was the holocaust a result of the Eugenics movement started in California?