To convert 88 square yards to square meters, we use the conversion factor 1 square yard = 1.196 square meters. By multiplying 88 by 1.196, we find that 88 square yards is approximately 105.3 square meters.
Explanation:The question is part of the mathematics subject, specifically in the area of unit conversion. We have a conversion factor to use, which is 1 square yard = 1.196 square meters, based on the provided reference information.
So to convert 88 square yards to square meters, you multiply 88 by 1.196.
88 yards2 * 1.196 m2/yard2 = 105.3 m2.
so 88 square yards is approximately = 105.3 square meters.
Learn more about Unit Conversion here:https://brainly.com/question/19420601
#SPJ3
Use the quadratic formula to solve the equation.
4x^2 - 10x + 5 = 0
Enter your answers, in simplified radical form.
X=_____ or X=_____
Note that [tex]+\vee-[/tex] stands for plus or minus.
For the quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the solutions are [tex]x_{1,2}=\dfrac{-b+\vee-\sqrt{b^2-4ac}}{2a}[/tex] that means that for [tex]a=4, b=-10, c=5\Longrightarrow x_{1,2}=\dfrac{-(-10)+\vee-\sqrt{(-10)^2-4\cdot4\cdot5}}{2\cdot4}[/tex] this simplifies to [tex]\boxed{x_1=\dfrac{5+\sqrt{5}}{4}}, \boxed{x_2=\dfrac{5-\sqrt{5}}{4}}[/tex]
Hope this helps.
Answer:
[tex]\large\boxed{x=\dfrac{5-\sqrt5}{4},\ x=\dfrac{5+\sqrt5}{4}}[/tex]
Step-by-step explanation:
[tex]\text{The quadratic formula for}\ ax^2+bx+c=0\\\\\text{if}\ b^2-4ac<0,\ \text{then the equation has no real solution}\\\\\text{if}\ b^2-4ac=0,\ \text{then the equation has one solution:}\ x=\dfrac{-b}{2a}\\\\\text{if}\ b^2-4ac,\ ,\ \text{then the equation has two solutions:}\ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\==========================================[/tex]
[tex]\text{We have the equation:}\ 4x^2-10x+5=0\\\\a=4,\ b=-10,\ c=5\\\\b^2-4ac=(-10)^2-4(4)(5)=100-80=20>0\\\\x=\dfrac{-(-10)\pm\sqrt{20}}{2(4)}=\dfrac{10\pm\sqrt{4\cdot5}}{8}=\dfrac{10\pm\sqrt4\cdot\sqrt5}{8}=\dfrac{10\pm2\sqrt5}{8}\\\\=\dfrac{2(5\pm\sqrt5)}{8}=\dfrac{5\pm\sqrt5}{4}[/tex]
Which of the following equations matches the function shown above?
Answer:
D, y = cos(x -π/2)
Step-by-step explanation:
When the cosine function is shifted right by π/2 units, it looks like the sine function. That is what we have here. To shift f(x) to the right, replace x by x-(amount of shift). Here, this means the graph is described by ...
y = 2cos(x -π/2)
_____
The vertical scale factor is 2 on the graph and in all answer choices.
how many different lock combinations can be made using the digits 8, 2, 8 and 8 if the 2 is only used once in each combination?
2,8,8,8
8,2,8,8
8,8,2,8
8,8,8,2
4 combinations.
Hope this helps!
Wall-E has stacked 10 cubes as shown at the right.If the side of each cube measures 18 inches,find the volume of this stack of cubes
PLZ HELP QUICKLY
90 POINTS PROVIDED!
The volume of 1 cube is s^3 where S is the side length.
Volume of one cube = 18^3 = 5832 cubic inches.
Now multiply the volume of one cube by the total number of cubes:
5832 x 10 = 58,320 cubic inches.
To find the volume of the stack of cubes, we need to find the volume of one cube and then multiply it by the number of cubes in the stack.
To find the volume of the stack of cubes, we need to find the volume of one cube and then multiply it by the number of cubes in the stack. The side length of each cube is given as 18 inches. The formula to find the volume of a cube is side length cubed, so the volume of one cube is 18³ cubic inches.
To find the volume of the stack, we multiply the volume of one cube by the number of cubes, which is 10. So the volume of the stack of cubes is 18³ * 10 cubic inches.
Learn more about Volume of cubes here:https://brainly.com/question/31600527
#SPJ6
Helpppppppppppppppppp
For this case we have the following system of equations:
[tex]8x-9y = -122\\-8x-6y = -28[/tex]
To solve, we add both equations:
[tex]8x-8x-9y-6y = -122-28\\-15y = -150\\y = \frac {-150} {- 15}\\y = 10[/tex]
We find the value of "x":
[tex]8x = -122 + 9y\\x = \frac {-122 + 9y} {8}\\x = \frac {-122 + 9 (10)} {8}\\x = \frac {-122 + 90} {8}\\x = \frac {-32} {8}\\x = -4[/tex]
The solution is (-4,10)
ANswer:
Option C
Find the interior angles of a regular nonagon and a regular 100-gon
(I don’t understand this at all)
Answer:
nonagon: 140°
100-gon: 176.4°
Step-by-step explanation:
A regular polygon is one that has all sides the same length and all internal angles the same measure. A "nonagon" has nine (9) sides. An image of one is attached. There are some interesting relationships among the angles shown.
The figure can be divided into 9 congruent triangles. Each has a vertex at the center of the figure, and the other two vertices are each end of one side. The central angle (40°) is the supplement of the interior angle at each vertex of the nonagon (140°). Obviously, the central angles sum to 360° (one full circle), so each one has a measure that is 360° divided by the number of sides:
360°/9 = 40°
So, we can figure the interior angle (at the vertex) by subtracting from 180° the value of 360° divided by the number of sides.
For the 100-gon, with 100 sides, the interior angle will be ...
180° -360°/100 = 180° -3.6° = 176.4°
Final answer:
The interior angle of a regular nonagon is 140°, and for a regular 100-gon, it's 176.4°.
Explanation:
To find the interior angles of a regular polygon, we use the formula: (n - 2) × 180°, where n is the number of sides of the polygon. This formula gives us the sum of all interior angles of the polygon.
To find the measure of one interior angle in a regular polygon (where all angles are equal), we divide this sum by the number of sides.
Interior Angle of a Regular Nonagon:
A nonagon has 9 sides. Using our formula:
Sum of interior angles = (9 - 2) × 180° = 7 × 180° = 1260°One interior angle = 1260° / 9 = 140°Interior Angle of a Regular 100-gon:
A 100-gon has 100 sides. Following the same process:
Sum of interior angles = (100 - 2) × 180° = 98 × 180° = 17640°One interior angle = 17640° / 100 = 176.4°Therefore, each interior angle of a regular nonagon is 140°, and each interior angle of a regular 100-gon is 176.4°.
For the given angle measure(angle measure is 120), find the measure of a supplementary angle and the measure of a complementary angle, if possible. If not possible, type the word none in lowercase letters in the box.
Answer:
supplementary angle = 60 , complementary angle : none
Final answer:
A supplementary angle of 120 degrees is 60 degrees, and there is no complementary angle for 120 degrees because complementary angles must be less than or equal to 90 degrees.
Explanation:
Finding Supplementary and Complementary Angles
The task is to find the measure of a supplementary angle and a complementary angle for a given angle measure of 120 degrees. To find a supplementary angle, you subtract the given angle from 180 degrees. Thus, the supplementary angle of 120 degrees is 180 - 120 = 60 degrees. On the other hand, a complementary angle adds up to 90 degrees. Since 120 degrees is greater than 90, it is not possible to have a complementary angle to 120 degrees, therefore, we write 'none'. It's important to remember that complementary angles are always less than or equal to 90 degrees and hence, cannot be obtained for angles larger than 90 degrees.
In summary, the supplementary angle to 120 degrees is 60 degrees, and there is no complementary angle for 120 degrees.
Please help Last Question!!!
Answer:
24%
Step-by-step explanation:
2610 of the 10730 students are graduates. The probability of choosing a graduate at random from all students is ...
2610/10730 × 100% ≈ 24.324% ≈ 24%
What are the key aspects of the graph of f(x) = x2 – b2, where b is a real number?
Given equation is [tex]f\left(x\right)=x^2-b^2[/tex].
Now we need to find about what are the key aspects of the graph of [tex]f\left(x\right)=x^2-b^2[/tex], where b is a real number.
We know that square of any number is always positive.
then [tex]b^2[/tex] must be a positive number.
So that means for any real number b, as the value of b increases then graph of f(x) shifts downward by [tex]b^2[/tex] units as compared to the graph of parent function [tex]f\left(x\right)=x^2[/tex]
Answer with explanation:
The graph of the function is:
f(x)=x² -b²
Here, b is any Real Number.
f(x)=x² - k, where, k=b².
→y+k=x²
The given curve represents a Parabola having vertex at ,(0, -k) which can be Obtained by , putting, x=0 and, y+k=0→y= -k.
→The curve will open vertically Upwards having y axis as Line of Axis.
→It will cut, x axis at two points, if , k<0 and does not cuts the x axis , if k>0.
→Line, x=0, divides the Parabola into two equal Parts.
Simplify this expression: cos t(sec t − cos t)
A.
cos2t
B.
1 − tan2t
C.
1 + tan2t
D.
sin2t
Answer:
D
Step-by-step explanation:
(cos t) (sec t − cos t)
1 − cos² t
sin² t
The expression cos t(sec t - cos t) simplifies to sin² t, which matches option D.
The student has asked to simplify the expression cos t(sec t − cos t).
To simplify this expression, we start by distributing cos t across the parentheses:
cos t × sec t − cos t ×cos t
1 − cos² t (since cos t × sec t = 1)
1 − (1 − sin² t) (using the Pythagorean identity cos² t + sin² t = 1)
sin² t
Thus, the expression simplifies to sin² t, which corresponds to option D.
In a certain Algebra 2 class of 29 students, 13 of them play basketball and 7 of them play baseball. There are 4 students who play both sports. What is the probability that a student chosen randomly from the class plays basketball or baseball?
Answer:
16/29
Step-by-step explanation:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(basketball or baseball) = P(basketball) + P(baseball) - P(both)
= (13/29) + (7/29) - (4/29)
= 16/29
The probability that a randomly chosen student plays either sport is 16/29.
What is the value of x?
Answer:
12
Step-by-step explanation:
SOH CAH TOA reminds you that ...
Sin = Opposite/Hypotenuse
so ...
sin(45°) = (6√2)/x
Your memory of trig functions tells you sin(45°) = 1/√2, so we have ...
1/√2 = (6√2)/x
Multiplying by (√2)x gives ...
x = 6(√2)^2 = 6·2
x = 12
_____
You can simply recognize that this is an isosceles right triangle, so the hypotenuse (x) is √2 times the leg length:
x = (6√2)·√2 = 6·2 = 12
The population of a town was 72 thousand in 2010, and has been growing by 8% each year. When will the population reach 160 thousand if the trend continues? Give at least 1 decimal place.
Answer:
[tex]10.4\ years[/tex]
Step-by-step explanation:
In this problem we have a exponential function of the form
[tex]y=a(b)^{x}[/tex]
where
y is the population of a town
x is the number of years since 2010
a is the initial value
b is the base
[tex]a=72,000\ people[/tex]
[tex]b=1+0.08=1.08[/tex]
substitute
[tex]y=72,000(1.08)^{x}[/tex]
For [tex]y=160,000\ people[/tex]
substitute in the equation and solve for x
[tex]160,000=72,000(1.08)^{x}[/tex]
[tex](160/72)=(1.08)^{x}[/tex]
Apply log both sides
[tex]log(160/72)=(x)log(1.08)[/tex]
[tex]x=log(160/72)/log(1.08)[/tex]
[tex]x=10.4\ years[/tex]
For number 7 I need an explanation with steps for why is true or false
Thank you
Answer:
Part 1) The statement is false
Part 2) The statement is false
Part 3) The statement is true
Step-by-step explanation:
Let
h(t)-----> the height of an object launched to the air
t ----> the time in seconds after the object is launched
we have
[tex]h(t)=-16t^{2} +72t[/tex]
Verify each statement
case 1) The factored form of the equation is h(t)=-16(t-4.5)
The statement is false
Because
The factored form is equal to
[tex]h(t)=-16t(t-4.5)[/tex]
case 2) The object will hit the ground at t=72 seconds
The statement is false
Because
we know that
The object will hit the ground when h(t)=0
substitute in the equation and solve for t
[tex]0=-16t(t-4.5)[/tex]
so
[tex](t-4.5)=0[/tex]
[tex]t=4.5\ sec[/tex]
case 3) The t-value for the maximum of the function is 2.25
The statement is true
Because
Convert the quadratic equation in vertex form
[tex]h(t)=-16t^{2} +72t[/tex]
[tex]h(t)=-16(t^{2} -4.5t)[/tex]
[tex]h(t)-81=-16(t^{2} -4.5t+2.25^{2})[/tex]
[tex]h(t)-81=-16(t-2.25)^{2}[/tex]
[tex]h(t)=-16(t-2.25)^{2}+81[/tex] ---> quadratic equation in vertex form
The vertex is a maximum
The vertex is the point (2.25,81)
41,692.58
What place is the 6 in, in the number above?
Answer:
6 is in the "hundreds" place
Step-by-step explanation:
The value of the 6 can be found by setting the other digits to zero:
00,600.00 = 600
The 6 represents six hundred, hence is in the hundreds place.
consider the two similar water bottles for athletes
Answer:
A
Step-by-step explanation:
The bottles are cylindrical. The volume of a cylinder is:
V = πr²h
where r is the radius (half the diameter) and h is the height.
The bottles are similar, so we can write a proportion to find the height of the smaller bottle:
3/10 = 1.5/h
h = 5
The volume of the big bottle is:
V = π(3/2)²(10)
V ≈ 70.7
The volume of the small bottle is:
V = π(1.5/2)²(5)
V ≈ 8.8
So the difference in volume is:
V = 70.7 - 8.8
V = 61.9
Answer:
A
Step-by-step explanation:
got it right
A spinner has 4 equal-sized sections with different colors. You spin the spinner 60 times. Find the theoretical and experimental probabilities of spinning blue.
RESULTS HERE
Red: 13 Blue: 14 Yellow:18 Green:15
Answer:
theoretical is 15 each
experimental is Red: 13 Blue: 14 Yellow:18 Green:15
Step-by-step explanation:
the theoretical probability is what should statisticly happen when you do it so if there are for outcomes with an equal chance of occurring then 1 out of every 4 or 1/4 of the time each one should happen so divide 60 by 4 and you get 15
the experimental probability is what happens when someone actually spins it 60 times and in your scenario
RESULTS HERE
Red: 13 Blue: 14 Yellow:18 Green:15
is what happened so that is the experimental probability
Please need help in this 2 math questions
20. Q varies inversely as the square of p, and Q = 36 when p = 7. Find Q when p = 6.
A. Q = 6
B. Q = 42
C. Q = 176
D. Q = 49
12. Complete the property of exponents. (ab)n = _______
A. an + bn
B. anbn
C. abn
D. an – bn
Answer:
20. OPTION D.
12. OPTION B.
Step-by-step explanation:
20. An inverse variaton equation has this form:
[tex]y=\frac{k}{x}[/tex]
Where "k" is the constant of variation.
If Q varies inversely as the square of p, then the equation is:
[tex]Q=\frac{k}{p^2}[/tex]
Knowing that [tex]Q = 36[/tex] when [tex]p = 7[/tex], you can solve for "k" and caculate its value:
[tex]k=Qp^2\\k=(36)(7^2)\\k=1,764[/tex]
Then, to find the value of "Q" when [tex]p = 6[/tex], substitute the known values into [tex]Q=\frac{k}{p^2}[/tex]:
[tex]Q=\frac{1,764}{6^2}\\\\Q=49[/tex]
12. Given [tex](ab)^n[/tex], you get:
[tex](ab)^n=(a^1b^1)^n=a^{(1*n)}b^{(1*n)}=a^nb^n[/tex]
Then:
[tex](ab)^n=a^nb^n[/tex]
This matches with the option B.
Find the value of b in the graph of y=3x+b if it is known that the graph goes through the point: M(2,−1)
b=-7
Please look at the attached picture to see what I did
The value of b=-7.
y=3x+b
point(2,-1)
x=2, y=-1
subtract into equation
-1 = 3(2) +b
-1 = 6+b
-1-6 = b
b= -7
What are the coordinates of a point?Coordinates are a couple of numbers that describe the precise function of a factor on a cartesian aircraft through the use of the horizontal and vertical lines known as the coordinates. commonly represented by (x, y) the x cost and y price of the point on a graph. Each factor or an ordered pair consists of two coordinates.
A factor-to-factor graph also referred to as a line graph, is a pictorial rendition of records wherein specific values of a feature are plotted as dots on a coordinate aircraft.
Learn more about graphs through the point here: https://brainly.com/question/14323743
#SPJ2
Suppose that A and B are events with probabilities P(A) = 3/4 and P(B) = 1/3. (a) (8 points) What is the largest P(A ∩ B) can be? What is the smallest it can be? Give examples to show that both extremes for P(A ∩ B) are possible. (b) (8 points) What is the largest P(A ∪ B) can be? What is the smallest it can be? Give examples to show that both extremes for P(A ∪ B) are possible
Answer:
(a) max P(A∩B) = 1/3; min P(A∩B) = 1/12
(b) max P(A∪B) = 1; min P(A∪B) = 3/4
Step-by-step explanation:
Let the universal set be the numbers 1–12, U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, each with probability 1/12.
Let event A be any of the numbers 1–9, {1, 2, 3, 4, 5, 6, 7, 8, 9}. If a number is chosen at random from U, the probability of event A is 9/12 = 3/4.
a1) Let event B be any of the numbers 1–4, {1, 2, 3, 4}. If a number is chosen at random from U, the probability of event B is 4/12 = 1/3.
The set A∩B is the numbers 1–4, {1, 2, 3, 4}, so the probability of that event is also 4/12 = 1/3.
In general the maximum value of P(A∩B) will be min(P(A), P(B)). Here, that is min(3/4, 1/3) = 1/3.
__
a2) Let event B be any of the numbers 9–12, {9, 10, 11, 12}. If a number is chosen at random from U, the probability of event B is 4/12 = 1/3. The set A∩B is the number {9}, so the probability of that event is 1/12.
In general, the minimum value of P(A∩B) is max(0, P(A) +P(B) -1). Here, that is max(0, 3/4 +1/3 -1) = 1/12.
__
b1) Let event B be defined as in (a2), the numbers 9–12. Then A∪B is the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, which is equal to the universal set, U. That is, the probability of event A∪B when drawing a number from U is 1.
In general, the maximum value of P(A∪B) is min(1, P(A)+P(B)). Here, that is min(1, 3/4+1/3) = 1.
__
b2) Let event B be defined as in (a1), the numbers 1–4. Then A∪B is the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. If a number is chosen at random from U, the probability of event A∪B is 9/12 = 3/4.
In general, the minimum value of P(A∪B) is max(P(A), P(B)). Here, that is max(3/4, 1/3) = 3/4.
How do you find the exact value of cot θ if csc θ = -3/2 and 180 < θ < 270?
[tex]\displaystyle\\\text{If }~~180^o<\theta<270^o~~\text{then }~~\theta\in~\text{quadrant 3}\\\\\text{In the 3rd cotangent dial is positive.}\\\\\text{We use the formula: } ~~~\boxed{1+\cot^2\theta=\csc^2\theta}[/tex]
[tex]\displaystyle\\1+\cot^2\theta=\csc^2\theta\\\\\cot^2\theta=\csc^2\theta-1\\\\\cot^2\theta=\left(-\frac{3}{2}\right)^2-1\\\\\\\cot^2\theta=\left(\frac{3}{2}\right)^2-1\\\\\\\cot^2\theta=\frac{9}{4}-\frac{4}{4}\\\\\\\cot^2\theta=\frac{5}{4}\\\\\\\cot\theta=\pm\sqrt{\frac{5}{4}}\\\\\\\text{We will eliminate the negative solution.}\\\\\\\cot\theta=+\sqrt{\frac{5}{4}}\\\\\\\boxed{\bf\cot\theta=\frac{\sqrt{5}}{2}}}[/tex]
ine CD passes through (0, 1) and is parallel to x + y = 3. Write the standard form of the equation of line CD.
____________________________________________________
Answer:
Your answer would be x + y = 1
____________________________________________________
Step-by-step explanation:
In this scenario, we know that the line of CD passes through the coordinates (0,1), and would also be parallel to the equation x + y = 3.
When two lines are parallel, that means that their slopes are equal.
The slope of the line must be:
[tex]x + y = 3[/tex]
Move the x to the other side by subtracting
[tex]y= -x + 3[/tex]
The slope for the equation would be -1, since there is a invisible one after the equal sign. When there's no other number there, it would be 1.
The slope of the line CD would be -1.
Now, we would need to plug in -1 into the equation, to find the standard form.
[tex](y - 1) = m(x - 0)\\\\(y-1)=-1(x)\\\\x+y=1[/tex]
[tex]x + y = 1[/tex] should be your FINAL answer.
____________________________________________________
What is the area of the figure? Make sure to show your work and provide complete geometric explanations.
Answer:
[tex]A = 144\ ft[/tex]
Step-by-step explanation:
The area of a triangle is:
[tex]A = 0.5b*h[/tex]
Where b is the base of the triangle and h is the height
In this case we know the hypotenuse of the triangle and the angle B.
Then we can use the sine of the angle to find the side opposite the angle
By definition we know that
[tex]sin (\theta) = \frac{opposite}{hypotenuse}[/tex]
In this case hypotenuse = 24
opposite = b
Then:
[tex]sin (45) = \frac{b}{24}[/tex]
[tex]b= 24*sin(45)[/tex]
[tex]b=12\sqrt{2}[/tex]
Now
[tex]cos(\theta) = \frac{adjacent}{hypotenuse}[/tex]
adjacent = a = h
[tex]cos(45) = \frac{h}{24}[/tex]
[tex]h = 24*cos(45)\\\\h=12\sqrt{2}[/tex]
Then the area is:
[tex]A = 0.5*12\sqrt{2}(12\sqrt{2})\\\\A=144\ ft[/tex]
ANSWER
[tex]Area = 144 {ft}^{2} [/tex]
EXPLANATION
We use the sine ratio to find the missing side.
[tex] \sin(45 \degree) = \frac{AC}{24} [/tex]
[tex]24\sin(45 \degree) = AC[/tex]
[tex]AC = 24 \times \frac{ \sqrt{2} }{2} [/tex]
[tex]AC = 12 \sqrt{2} ft[/tex]
The triangle is a right isosceles triangle.
This implies that,
AC=BC=12√2 ft.
The area of the triangle is:
[tex]Area = \frac{1}{2} bh[/tex]
We substitute the values to get,
[tex]Area = \frac{1}{2} \times 12 \sqrt{2} \times 12 \sqrt{2} [/tex]
[tex]Area = 144 {ft}^{2} [/tex]
Please help last question
Answer:
reflective and slide the y is -1
Step-by-step explanation:
refect over the -1 x axis and the translate x-1 and y-1
ples help will mark brainliest if 2 answers.
Answer:
see below
Step-by-step explanation:
Choose a couple of values for x. Figure out the corresponding values for y. Plot those points and draw a line through them.
Let's choose x=0 and x=4. Then the corresponding y-values are ...
y = 2·0 = 0 . . . . . point (x, y) = (0, 0)
y = 2·4 = 8 . . . . . point (x, y) = (4, 8)
These are graphed below.
someone please help, can’t seem to get the problems
Answer:
A) 525,500
B) decreasing by 0.995% per year
C) 430,243
D) After 20 years, the population can be expected to be about 20% smaller.
E) 2009
Step-by-step explanation:
A) t=0 represents the year 2000, so put 0 where t is in the expression and evaluate it. Of course, e^0 = 1, so the y-value is 525.5 thousand, or 525,500.
__
B) Each year, the population is multiplied by e^-0.01 ≈ 0.99004983, or about 1 - 0.995%. That is, the population is decreasing by 0.995% per year.
__
C) t represents the number of years since 2000, so the year 2020 is represented by t=20. Put that value in the equation and do the arithmetic.
y = 525.5·e^(-0.01·20) = 525.5·e^-0.2 ≈ 430.243 . . . . thousands
The population in 2020 is predicted to be 430,243.
__
D) The decrease is about 1% per year, so a rough estimate of the decrease over 20 years is 20%. The population of about 500,000 will decrease by about 100,000 in that time period, so will be about 400,000. The value we calculated is in that ballpark. (The actual decrease is about 18.13%; or about 95.2 thousand.)
__
E) Your working shows the general idea, but you need to remember the numbers in the equation are thousands:
480 = 525.5·e^(-0.01t)
0.913416 = e^(-0.01t) . . . . divide by 525.5
ln(0.913416) = -0.01·t . . . . take the natural log
-100ln(0.913416) = t ≈ 9.06
The population will be 480 thousand after 9 .06 years, in the year 2009.
It takes 2 1/4 kilometers of thread to make 3 1/2 boxes of shirts. How many kilometers of thread would it take to make 8 boxes?
[tex]5\frac{3}{7}[/tex] Kilometers of thread.
The key to solve this problem is using the rule of three.
We have to change mixed number to improper fraction in order to solve the problem.
A mixed number is a number formed by an integer and a proper fraction (one whose quotient is less than 1).
An improper fraction is one whose denominator is less than its numerator.
To change a mixed number to an improper fraction:
1. Multiply the whole number by the denominator and add to the numerator.
2. The denominator of the mixed number is unchanged.
It takes [tex]2\frac{1}{4}[/tex] kilometers of thread to make [tex]3\frac{1}{2}[/tex] boxes of shirts. How many kilometers of thread would it take to make 8 boxes?
We need to change [tex]2\frac{1}{4}[/tex] and [tex]3\frac{1}{2}[/tex] to an improper franctions:
[tex]2\frac{1}{4}=\frac{(2)(4)+1}{4}=\frac{9}{4}[/tex]
[tex]3\frac{1}{2}=\frac{(3)(2)+1}{2}=\frac{7}{2}[/tex]
To calculate how many kilometers of thread would it take to make 8 boxes, we use the rule of three:
9/4 Km of thread -------------> 7/2 boxes of shirts
x <------------- 8 boxes of shirts
[tex]x = \frac{(\frac{9}{4})(8)}{\frac{7}{2}}= \frac{19}{\frac{7}{2}}\\x=\frac{38}{7}[/tex]
Convert the improper fraction 38/7 to a mixed number:
1. Divide the numerator by the denominator.
38÷7 = 5 and a remainder of 3
2. 5 become the whole number, the remainder is the numerator, and the denominator is unchanged.
38/7 = 5 3/7
It would take 5 3/7 kilometers of thread make 8 boxes of shirts.
f(x)=10e-0.02x
This function represents the exponential decay of the bones of an extinct dinosaur in grams per year, where x is years. Using the graph, how many years does it take for the bones to be less than 5 grams?
Answer:
35 years
Step-by-step explanation:
We have been given an exponential decay function that models the weight of the bones of an extinct dinosaur;
[tex]f(x)=10e^{-0.02x}[/tex]
The initial weight of the bones is;
substitute x with 0 in the function, f(0) = 10 grams
We are required to determine the number of years it will take for the bones to be less than 5 grams. The solution can be achieved either analytically or graphically. I obtained the graph of the function from desmos graphing tool as shown in the attachment below.
From the graph, the bones will weigh 5 grams after approximately 34.65 years. This implies that it will take 35 years for the bones to be less than 5 grams.
what is -2(3x+12y-5-17x-16y+4) simplified
Answer: 28x + 8y + 2
Answer:
28x +8y +2
Step-by-step explanation:
It can work well to simplify the contents of the parentheses, then apply the overall multiplier.
= -2(x(3-17) +y(12-16) +(-5+4)) . . . . collect terms
= -2(-14x -4y -1)
= 28x +8y +2 . . . . use the distributive property
Amy hikes down a slope to a lake that is 10.2 meters below the trail. Then Amy jumps into the lake, and swims 1.5 meters down. She wonders what her new position is relative to the trail. Which of the following equations matches the situation above?
a. −10.2+1.5=?
b. 10.2−1.5=?
c. None of the above
To whoever answers this, thank you so much!!
she went down the slope 10.2 meters, -10.2
then she jumped down to the lake 1.5 meters, -1.5
-10.2 - 1.5 = -11.7 meters.
so she pretty much went 11.7 meters down from her original location.