Derive the stress strain relationship for each model A and model B. (5 points) b) Is model B equivalent to model A (same stress strain general equation)? If your answer is yes, express E1, E2, η1, and η2 in terms of E 0 1 , E 0 2 , η 0 1 , and η 0 2 . (5 points) c) If applicable, repeat the derivation in part (b) and express E 0 1 , E 0 2 , η 0 1 , and η 0 2 in terms of E1, E2, η1, and η2. (5 points) d) Derive the expression for stress relaxation for both these models and compare the expressions. How are they similar? How are they different? (15 points)

Answers

Answer 1

Answer:

See attached images

Derive The Stress Strain Relationship For Each Model A And Model B. (5 Points) B) Is Model B Equivalent
Derive The Stress Strain Relationship For Each Model A And Model B. (5 Points) B) Is Model B Equivalent
Derive The Stress Strain Relationship For Each Model A And Model B. (5 Points) B) Is Model B Equivalent
Derive The Stress Strain Relationship For Each Model A And Model B. (5 Points) B) Is Model B Equivalent
Derive The Stress Strain Relationship For Each Model A And Model B. (5 Points) B) Is Model B Equivalent

Related Questions

A specific internal combustion engine has a displacement volume VD of 5.6 liters. The processes within each cylinder of the engine are modeled as a cold air-standard Diesel cycle with a cutoff ratio rc = 2.5. The pressure, temperature, and volume of the air at the beginning of compression are p1 = 95 kPa, T1 = 26◦C, and V1 = 6.0 liters. Use values of cv = 0.72 kJ/kg·K and γ = 1.38 for air. Determine: (a) the net work per cycle, in kJ. (b) the thermal efficiency η

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

6.Identification of Material ParametersThe principal in-plane stresses and associated strains in a plate of material areσ1= 50 ksi,σ2= 25 ksi,1= 0.00105, and2= 0.000195.(a) This is a plane stress state, meaning the principal stress normal to this plane is zero. Is theprincipal strain3acting normal to this plane also zero? Show why or why not. Draw the 3DMohr’s circle for both stress and strain states.(b) Determine the Modulus of Elasticity,E.(c) Determine Poisson’s ratio,ν.

Answers

Answer:

See attached image for diagrams and solution

A very long pipe of 0.05 m (r1) radius and 0.03 m thickness (r2 - r1) is buried at a depth of 2m (z) to transport liquid nitrogen. The pipe wall has a very low thermal conductivity of 0.0035 Wm- 1K-1 and receives a cooling power of 10 W/m to keep the liquid nitrogen at 77 K. If the thermal conductivity of the ground is 1 Wm-1K-1, what is the surface temperature of the ground

Answers

Answer:

See explaination

Explanation:

thermal conductivity is A measure of the ability of a material to transfer heat. Given two surfaces on either side of the material with a temperature difference between them, the thermal conductivity is the heat energy transferred per unit time and per unit surface area, divided by the temperature difference.

Please kindly check attachment for the step by step solution of the given problem.

a robot arm moves so that p travels in a circle about point b which is not moving. knowing that p starts from rest, and its speed increases at a constant rate of 10mm/s, determine (a) the magnitude of the acceleration when t=4s, (b) the time for the magnitude of the acceleration to be 80 mm/s^2

Answers

Answer:

(a)10.20 mm/s² (b) 403200 s⁴

Explanation:

Solution

Recall that,

The tangible acceleration is a₁ = 10mm/s

The speed = a₁t

Normal acceleration =  aₙ = v₂ /р = a₁²t₂/ р

where р = 0.8m = 800 mm

Now,

When t = 4s

v = (10) (4) = 40 mm/s

Thus,

aₙ = (40)² /800 = 2 mm/s²

Then

The acceleration is,

a = √a₁² + aₙ² = √ (10)² + (2)²

a = 10.20 mm/s²

(b) The time for he magnitude of the acceleration to be 80 mm/s^2

a² =  aₙ² +a₁²

(80)² + [ (10)²t²/800]² + 10²

so,

t⁴ = 403200 s⁴

A cylinder of length L would be made to carry a torque T with an angle of twist ɸ. There are two options considered: 1) hollowed cylinder with an inner radius that is equal to 0.9 of the outer radius, and 2) solid cylinder (with a different radius). If both options would be made from the same material and must have the same angle of twist ɸ under the torque T, find the ratio of the weight between the cylinder designed for option 1 and option 2.

Answers

Answer:

See explaination

Explanation:

To compare the hollow and solid cylinder we need ro use torsional formula.

And since same material and length are given.

For same torque and angle of twist there will be same polar moment of area of the section for both the cylinder.

Please kindly check attachment for further solution

Show the bias polarities and depletion regions of an npn BJT in the normal active, saturation, and cutoff modes of operation. Draw the three sketches one below the other to (qualitatively) reflect the depletion widths for these biases, and the relative emitter, base, and collector doping.


Consider a BJT with a base transport factor of 1.0 and an emitter injection efficiency of 0.5.Calculate roughly by what factor would doubling the base width of the BJT would increase, decrease, or leave unchanged the emitter injection efficiency and base transport factor?

Answers

Complete Question:

Show the bias polarities and depletion regions of an npn BJT in the normal active, saturation, and cutoff modes of operation. Draw the three sketches one below the other to (qualitatively) reflect the depletion widths for these biases, and the relative emitter, base, and collector doping.

Consider a BJT with a base transport factor of 1.0 and an emitter injection efficiency of 0.5.

Calculate roughly by what factor would doubling the base width of a BJT would increase, decrease, or leave unchanged the emitter injection efficiency and base transport factor? Repeat for the case of emitter doping increased 5 × =. Explain with key equations, and assume other BJT parameters remain unchanged!

Answer & Explanation:

[Find the attachments]

Step 1 :

Emitter and base, collector, and base are forward biased then BJT is in saturation region. Emitter and base is forward biased and base and collector in reverse biased then BJT is in active region.

Emitter and base, collector and base are reverse biased then BJT in cut off region.

Three sketches one below the other is shown in Figure 1.

[find the figure in attachment]

Step 2:

Value of base widths of saturation, active and cut off operated BJT are value of Base width of saturated region operated BJT is less than base width in active region operated BJT. Value of base width of active region operated BJT is less than base width in cut off region operated BJT.

Saturation region operated base width of BJT is < Active region operated base width of BJT is < Cut off region operated base width of BJT.

[For  Steps 3 4 5 6 and 7 find attachments]

Water at 15°C is to be heated to 65°C by passing it over a bundle of 7-m-long, 1-cm-diameter resistance heater rods maintained at 90°C. Water approaches the heater rod bundle in normal direction at a mean velocity of 0.8 m/s. The rods are arranged in-line with longitudinal and transverse pitches of SL = 4 cm and ST = 3 cm. Determine the number of tube rows NL in the flow direction needed to achieve the indicated temperature rise.

Answers

Answer:

NL = 207

Explanation:

Solution

Now,

The mean temperature is measured as:

Tm = (T₁ - T₀)/2

= (15 +  65)/2

= 40°C

So,

we find all the thermo-physical  properties of water from the table, that is properties of saturated water at T =40°C

Thermo conductivity, k = 0.631 W/m . K

Specific heat Cp = 4179 J/kg . K

Density р = 992. 1 kg/m³

The dynamic viscosity, μ = 0.653 * 10 ^⁻3 kg/m *s

Prandtl number, Pr = 4.32

At T = 15°C

рi = 992.1 kg/m³

At T = 90°C

Prandtl number, Prs = 1.96

Thus,

The maximum flow of velocity is known from the equation stated as:

Vmax = ST/ST - D *V

Here,

ST is refereed to as the transverse pitch for inline arrangements of the rods

so,

Vmax = 3/3-1 * 0.8

= 1.2 m/s

Now

The Reynolds number is determined from the equation given below

ReD =ρVmax D/μ

= 922.1 * 1.2 *(1 *10^⁻²)/ 0.653 * 10^⁻³

= 18231.55

From the table, The Nusselt number correlations fro cross flow over the tube banks for inline arrangement over the range of ReD  is shown as

1000 - 2 * 10⁵

Now, the Nusselt number is determined by

NuD = 0.27ReD ^0.63 Pr^ 0.36 (Pr/Prs)^0.25

= 0.27 * (18231.55)^0.63 (4.32)^0.36 * (4.32/1.96)^0.25

=269.32

Then,

The convective transfer of heat water coefficient  is determined  from the equation shown  by Diametral Nusselt Number

NuD =hD/k

So,

we re-write and solve for h

h = NuD * k/D

=269.32 * 0.631/(1 * 10 ^⁻2)

=16993.9 W/m² .K

Now,

The heat transfer surface area for a tube in a row is NT = 1

As = NT NLπDL

= 1*NL* π * (1 * 10^⁻2) * 4

= 0.1257NL

The logarithmic mean temperature of water is represented as

ΔTlm = Te - Ti/ln (Ts - Ti/Ts- Te)

= 65- 15/ln (90 -15/ 90 -65) = 45.51°C

Thus,

The rate of the heat transfer is determined  from the equation shown below,

Q =hAsΔTlm

=16993.9 *0.1257 * NL* 45.51.......equation (1)

The mas flow rate of water is determined by the equation below

m =ρiAcV

= ρi * (STL) * V

= 999.1 8 ( 3* 10^⁻2 * 4) * 0.8

= 95.91 kg/s

The rate of heat transfer of water is determined by the equation below

Q = mcp (Te- Ti)

= 95.91 * 4179 * (65-15)

=20041146.72 W..........(Equation 2)

Now,

The number of tube rows in the direction flow is determined  by measuring both equations 1 and 2 as

97219.61 NL = 20041146.72

NL =206.14

NL = 207

Therefore, the number of tube rows NL in the flow direction needed to achieve the indicated temperature rise is NL = 207

=

A sinusoidal voltage source produces the waveform, v t = 1 + cos 2πft. Design a system with v t as its input such that an LED will light up when f exceeds 50 Hz. The LED has a forward built-in voltage of 2 V. It is okay if the LED flickers when it’s ON, but it should not light up at all when OFF (Hint: use an "ideal" filter along with other components).

Answers

Answer:

See explaination

Explanation:

LM358 is the useful IC which works as buffer. It enables circuit to remove overloading effect on each other. Image is in attachment.

We can define a light-emitting diode (LED) as a semiconductor light source that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons

See attached file for detailed solution of the given problem.

Water vapor at 100 psi, 500 F and a velocity of 100 ft./sec enters a nozzle operating at steady sate and expands adiabatically to the exit, where the pressure is 40 psia. If the isentropic nozzle efficiency is 95%, determine for the nozzle,


(a) the exit velocity of the steam in ft./sec, and

(b) the amount of entropy produced in BTU/ lbm R.

Answers

Answer:

a)exit velocity of the steam, V2 = 2016.8 ft/s

b) the amount of entropy produced is 0.006 Btu/Ibm.R

Explanation:

Given:

P1 = 100 psi

V1 = 100 ft./sec

T1 = 500f

P2 = 40 psi

n = 95% = 0.95

a) for nozzle:

Let's apply steady gas equation.

[tex] h_1 + \frac{(v_1) ^2}{2} = h_2 + \frac{(v_2)^2}{2} [/tex]

h1 and h2 = inlet and exit enthalpy respectively.

At T1 = 500f and P1 = 100 psi,

h1 = 1278.8 Btu/Ibm

s1 = 1.708 Btu/Ibm.R

At P2 = 40psi and s1 = 1.708 Btu/Ibm.R

1193.5 Btu/Ibm

Let's find the actual h2 using the formula :

[tex] n = \frac{h_1 - h_2*}{h_1 - h_2} [/tex]

[tex] n = \frac{1278.8 - h_2*}{1278.8 - 1193.5} [/tex]

solving for h2, we have

[tex] h_2 = 1197.77 Btu/Ibm [/tex]

Take Btu/Ibm = 25037 ft²/s²

Using the first equation, exit velocity of the steam =

[tex] (1278.8 * 25037) + \frac{(100)^2}{2}= (1197.77*25037)+ \frac{(V_2)^2}{2}[/tex]

Solving for V2, we have

V2 = 2016.8 ft/s

b) The amount of entropy produced in BTU/ lbm R will be calculated using :

Δs = s2 - s1

Where s1 = 1.708 Btu/Ibm.R

At h2 = 1197.77 Btu/Ibm and P2 =40 psi,

S2 = 1.714 Btu/Ibm.R

Therefore, amount of entropy produced will be:

Δs = 1.714Btu/Ibm.R - 1.708Btu/Ibm.R

= 0.006 Btu/Ibm.R

Consider the following grooves, each of width W, that have been machined from a solid block of material. (a) For each case obtain an expression for the view factor of the groove with respect to the surroundings outside the groove. (b) For the V groove, obtain an expression for the view factor F12, where A1 and A2 are opposite surfaces. (c) If H

Answers

Final answer:

The heat transfer while the reference information pertains to thermal expansion and physics-related work. Thermal expansion affects the volume, cross-sectional area, and height of objects, and these changes can be calculated using the coefficient of thermal expansion, initial dimensions, and temperature change.

Explanation:

The view factor calculations in heat transfer, specifically related to grooves machined from a solid block of material. While the initial question seems to relate to this topic, the provided reference information does not align with the question and seems to cover thermal expansion and work done by forces, which are different aspects of Physics.

However, to answer the student's question regarding thermal expansion, we can consider that when temperature changes, all dimensions of an object change. The volume change ΔV can be calculated using the formula ΔV = α·V·ΔT, where α is the coefficient of thermal expansion, V is the original volume, and ΔT is the temperature change. For block A with volume L·2L·L and block B with volume 2L·2L·2L, the change in volume will be proportional to each block's respective original volume.

The change in cross-sectional area, typically lw for block A and 2Lw for block B, and change in height h or 2L for each block, will be affected in a similar manner and can be calculated using α, the original dimensions, and the temperature change ΔT.

Paint can shaker mechanisms are common in paint and hardware stores. While they do a good job of mixing the paint, they are also noisy and transmit their vibrations to the shelves and counters. A better design of the paint can shaker is possible using a balanced fourbar linkage. Design such a portable device to sit on the floor (not bolted down) and minimize the shaking forces and vibrations while still effectively mixing the paint.

Answers

Answer:

A good design for a portable device to mix paint minimizing the shaking forces and vibrations while still effectively mixing the paint. Is:

The best design is one with centripetal movement. Instead of vertical or horizontal movement. With a container and system of holding structures made of materials that could absorb the vibration effectively.

Explanation:

First of all centripetal movement would be friendlier to our objective as it would not shake the can or the machine itself with disruptive vibrations. Also, we would have to use materials with a good grade of force absorption to eradicate the transmission of the movement to the rest of the structure. Allowing the reduction of the shaking forces while maintaining it effective in the process of mixing.

g A food department is kept at -12oC by a refrigerator in an environment at 30oC. The total heat gain to the food department is estimated to be 3300 kJ/h, which should be transferred out of the food department by the refrigerator. The heat rejection from the refrigerator to the environment is 4800 kJ/h. Determine the power input required by the refrigerator, in kW and the COP of the refrigerator. Is the refrigeration cycle reversible, irreversible, or impossible

Answers

Answer:

a) [tex]\dot W = 0.417\,kW[/tex], b) [tex]COP_{R} = 2.198[/tex], c) Irreversible.

Explanation:

a) The power input required by the refrigerator is:

[tex]\dot W = \dot Q_{H} - \dot Q_{L}[/tex]

[tex]\dot W = \left(4800\,\frac{kJ}{h} - 3300\,\frac{kJ}{h}\right)\cdot \left(\frac{1}{3600} \,\frac{h}{s} \right)[/tex]

[tex]\dot W = 0.417\,kW[/tex]

b) The Coefficient of Performance of the refrigerator is:

[tex]COP_{R} = \frac{\dot Q_{L}}{\dot W}[/tex]

[tex]COP_{R} = \frac{3300\,\frac{kJ}{h} }{(0.417\,kW)\cdot \left(3600\,\frac{s}{h} \right)}[/tex]

[tex]COP_{R} = 2.198[/tex]

c) The maximum ideal Coefficient of Performance of the refrigeration is given by the inverse Carnot's Cycle:

[tex]COP_{R,ideal} = \frac{T_{L}}{T_{H}-T_{L}}[/tex]

[tex]COP_{R,ideal} = \frac{261.15\,K}{303.15\,K - 261.15\,K}[/tex]

[tex]COP_{R,ideal} = 6.218[/tex]

The refrigeration cycle is irreversible, as [tex]COP_{R} < COP_{R,ideal}[/tex].

Air enters the first compressor stage of a cold air-standard Brayton cycle with regeneration and intercooling at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The overall compressor pressure ratio is 10, and the pressure ratios are the same across each compressor stage. The temperature at the inlet to the second compressor stage is 300 K. The temperature at the inlet to the turbine is 1400 K. The compressor stages and turbine each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%.
For k = 1.4, calculate:
(A) the thermal efficiency of the cycle.
(B) the back work ratio.
(C) the net power developed, in kW.
(D) the rates of exergy destruction in each compressor stage and the turbine stage as well as the regenerator, in kW, for T0 = 300 K.

Answers

the answer would be d because it only makes logical sense

A. ¿Qué opinión te merecen las palabras del n.° 138 de la carta encíclica? ¿Será real que todo está conectado? Da algún ejemplo de ello a partir de los textos leídos.

Answers

The words of No. 138 of the encyclical letter express a profound vision of interconnectedness in the world.

This idea reflects the reality that everything in life is linked in some way. For example, by studying the water cycle, we see how evaporation in one place can lead to precipitation in another, thus affecting the flora and fauna of both places.

Likewise, changes in global temperature impact terrestrial and marine ecosystems, showing how everything is connected in a complex and interdependent system.

The Question in English

A. What is your opinion of the words of No. 138 of the encyclical letter? Is it real that everything is connected? Give some example of this from the texts read.

Consider casting a concrete driveway 40 feet long, 12 feet wide and 6 in. thick. The proportions of the mix by weight are given as 1:2:3 for cement, sand, and gravel with w/c of 0.50. The specific gravities of sand and gravel are 2.60 and 2.70 respectively. Entrained air content is 7.5%. How many pounds of cement, water, sand, and gravel are needed for the driveway?

Answers

Answer:

Weight of cement = 10968 lb

Weight of sand = 18105.9 lb

Weight of gravel = 28203.55 lb

Weight of water = 5484 lb

Explanation:

Given:

Entrained air = 7.5%

Length, L = 40 ft

Width,w = 12 ft

thickness,b= 6 inch, convert to ft = 6/12 = 0.5 ft

Specific gravity of sand = 2.60

Specific gravity of gravel = 2.70

The volume will be:

40 * 12 * 0.5 = 240 ft³

We need to find the dry volume of concrete.

Dry volume = wet volume * 1.54 (concrete)

Dry volume will be = 240 * 1.54 = 360ft³

Due to the 7% entarained air content, the required volume will be:

V = 360 * (1 - 0.07)

V = 334.8 ft³

At a ratio of 1:2:3 for cement, sand, and gravel respectively, we have:

Total of ratio = 1+2+3 = 6

Their respective volume will be =

Volume of cement = [tex] \frac{1}{6}*334.8 = 55.8 ft^3 [/tex]

Volume of sand = [tex] \frac{2}{6}*334.8 = 111.6 ft^3 [/tex]

Volume of gravel = [tex] \frac{3}{6}*334.8 = 167.4 ft^3 [/tex]

To find the pounds needed the driveway, we have:

Weight = volume *specific gravity * density of water

Specific gravity of cement = 3.15

Weight of cement =

55.8 * 3.15 * 62.4 = 10968 pounds

Weight of sand =

111.6 * 2.60 * 62.4 = 18105.9 lb

Weight of gravel =

167.4 * 2.7 * 62.4 = 28203.55 lb

Given water to cement ratio of 0.50

Weight of water = 0.5 of weight of cement

= 1/2 * 10968 = 5484 lb

An aluminum cylinder bar ( 70 GPa E m = ) is instrumented with strain gauges and is subject to a tensile force of 5 kN. The diameter of the bar is 10 cm. The Poisson’s ratio of the bar is 0.33. A Wheatstone bridge is constructed to measure the axial strain. Gauge 1 measures the axial strain and gauge 2 measures the lateral strain.

Answers

Find the complete solution in the given attachments.

Note: The complete Question is attached in the first attachment as the provided question was incomplete

An air-conditioning system is to be filled from a rigid container that initially contains 5 kg of saturated liquid R-134a at 26 °C. The valve connecting this container to the air-conditioning system is now opened until the mass in the container is 0.5 kg, at which time the valve is closed. During this time, only liquid R-134a flows from the container. Presuming that the process is isothermal while the valve is open, determine the final quality of the R-134a in the container and the total heat transfer.

Answers

Answer:

x2 = 0.5056

Qin = 22.62Kj

Explanation:

Diborane is used in silicon chip manufacture. One facility uses a 500-lb bottle. If the entire bottle is released continuously during a 20-min period, determine the location of the 5 mg/m3 ground-level isopleth. It is a clear, sunny day with a 5 mph wind. Assume that the release is at ground level. Assume now that the bottle ruptures and that the entire contents of diborane are released instantaneously. Determine, at 10 min after the release,

Answers

Answer:

We want to determine the location after 10mins

Explanation:

The release of diborane is continuous

It is release at a rate of 500lb per 20mins

Then, let find the rate in mg/s

1 lb = 453592.37 mg

So, the mass rate Q is

Q = 500lb / 20mins

Q = 500 × 453592.37 mg / 20 × 60sec

Q = 188,996.82 mg/s

Given that mass concentration of

m~ = 5mg/m³

Then,

Rate of volume is

V~ = Q / m~

V~ = 188,996.82 / 5

V~ = 37,799.364 m³/s

The wind speed is

V = 5mph

Let convert to m/s

1 mph = 0.447 m/s

Then, 5mph = 2.235 m/s

From Pasquill Gilford, the cloud atmosphere characteristic is class A

To know the location, we will divide the velocity by heat rate

X = V / Q

X = 2.235 / 188,996.82 mg/s

X = 2.235 / 0.188996kg/s

X = 11.83 m / kg

The location is 0.000001183 m per mg of diborane

(a) Determine the temperature of the insulated walls. (b) Determine the net radiation heat rate from surface 2 per unit conduit length. 13.48 A long conduit is constructed with diffuse, gray walls 0.5 m wide. The top and bottom of the conduit are insulated. The emissivities of the walls are ε 1 = 0.45, ε 2 = 0.65, and ε 3 = 0.15, respectively, while the temperatures of walls 1 and 2 are 500 K and 700 K, respectively.

Answers

Answer:

Explanation:

the solution to the problem is given in the pictures attached. (b) is answered first then (a). I hope the explanation helps you.Thank you

A water treatment plant processes 30,000 cubic meters of water each day. A square rapid-mix tank with vertical baffles and flat impeller blades will be used. The design detention time and velocity gradient are 30 seconds and 900 s-1 Determine the power input, if the temperature of the water is 20°C. µ = 1 x 10-3 kg/m•s. 1kW = 1000 J/s, 1J = 1N•m = 1 kg•m2/s2. Note: you can use the equation in its current version.

Answers

Answer:

P=8.44 kw

Explanation:

[Find the given attachment for solution]

An air standard cycle with constant specific heats is executed in a closed pistoncylinder system and is composed of the following four processes: 1-2 Isentropic compression 2-3 Constant volume heat addition 3-4 Isentropic expansion with a volume ratio, r1=V4/V3 4-1 Constant pressure heat rejection with a volume ratio, r2=V4/V1 (a) Sketch the P-v and T-s diagrams for this cycle. (b)Find out T2/T1 as a function of k, r1, r2 only. (c) Find out T4/T1 as a function of k, r1, r2 only. (d)Find out T3/T4 as a function of k, r1, r2 only. (e) Find out T3/T2 as a function of k, r1, r2 only. (f) Obtain an expression for the back work ratio for a fixed minimum-tomaximum temperature ratio T1/T3. The expression should be of a function of T1/T3, k, r1, r2 only. (g)Obtain an expression for the cycle thermal efficiency as a function of k, r1, r2 only.

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to get the step by step explanation to the question above.

Engine oil flows through a 25-mm-diameter tube at a rate of 0.5 kg/s. The oil enters the tube at a temperature of 25°C, while the tube surface temperature is maintained at 100°C. (a) Determine the oil outlet temperature for a 5-m and for a 100-m long tube. For each case, compare the log mean temperature difference to the arithmetic mean temperature difference.

Answers

Final answer:

The question involves calculating the outlet temperature of oil flowing through a tube with known inlet and surface temperatures for two different tube lengths, and comparing the log mean temperature difference to the arithmetic mean temperature difference in an Engineering context.

Explanation:

The subject of the question is Engineering, specifically related to the thermodynamics and fluid mechanics domain. The student is given information about an oil flowing through a tube at a specific rate, with given inlet and surface temperatures, and is asked to find the oil's outlet temperature for tubes of two different lengths. The log mean temperature difference (LMTD) and the arithmetic mean temperature difference (AMTD) should be calculated and compared for both cases. This question involves the principles of heat transfer as well as fluid dynamics, which are typical topics covered in an undergraduate engineering curriculum. Additionally, the student may need to apply the concept of the thermal energy balance to determine the outlet temperature of the oil.

A phase angle in the frequency domain corresponds to


a. the initial slope of the sinusoidal signal.

b. the angle at which measurements should be taken for the most accurate results.

c. a delay or advance in time as compared to a pure cosine wave.

d. the angle of the approach vector of the voltage.

Answers

Answer:

c. a delay or advance in time as compared to a pure cosine wave.

Explanation:

Electrical phase is measured in degrees, with 360° corresponding to a complete cycle. A sinusoidal voltage is proportional to the cosine or sine of the phase. Phase difference , also called phase angle , in degrees is conventionally defined as a number greater than -180, and less than or equal to +180.

The phase angle corresponds to delay or advance in time as compared to a pure cosine wave.

For the following circuit, V"#$=120∠30ºV.Redraw the circuit in your solution.a.(4) Calculate the total input impedance seen by the source. Express in rectangular form.b.(3) Calculate the input phasor current(express answer in polar form).c.(6) Using the voltage division, calculate the phasor voltages across each component. Express final answers in polar form.d.(6) Using current divider, calculate phasor currents through L1, and C1.Show all steps. Express final answers in polar form

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached images for the step by step explanation to the question

g Two Standard 1/2" B18.8.2 dowel pins are to be installed in part B with an LN1 fit. The thickness of plate A is .750 +/- .005" The thickness of plate B is .750 +/- .005" The position tolerance of the clearance holes to one another is .014" The position tolerance of the precision holes to one another is .028" What is an appropriate MMC clearance hole diameter to allow the blocks to assemble?

Answers

Answer:

nmuda mudaf A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.

Explanation:

Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric flow rate of 1.825 m3/s and expands adiabatically to an exit state of 1 bar, 200°C. Kinetic and potential energy effects are negligible. Determine for the turbine: (a) the power developed, in kW. (b) the rate of entropy production, in kW/K. (c) the percent isentropic turbine efficiency.

Answers

Answer: (a).power developed = 776.1 kW

(b). Rate of entropy production = 1.023 kW/K

(c). efficiency = 63%

Explanation:

Let us carry a step by step process to solve this problem;

from the question we have that

P₁ = 5 bar

T₁ = 320°C

where V₁ = 0.5416 m³/Kg, S₁ = 7.5308 KJ/Kg-K and R₁ = 0.3105.6 KJ/Kg

the volumetric flow rate is given as (φ) = 1.825 m³/s

Remember that φ = ṁ V

where ṁ is the mass flowrate, and V is the volume

ṁ = φ/V = 1.825/0.5416 = 3.37 Kg/s

Also given for the Exit state;

P₂ = 1 bar

T₂ = 200°C

where V₂ = 0.5416 m³/Kg, S₂ = 7.5308 KJ/Kg-K and R₂ = 0.3105.6 KJ/Kg

(a). we are asked to determine the power developed in the Kw.

using the Flow energy equation to turbine we have;

ṁ(R₁ + V₁²/2 + gZ₁) + φ = ṁ(R₂ + V₂²/2 + gZ₂₂) + ш

canceling out terms from both steps we have that

ш = 3.37 (3105-2815.3) = 776.1 kW

Therefore the Power output is 776.1 kW

(b). The rate of entropy production in Kw/K.

Rate(en) = ṁ (S₂-S₁) = 3.37 (7.8343 - 7.5308)

Rate(en) = 1.023 kW/K

(c). The percent isentropic  turbine efficiency.

Πt = (R₁-R₂) / (h₁ - h₂s)

Πt = (3105.6 - 2875.3) / (3105.6 - 2740) = 63%

Πt = 63%

cheers i hope this helped!!!!!

Two production methods are being compared. One manual and the other automated. The manual method produces 10 pc per hour and requires one worker at $ 15.00 per hour. Fixed cost of the manual method is $ 5,000 per year. The automated method produces 25 pc per hour, has a fixed cost of $ 55,000 per year, and a variable cost of $ 4.50 per hour. Determine the Break – Even Point (BEP) for the two methods; that is, determine the annual production quantity at which the two methods have the same annual cost. Ignore the cost of material used in the two methods

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

The break-even point is approximately 27,778 pieces per year for both manual and automated methods.

To determine the break-even point (BEP) for the two production methods, we need to equate the total annual costs of the manual method with the total annual costs of the automated method. Let's denote:

- [tex]\( Q \)[/tex] as the annual production quantity (in pieces)

- [tex]\( C_{\text{manual}} \)[/tex] as the total annual cost of the manual method

- [tex]\( C_{\text{automated}} \)[/tex] as the total annual cost of the automated method

For the manual method:

[tex]\[ C_{\text{manual}} = \text{Fixed cost} + (\text{Hourly wage} \times \text{Hours per year}) \][/tex]

[tex]\[ C_{\text{manual}} = 5000 + (15 \times Q/10 \times 24 \times 365) \][/tex]

For the automated method:

[tex]\[ C_{\text{automated}} = \text{Fixed cost} + (\text{Variable cost per hour} \times \text{Hours per year}) \][/tex]

[tex]\[ C_{\text{automated}} = 55000 + (4.50 \times Q/25 \times 24 \times 365) \][/tex]

To find the break-even point, we set [tex]\( C_{\text{manual}} = C_{\text{automated}} \) and solve for \( Q \):[/tex]

[tex]\[ 5000 + (15 \times Q/10 \times 24 \times 365) = 55000 + (4.50 \times Q/25 \times 24 \times 365) \][/tex]

Let's solve this equation for [tex]\( Q \)[/tex]:

[tex]\[ 5000 + 54 \times Q = 55000 + 52.20 \times Q \][/tex]

[tex]\[ 54 \times Q - 52.20 \times Q = 55000 - 5000 \][/tex]

[tex]\[ 1.80 \times Q = 50000 \][/tex]

[tex]\[ Q = \frac{50000}{1.80} \][/tex]

[tex]\[ Q \approx 27777.78 \][/tex]

So, the break-even point for the two methods is approximately 27778 pieces per year.

Refrigerant 22 flows in a theoretical single-stage compression refrigeration cycle with a mass flow rate of 0.05 kg/s. The condensing temperature is 48 oc, and the evaporating temperature is —16 oc. If the power input to the cycle is 2.5 kW, determine: (a) the work done by the compressor in kJ/kg, (b) the heat rejected from the condenser in kJ/kg, (c) the heat absorbed by the evaporator in kJ/kg, (d) the coefficient of performance, and (e) the refrigerating efficiency.

Answers

Answer:

a.  The work done by the compressor is 447.81 Kj/kg

b. The heat rejected from the condenser in kJ/kg is 187.3 kJ/kg

c. The heat absorbed by the evaporator in kJ/kg is 397.81 Kj/Kg

d. The coefficient of performance is 2.746

e. The refrigerating efficiency is 71.14%

Explanation:

According to the given data we would need first the conversion of temperaturte from C to K as follows:

Temperature at evaporator inlet= Te=-16+273=257 K

Temperatue at condenser exit=Te=48+273=321 K

Enthalpy at evaporator inlet of Te -16=i3=397.81 Kj/Kg

Enthalpy at evaporator exit of Te 48=i1=260.51 Kj/Kg

b. To calculate the the heat rejected from the condenser in kJ/kg we would need to calculate the Enthalpy at the compressor exit by using the compressor equation as follows:

w=i4-i3

W/M=i4-i3

i4=W/M + i3

i4=2.5/0.05 + 397.81

i4=447.81 Kj/kg

a. Enthalpy at the compressor exit=447.81 Kj/kg

Therefore, the heat rejected from the condenser in kJ/kg=i4-i1

the heat rejected from the condenser in kJ/kg=447.81-260.51

the heat rejected from the condenser in kJ/kg=187.3 kJ/kg

c. Temperature at evaporator inlet= Te=-16+273=257 K

The heat absorbed by the evaporator in kJ/kg is Enthalpy at evaporator inlet of Te -16=i3=397.81 Kj/Kg

d. To calculate the coefficient of performance we use the following formula:

coefficient of performance=Refrigerating effect/Energy input

coefficient of performance=137.3/50

coefficient of performance=2.746

the coefficient of performance is 2.746

e. The refrigerating efficiency = COP/COPc

COPc=Te/(Tc-Te)

COPc=255/(321-255)

COPc=3.86

refrigerating efficiency=2.746/3.86

refrigerating efficiency=0.7114=71.14%

Jane puts an unknown substance into a beaker. This substance takes the shape of the beaker. While sitting on the lab bench, untouched, the substance does not leave the open beaker. This substance is MOST likely a A) gas. B) solid. C) liquid. D) plasma.

Answers

Answer: Liquid

Explanation: This substance is liquid. Liquids are free to move and take the shape of their container, but do not expand to completely fill it.

This substance is MOST likely a liquid. Thus option C is correct.

What is beaker?

Liquids can freely move and conform to the structure of their container, but they cannot enlarge to fill it entirely. A beaker is a circular container for holding liquids that is made of glass or plastic.

It is an utilitarian piece of apparatus used to measure liquids, heat them over a Bunsen burner's flame, and contain biochemical processes. It is liquid in nature. Liquids can freely move and conform to the shape of the container, but they cannot enlarge to fill it entirely. Jane fills a beaker with an unidentified chemical.

This material adopts the beaker's form. The chemical doesn't spill out of the open beaker when it's unattended on the lab table. Given that they are flexible and taking on the structure of the container in which they are in volume.  Therefore, option C is the correct option.

Learn more about beaker, Here:

https://brainly.com/question/29475799

#SPJ5

3-For the problems in this exercise, assume that there are no pipeline stalls and that the breakdown of executed instructions is as follows: a. In what fraction of all cycles is the data memory used b. In what fraction of all cycles is the input of the sign-extend circuit needed? c. What is this circuit doing in cycles in which its input is not needed?

Answers

Answer:

(a) 35% (b) 80% (c) Control signal is sent to a resource for activation of it's usage.

The operations are performed even in areas where it's not needed, it is ignored, because it is not used in cycles.

Explanation:

Solution

The computation of fraction  is defined below:

(a) The data memory used in lw and sw instructions

Now,

The fraction value is = sw + lw

=10 + 25

= 35

therefore the fraction value is 35%

(b) The needed sign is extended for all other instructions  other than ADD

which is shown below

The Fraction value  = addi + beq + lw + sw

=20 +25+25+ 10 =80 %

The fraction value here is 80%

(c) Now, a control signal is been sent to resource for activation of it's usage.

The operations are carried out even in case where it's not needed, it is ignored, because it is not used in cycles.

Note: The complete question to this exercise is attached below.

The fraction of all cycles that is the data memory used is 35%.

The fraction of all cycles that is the input of the sign-extend circuit needed is 80%.

The  circuit is known to be sending a resource for activation of it's usage and  it is also done in areas of the circuit where  it's not needed and so it is left that way.

What is a circuit ?

A circuit is known to be a kind of closed loop via which  electricity often pass through.

To solve for (a) which is the data memory that has been used in lw and sw instructions, you then add the value together:

That is: fraction value is = sw + lw

=10 + 25

So question A fraction value is 35%

To solve for me the required sign-extend circuit  is depicted as:

The Fraction value  = addi + beq + lw + sw

=20 +25+25+ 10 =80 %

The question (b) fraction value here is 80%

So therefore, the fraction value are 35 percent and 80 percent respectively

Learn more about circuit  from

https://brainly.com/question/2969220

Other Questions
Question 43 ptsWhich of the following shows a reduction of chromosomes by half? (3 points) why is the cycling of matter important to all living things In Florida, who decides to charge an accused person with a crime?A. The law Enforcement Agency responding to the crime.B. The victim of the crimeC. The Florida State Attorneys.D. The Florida State Legislature Highlige00:10:15HToolsWhich number on the map represents the country of India?-A)1B)23D)4 Linda is starting a new cosmetic and clothing business and would like to make a net profit of approximately 10% after paying all the expenses, which include merchandise cost, store rent, employees salary, and electricity cost for the store. She would like to know how much the merchandise should be marked up so that after paying all the expenses at the end of the year she gets approximately 10% net profit on the mer- chandise cost. Note that after marking up the price of an item she would like to put the item on 15% sale. Write a program that prompts Linda to enter the total cost of the merchandise, the salary of the employees (including her own salary), the yearly rent, and the estimated electric- ity cost. The program then outputs how much the merchandise should be marked up so that Linda gets the desired profit. Did these sales increase decrease stay the same or are they undetermined Pls help will mark brainliest to first answer The color of the light changes in the scenario because a volcano erupts. The light is the variable.When the color of the light changes, the number of light red kidney beans will also change. The population of light red kidney beans is therefore the variable. Explain how bilingualism canhave a negative impact on a country? what proportion of the progeny carries the allele for wrinkled skin in the genotype 1. Which of the following gives an example of a consensus? A. The new head of a company announces that there will no longer be any opportunities for employees to get overtime pay. B. A union representing the workers in a factory threatens to strike if the company does not meet its demands for a safer working environment. C. the management of business seeks to resolve issues by making sure a new policy has something that all of the workers have agreed to. D. a board of directors surveys the workers and puts into place a new policy that a majority of the workers had asked for. My Lord calls me, he calls me by the lightning;The trumpet sounds it in my soul,I hain't got long to stay here.Tombstones are bursting, poor sinners stand trembling;The trumpet sounds it in my soul.I hain't got long to stay here.Steal away, steal away, steal away to Jesus!Steal away, steal away home, I hain't got long to stay here."Steal Away," a slave song from the American southWhat does the person hear sounding in his soul?lightningb. people cryinga.a trumpeta traind. The instructions for an electric lawn mower suggest that an A gauge extension cord ( cross sectional area = 4.2 x 10-7 m2 ) should only be used for distances up to 35 m. The resistivity of copper (used in the extension cord) is 1.72 x 10-8 .m at 20oC and the temperature coefficient of resistivity of copper is 0.004041 (oC)-1. What is the resistance of a A type extension cord of length 35 m at 40oC Consider the words vacant and vacuum what is the meaning of the root vac Your math teacher asks you to calculate the height of the goal post on the football field. You and a partner gather the measurements shown. Find the height of the goal post, rounded to the nearest tenth of a foot. Product A requires 9 minutes of milling, 7 minutes for inspection, and 6 minutes of drilling per unit; product B requires 10 minutes of milling, 5 minutes for inspection, and 8 minutes of drilling per unit; product C requires 7 minutes of milling, 3 minutes for inspection, and 15 minutes of drilling. The department has 20 hours available during the next period for milling, 15 hours for inspection, and 24 hours for drilling. Product A contributes $2.0 per unit to profit, product B contributes $2.3 per unit, and product C contributes $4.0 per unit. a. How many constraints are there in the Linear Programming Formulation of this problem What is the range?The range is ou have an outstanding student loan with required payments of $ 550 per month for the next four years. The interest rate on the loan is 9 % APR (compounded monthly). Now that you realize your best investment is to prepay your student loan, you decide to prepay as much as you can each month. Looking at your budget, you can afford to pay an extra $ 250 a month in addition to your required monthly payments of $ 550, or $ 800 in total each month. How long will it take you to pay off the loan? (Note: Be careful not to round any intermediate steps less than six decimal places.) Which of the following best identifies a physical digestive process?heat formationenzyme actionacid secretionperistalsis 2.Neville Chamberlain faced a dilemma at the beginning of World War II. Chamberlain did not restrict or attack Germany. Why do you think Chamberlain did so much to work with Germany? Would you have made the same decisions Chamberlain did?