Consider two conducting spheres with one having a larger radius than the other. Both spheres carry the same amount of excess charge. Which one of the following statements concerning the potential energy of the two spheres is true? O The potential energy of the larger sphere is greater than that of the smaller sphere. The potential energy of the larger sphere is the same as that of the smaller sphere. O The potential energy of the larger sphere is less than that of the smaller sphere.

Answers

Answer 1

Answer: Option (a) is the correct answer.

Explanation:

It is known that potential energy is the energy occupied by an object or substance due to its position is known as potential energy.

Therefore, more is the space occupied by an object more will be its position at a particular location. Hence, more will be its potential energy. On the other hand, smaller is the space occupied by an object, smaller will be the position holded by it.

Hence, smaller will be its potential energy.

Thus, we can conclude that for the given situation the statement, potential energy of the larger sphere is greater than that of the smaller sphere, is true.

Answer 2

Final answer:

The potential energy of the larger conducting sphere is less than that of the smaller sphere because electric potential is inversely proportional to radius and both spheres carry the same charge.

Explanation:

When two conducting spheres with the same excess charge but different radii are considered, the potential of each sphere is given by V = kQ/R, where V is the potential, k is Coulomb's constant, Q is the charge, and R is the radius of the sphere. Since the charge Q is the same for both spheres, but the radius R is larger for one of them, the electric potential energy will be higher for the smaller sphere since it has a smaller radius. This stems from the fact that electric potential is inversely proportional to the radius, meaning a smaller radius results in a higher potential for the same amount of charge.

The correct statement is: (d)he potential energy of the larger sphere is less than that of the smaller sphere.


Related Questions

when an object gets larger, why does the volume of an object increase faster than the surface area?

Answers

Let us consider the object to be a cell.

Explanation:

As a cell grows bigger, its internal volume enlarges and the cell membrane expands. This results in the increase in volume more rapidly than does the surface area, and so the relative amount of surface area available to pass materials to a unit volume of the cell steadily decreases. This means the surface area to the volume ratio gets smaller as the cell gets larger.

Example of a cube:

Cube size            Surface area                   Volume

2cm                      2 × 2 × 6 = 24 cm²         2 × 2 × 2 = 8 cm³

4 cm                      4 × 4 × 6 = 96 cm²         4 × 4 × 4 = 64 cm³

6 cm                      6 × 6 × 6 = 216 cm²       6 × 6 × 6 = 216 cm³

8 cm                      8 × 8 × 6 = 384 cm²       8 × 8 × 8 = 512 cm³

This shows as the object gets larger, the volume of an object increases faster than the surface area.

The acceleration of gravity on the moon is one-sixth what it is on Earth. The radius of the moon is one-fourth that of the Earth. What is the moon's mass

Answers

Answer: moon mass = earth mass/96

Explanation:

The moon mass will be 1/96th of the earth mass. There is an attached detailed solution to this.

A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 25 cmcm and 1300 turns of wire. When running, the solenoid produced a field of 1.5 TT in the center.

Answers

Explanation:

Below is an attachment containing the solution.

How can astrophysicists tell whether a star is receding from or approaching earth?

Answers

Answer:

Doppler shift of the starlight

Explanation:

To predict the movement of a star, we compare the spectra of elements found in star (H, He Na etc.), first spectra which are obtained from star and second spectra from laboratory. If spectral lines of the spectra obtained from star, are shifting towards red end (called red shift) then star is going away from earth and if shifting is towards blue (called blue shift), then star is approaching the earth. This is Doppler's shift.

Laminar flow, where water moves in approximately straight-line paths, characterizes ________.
a. fast-moving streams
b. slow-moving streams
c. the edges of channels
d. the bottoms of channels
e. All of these

Answers

Answer:

b. slow-moving streams.

Explanation:

In Fluid Mechanics, the Reynolds numbers indicates the existence of turbulence in fluid streams. Low Reynolds numbers are related with laminar flow. The Reynolds formula is:

[tex]Re = \frac{\rho_{water} \cdot L_{c}}{\mu_{water}} \cdot v[/tex]

The Reynolds number is directly proportional to fluid speed. Hence, slow-moving streams are a sound example of laminar flow. The correct answer is B.

A ball with mass M, moving horizontally at 4.00 m>s, collides elastically with a block with mass 3M that is initially hanging at rest from the ceiling on the end of a 50.0-cm wire. Find the maximum angle through which the block swings after it is hit.

Answers

Answer:

θ = 53.7°

Explanation:

Given:

- The mass of ball = M

- The mass of object = 3M

- The wire length L = 0.5 m

- The velocity of ball vi = 4.0 m/s

- The velocity of ball vf

- The velocity of object Vf

Find:

Find the maximum angle through which the block swings after it is hit.

Solution:

- When two objects collide with no external force acting on the system the linear momentum of the system is conserved. The initial (Pi) and final (Pf) linear momentum are equal:

                                  Pi = Pf

                                  M*vi = M*vf + 3M*Vf

                                  vi = vf + 3*Vf

                                  4 = vf + 3*Vf

- For elastic collision between two particles the relative velocities before and after collision have the same magnitude but opposite sign; so,

                                   vi - 0 = Vf - vf

                                   4 = Vf - vf

- Solve the above two equation simultaneously.

                                   8 = 4*Vf

                                   Vf = 2 m/s

                                    vf = -2 m/s

- When the ball hits the object it swing under the influence of gravity only. Hence, no external force acts on the object so we can apply the conservation of energy as the object attains a height h.

                                   ΔK.E = ΔP.E

                                   0.5*(3M)*Vf^2 = (3M)*(g)*(h)

                                   h = Vf^2 / 2*g

- Plug in the values:

                                   h = 2^2 / 2*9.81

                                   h = 0.2039 m

- We can see that the maximum angle can be given as θ according trigonometric relation as follows:

                                  θ = arccos [ ( L - h ) / L ]

                                  θ = arccos [ ( 0.5 - 0.2039 ) / 0.5 ]

                                  θ = 53.7°

The maximum angle through which the block swings after it is hit θ is = 53.7°

Calculation of Mass

Given:

The mass of ball is = M

The mass of object is = 3M

The wire length L is = 0.5 m

The velocity of ball vi is = 4.0 m/s

Then The velocity of ball vf

After that The velocity of object Vf

Now we Find:

Find the maximum angle through which the block swings after it is hit that is :

When two objects collide with no external force acting on the system the linear momentum of the system is conserved. Then The initial (Pi) and also final (Pf) linear momentum are equal:

Pi is = Pf

M*vi is = M*vf + 3M*Vf

vi is = vf + 3*Vf

4 is = vf + 3*Vf

Now For elastic collision between two particles the relative velocities before and also after collision have the same magnitude but opposite signs; so,

vi - 0 is = Vf - vf

4 is = Vf - vf

Solve the above two equations simultaneously.

8 is = 4*Vf

Vf is = 2 m/s

vf is = -2 m/s

When the ball hits the object it swings under the influence of gravity only. Hence proof, no external force acts on the object so we can apply the conservation of energy as the object attains a height h.

ΔK.E is = ΔP.E

0.5*(3M)*Vf^2 is = (3M)*(g)*(h)

h is = Vf^2 / 2*g

Then we Plug in the values is:

h is = 2^2 / 2*9.81

h is = 0.2039 m

Now We can see that the maximum angle can be given as θ according trigonometric relation as follows:

θ is = arccos [ ( L - h ) / L ]

θ is = arccos [ ( 0.5 - 0.2039 ) / 0.5 ]

θ is = 53.7°

Find more information about Mass here:

https://brainly.com/question/13502329

Which of the following best defines a nation's labor force? the total number of persons who are willing and able to work but cannot find a job the total number of persons between the ages of 16 and 65 the total number of employed and unemployed persons the total number of persons working full time and part time

Answers

Answer:

the total number of persons between the ages of 16 and 65

Explanation:

The labour force consists of all the people who are able to work in a country or area, or all the people who work for a particular company.

The workforce of a country includes both the employed and the unemployed (labour force)

Final answer:

The labor force of a nation includes all employed and unemployed persons, excluding those not actively seeking work. Employed individuals have a job, while unemployed individuals are jobless but actively looking for work. The unemployment rate measures the percentage of the labor force that is unemployed.

Explanation:

A nation's labor force is best defined as the total number of employed and unemployed persons. Specifically, it includes all individuals who are either currently working (employed) or actively seeking employment (unemployed). The labor force does not include those who are not seeking work, such as students, stay-at-home parents, individuals with disabilities preventing them from working, or those who have taken early retirement.

The unemployment rate is a key economic indicator that represents the percentage of the labor force that is unemployed. It's important to note that to be considered unemployed, a person must be actively looking for work and available to work. This excludes people who are not actively seeking employment, who are then categorized as out of the labor force.

Lastly, the definition of 'employed' in the United States is quite broad, including those working part-time or temporarily, as well as individuals on leave but who have a job.

A sample of octane (C8H18) that has a mass of 0.750 g is burned in a bomb calorimeter. As a result, the temperature of the calorimeter increases from 21.0°C to 41.0°C. The specific heat of the calorimeter is 1.50 J/(g • °C), and its mass is 1.00 kg. How much heat is released during the combustion of this sample? Use . 22.5 J 30.0 J 31.5 J 61.5 J

Answers

Answer:

Explanation:

mass, m = 1 kg

specific heat, c = 1.5 J/g°C

rise in temperature, ΔT = 41 - 21 = 20

heat released, H = m x c x ΔT

H = 1 x 1.5 x 1000 x 20

H = 30,000 J

H = 30 kJ.

Answer:

A) 22.5 J

Explanation:

on edg I got it right

In a Broadway performance, an 83.0-kg actor swings from a R = 3.90-m-long cable that is horizontal when he starts. At the bottom of his arc, he picks up his 55.0-kg costar in an inelastic collision. What maximum height do they reach after their upward swing?

Answers

Answer:

[tex]h = 2.821\,m[/tex]

Explanation:

The speed of the actor before the collision is found by means of the Principle of Energy Conservation:

[tex](83\,kg)\cdot(9.807\,\frac{m}{s})\cdot (3.90\,m) = \frac{1}{2}\cdot (83\,kg)\cdot v^{2}[/tex]

[tex]v = \sqrt{2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (3.90\,m)}[/tex]

[tex]v \approx 8.746\,\frac{m}{s}[/tex]

The speed after the inelastic collision is obtained by using the Principle of Momentum Conservation:

[tex](83\,kg)\cdot (8.746\,\frac{m}{s} )+(55\,kg)\cdot (0\,\frac{m}{s} ) = (83\,kg + 55\,kg)\cdot v[/tex]

[tex]v = 5.260\,\frac{m}{s}[/tex]

Lastly, the maximum height is determined by using the Principle of Energy Conservation again:

[tex]\frac{1}{2}\cdot (138\,kg)\cdot (5.260\,\frac{m}{s} )^{2} = (138\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot h[/tex]

[tex]h = \frac{(5.260\,\frac{m}{s} )^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]h = 2.821\,m[/tex]

How did ernest rutherford discover the nucleus of the atom

Answers

Answer:

THE ANSWER IS:  Rutherford, Marsden and Geiger discovered the dense atomic nucleus by bombarding a thin gold sheet with the alpha particles emitted by radium

Explanation:

From the following statements about mechanical waves, identify those that are true for transverse mechanical waves only, those that are true for longitudinal mechanical waves only, and those that are true for both types of waves.A. In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy.B. Many wave motions in nature are a combination of longitudinal and transverse motion.C. In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy.D. All of the above

Answers

Answer: D all of the above

Explanation:

All of the statements in the options are the character's exhibited by both longitudinal amd transverse waves.

Examples of transverse waves are water waves, light waves, radio waves, and also waves produced in strings and ropes.

Examples of longitudinal waves includes : vibrating turn fork,, drum head etc

Final answer:

Statement A is true for longitudinal waves only, statement C is true for transverse waves only, and statement B is true for both types of waves. These are based on the nature of particle movement in relation to the direction of wave energy flow.

Explanation:

In the given statements, Statement A, 'In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy', is true solely for longitudinal mechanical waves. This is because, in longitudinal waves, the disturbances (or oscillations) in the medium occur in the same direction as the wave propagation, with notable examples being sound waves in air and water.

Statement C, 'In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy', on the other hand, pertains exclusively to transverse mechanical waves. Transverse waves are characterized by disturbances in the medium that are perpendicular to the direction of the wave propagation, common examples of which are waves seen on stringed instruments and electromagnetic waves, such as visible light.

Statement B, 'Many wave motions in nature are a combination of longitudinal and transverse motion', applies to both longitudinal and transverse mechanical waves. Certain seismic waves generated during earthquakes, for instance, possess both longitudinal and transverse components, demonstrating that waves can indeed display composite behaviors. Thus, in essence, this statement is true for both types of mechanical waves.

Learn more about Mechanical Waves here:

https://brainly.com/question/24459019

#SPJ3

Cathy, a 460-N actress playing Peter Pan, is hoisted above the stage in order to "fly" by a stagehand pulling with a force of 60. N on a rope wrapped around a pulley system. What is the actual mechanical advantage of the pulley system?

Answers

Answer:7.67

Explanation:

Given

Weight of Cathy [tex]W_1=460\ N[/tex]

Force exerted by rope [tex]F=60\ N[/tex]

Mechanical advantage is the ratio of load by Pulling effort      

[tex]M.A.=\frac{Load}{Pulling\ effort}[/tex]

[tex]M.A.=\frac{460}{60}[/tex]

[tex]M.A.=7.67\ N[/tex]

Final answer:

The actual mechanical advantage of the pulley system that hoists Cathy is calculated by dividing the load force (460 N) by the effort force (60 N), resulting in an actual mechanical advantage of approximately 7.67.

Explanation:

The actual mechanical advantage (MA) of a pulley system is the ratio of the load force to the effort force. Given that Cathy, a 460-N actress, is raised with an effort of 60 N, we can calculate the actual mechanical advantage by using the formula MA = Load/Effort. By dividing 460 N by 60 N, we get an actual mechanical advantage of approximately 7.67. This implies that the pulley system is using 7.67 times less effort force to lift the load, thus increasing the efficiency of the task.

Pulley systems can provide significant mechanical advantage by allowing a smaller effort force to move a larger load. This effectiveness is heightened if the pulleys are arranged in such a way as to multiply the tension in the ropes as they support the load. With perfectly friction-free pulleys and ropes, the MA can be simply counted as the number of ropes supporting the load, making the force output nearly an integral multiple of the input force.

LC oscillators have. been used to circuits. connected to loud speakers to create some of the sounds of electronic musc. What indductance must be usedd with a 6.7 uF capacito r to prodice a frequncy of 10

Answers

Answer:

[tex]3.8\times 10^{-8}\ H[/tex]

Explanation:

Given the [tex]6.7\mu F[/tex] capacitor is used in an LC circuit to produce [tex]10\ kHz[/tex] frequency.

We need to find the value of inductance required.

As we know the relation between angular frequency in [tex]rad/sec[/tex] and frequency in [tex]Hz[/tex] is.

[tex]\omega =2\times \pi\times f[/tex]

Where [tex]\omega[/tex] is angular frequency and [tex]f[/tex] is frequency.

[tex]\omega=2\times \pi\times 10\times 1000=20000\pi\ rad/sec\\\omega=62832\ rad/sec[/tex]

Also, the relation between the angular frequency, capacitance and inductance is given by.

[tex]\omega^2=\frac{1}{LC}\\\\L=\frac{1}{\omega^2C} \\\\L=\frac{1}{62832^2\times6.7\times 10^{-6} } \\\\L=\frac{1}{26451}.\\ \\L=3.8\times 10^{-8}\ H[/tex]

So, [tex]3.8\times 10^{-8}\ H[/tex] inductance will be required to produce [tex]10\ kHz[/tex].

a cart mass 3kg rolls down a slope. when it reaches the bottom a spring loaded gun fires a 0.5kg ball with horizontal velocity 0.6m/s. find final velocity of the cart

Answers

Answer:

the final velocity of the cart is 5.037m/s

Explanation:

Using the conservation of energy

[tex]T_a + V_a = T_b + V_b[/tex]

[tex]T_a = \frac{1}{2} (m_c + m_b)v_a^2[/tex]

[tex]T_a= \frac{1}{2} (3 + 0.5)(0)^2[/tex]

= 0

[tex]V_a = (m_c + m_b)gh_a[/tex]

[tex]V_a = (3 + 0.5) * 9.81 * 1.24[/tex]

[tex]= 42.918J[/tex]

[tex]T _b = \frac{1}{2} (3 + 0.5)v_b^2 \\\\ = 1.75v_b^2[/tex]

[tex]V_b = (3 + 0.5) * 9.81 * 0\\ = 0[/tex]

[tex]T_a + V_a = T_b + V_b\\ 0 + 12.918 = 1.75v_b^2 + 0\\v_b = 4.95m/s[/tex]

Using the conservation of linear momentum

[tex](m_c + m_b)v_B = m_cv_c + m_bv_b\\(3 + 0.5) * 4.95 = 3v_c - 0.5v_b\\17.33 = 3v_c - 0.5v_b\\v_b = 6v_c - 34.66 ...............(1)[/tex]

[tex]Utilizing the relative velocity relation = v_b - v_c\\-0.6 = -v_b - v_c\\v_b = 0.6 - v_c (2)[/tex]

equate (1) and (2)

[tex]6v_c - 34.66 = 0.6 - v_c\\7v_c = 35.26\\v_c = 5.037m/s[/tex]

the final velocity of the cart is 5.037m/s

The shuttles main engine provides 154,360 kg of thrust for 8 minutes. If the shuttle accelerated at 29m/s/s, and fires for at least 8 minutes, then how far does the shuttle go

Answers

Answer:

The answer to the question is

3340800 m far

Explanation:

To solve the question, we note that acceleration = 29 m/s²

Time of acceleration = 8 minutes

Then if the shuttle starts from rest, we have

S = u·t+0.5·a·t² where u = 0 m/s = initial velocity

S = distance traveled, m

a = acceleration of the motion, m/s²

t = time of travel

S = 0.5·a·t² = 0.5×29×(8×60)² = 3340800 m far

The 10 kg dancer leaps into the air with an initial velocity of 5 m/s at angle of 45° from the floor. How far will she travel in the air horizontally before she lands on the ground again?

Answers

Answer:

2.55 m

Explanation:

The motion of the dancer is the motion of a projectile, which consists of 2 independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- A uniformly accelerated motion (constant acceleration) along the vertical direction

The horizontal range of a projectile can be found by using the equations of motions along the two directions, and it is given by:

[tex]d=\frac{v^2 sin(2\theta)}{g}[/tex]

where

v is the intial velocity

[tex]\theta[/tex] is the angle of projection

[tex]g=9.8 m/s^2[/tex] is the acceleration due to gravity

For the dancer in this problem, we have:

v = 5 m/s

[tex]\theta=45^{\circ}[/tex]

Therefore, the horizontal range is:

[tex]d=\frac{(5)^2(sin 2\cdot 45^{\circ})}{9.8}=2.55 m[/tex]

A series of pulses of amplitude 0.28 m are sent down a string that is attached to a post at one end. The pulses are reflected at the post and travel back along the string without loss of amplitude. What is the amplitude at a point on the string where two pulses cross if the string is rigidly attached to the post?

Answers

Answer:

a. The pulses cancel each other resulting in zero displacement.

b. The pulses reinforce each other, having a displacement of 2× amplitude or 0.56 m.

Explanation:

When the pulse are sent down the attached string  it gets reflected and we have crossing pulses as the incident and reflected pulses cross each other.

a. If the string is rigidly attached to the post then the incident and reflected pulses will have the same amplitude but different direction. That is either the reflected will be going up and the incident down thereby resulting in a cancellation or zero displacement

Incident amplitude = 0.28 m

Reflected amplitude = -0.28 m

Sum = 0.28 m - 0.28 m = 0 m

b. If the end at which the relfection occurs is free to slide, then the incident and the reflected pulses will again have the same amplitude and in this case, the same direction. Therefore;

Incident amplitude = 0.28 m

Reflected amplitude = 0.28 m

Sum = 0.28 m + 0.28 m = 0.56 m

Answer:

The answer is zero displacement (0 m)

Explanation:

If the end of the string is not free, the reflected pulse has the same amplitude but opposite polarity to the incident pulse. Because of this, for A, the result equals zero (0 m).

During oxidation-reduction reactions, a material loses electrons to the oxidizer, which has a positive charge. Which power source directs these lost electrons through an electronic device to give it power?

A. An electric outlet
B. An electromagnet
C. An electric motor
D. A battery

Answers

Answer:

D. Battery

During the oxidation-reduction(redox) reaction, there is always flow of electrons from one point to another. The electrons are then converted to power through the battery which converts chemical energy to electrical energy. If there is zero flow of electrons then there will also be zero power.

Answer:

D. A battery.

Explanation:

A battery cell refers to a single anode and cathode separated by electrolyte used to produce a voltage and current. It is typically an electrolytic cell.

An electrolytic cell is an electrochemical cell that drives a non-spontaneous redox reaction through the application of electrical energy. They are often used to decompose chemical compounds, in a process called electrolysis.

The anode which is positive electrode undergoes oxidation i.e loss of electrons while the cathode(negative) undergoes reduction that is, accept electrons.

A charge of 28.0 nC is placed in a uniform electric field that is directed vertically upward and that has a magnitude of What work is done by the electric force when the charge moves (a) 0.450 m to the right; (b) 0.670 m upward; (c) 2.60 m at an angle of 45.0° downward from the horizontal?

Answers

Final answer:

When the charge moves 0.450 m to the right, the work done is zero. When the charge moves 0.670 m upward, the work done can be calculated as (28.0 nC * Electric Field) * 0.670 m. When the charge moves 2.60 m at an angle of 45.0° downward from the horizontal, the work done can be calculated as (28.0 nC * Electric Field * cos(45.0°)) * 2.60 m.

Explanation:

In order to calculate the work done by the electric force, we can use the equation:

Work = Force * Distance

For part (a) when the charge moves 0.450 m to the right, we need to calculate the force first using the equation:

Force = Charge * Electric Field

Given that the charge is 28.0 nC and the electric field is directed vertically upward, we should consider the vertical component of the electric field. Since the charge is moving horizontally to the right, it is perpendicular to the electric field and does not contribute to the work done by the electric force. Therefore, the work done is zero.

For part (b) when the charge moves 0.670 m upward, we can calculate the force using the same equation. Since the charge moves in the same direction as the electric field, the work done is positive. The work done can be calculated as:

Work = Force * Distance = (28.0 nC * Electric Field) * 0.670 m

For part (c) when the charge moves 2.60 m at an angle of 45.0° downward from the horizontal, we can break down the movement into horizontal and vertical components. The horizontal component does not contribute to the work done by the electric force since it is perpendicular to the electric field. The vertical component contributes to the work done. We can calculate the vertical component of the distance traveled using the angle and multiply it by the electric field to get the force. The work done can be calculated as:

Work = Force * Distance = (28.0 nC * Electric Field * cos(45.0°)) * 2.60 m

Tevin left his house and rode his bike into town at 6 mph. Along the way he got a flat so he had to turn around and walk his bike back to his house traveling 3 mph. If the trip down and back took 12 hours, how far did he get before his tire went flat?

Answers

Answer:

Distance covered by Tevin before his tire went flat = 24 miles

Explanation:

Let x be the distance covered by Tevin before his tire went flat.

Given:

Tevin drives his bike in the town = 6 mph  

Tevin back to his house = 3 mph

Total taken time by Tevin = 12 hours

We need to find the distance covered by Tevin in 12 hours.

Solution:

Using speed formula    

[tex]Speed =\frac{Distance}{Time}[/tex]

We write the above formula for Time.

[tex]Time=\frac{Distance}{Speed}[/tex]-----------(1)

Time taken by Tevin when biking in town

Substitute speed = 6 mph and distance = x in equation 1.

[tex]Time=\frac{x}{6}[/tex]  ----------(2)

Time taken by Tevin when he is back to his house.

Substitute speed = 3 mph and distance = x in equation 1.

[tex]Time=\frac{x}{3}[/tex]   -------------(3)

Total time taken by Tevin.

Total taken time by Tevin = Time taken when biking in town + Time taken when Tevin back to his house.

Substitute time value from equation 2 and 3 in above equation and total time = 12 hours.

[tex]12=\frac{x}{6}+\frac{x}{3}[/tex]

Now, we solve the above equation for x.

[tex]12=\frac{x+2x}{6}[/tex]

[tex]12\times 6=x+2x[/tex]

[tex]72=3x[/tex]

[tex]x=\frac{72}{3}[/tex]

[tex]x=24\ mi[/tex]

Therefore, distance covered by Tevin in 12 hours is equal to 24 miles.

                   

Collisions in two dimensions is a difficult section to read and understand. But, when we look at momentum similarly to our 'Sum of our Forces', then we can use the same concept to solve these problems. This means that the momentum in the x direction before the collision has to be as the momentum after the collision. The momentum in the y direction before the collision has to be as the momentum after the collision.1. True2. False

Answers

Answer:

2. True

Explanation:

Since momentum is a vector, you, indeed, in two dimension collisions, you can decompose it in two components, the x-direction and the y-direction, such as you do with the force, which is a vector too.

The law of conservation of momentum states that the total momentum before and after the collision are conserved.

Let's assume a collision in one dimension: x-direction.

If object A is moving to the right, its momentum is to the right. If objcet B is at rest its momentum is zero. Then, if when object A collides with object B, the first stops, the second must move to the right with a momentum in the x-direction equal to the momentum that object A initially had.

You can apply the same reasoning if object A is moving in two dimensions, and, a similar one, if object B is not at rest: at the end the momentum in each direction before the collision has to be equal to the momentum in each direction after the collision.

What are the correct methods of heat transfer

Answers

Conduction, Convection, and Radiation

Explanation:

The transfer of heat generally depends on the difference in the temperature in the surroundings.

The best methods for the transfer of heat are conduction convection, radiation and sometimes evaporation also.

Conduction: This is the transfer of heat through the system that is solid. Convection: Convection is the process in which warm surfaces of a liquid or gas rises to cooler surfaces in the liquid or gas that is the transfer of heat from the surface. Natural convection occurs as air is heated: it expands, rises, and is replaced by cooler air. Radiation: This is a process where energy is radiated among the surroundings in the form of electromagnetic radiation. Evaporation: The latent heat of a liquid is used to transfer heat by absorbing the energy needed to evaporate that liquid. The heat absorbed is released by condensing the liquid outside the enclosure.

Answer:Condution radiation convection

Explanation:

Our Sun undergoes slight orbital motion mostly due to the gravitational force exerted by Jupiter. If our solar system only contained Saturn, how would the Sun's orbital period differ?

Answers

Answer:

it would be longer

A 0.50 kg object is at rest. A 2.88 N force to the right acts on the object during a time interval of 1.48 s. a) What is the velocity of the object at the end of this time interval? Answer in units of m/s.

Answers

Answer:

8.5m/s

Explanation:

We are given that

Mass of object=m=0.50 kg

Initial velocity, u=0

Force=F=2.88 N

Time=1.48 s

a.We know that

[tex]F=ma[/tex]

Using the formula

[tex]2.88=0.50a[/tex]

[tex]a=\frac{2.88}{0.50}=5.76m/s^2[/tex]

[tex]a=\frac{v-u}{t}[/tex]

Using the formula

[tex]5.76=\frac{v-0}{1.48}[/tex]

[tex]v=5.76\times 1.48=8.5m/s[/tex]

Hence, the velocity of the object at the end of this time interval=8.5m/s

A student of mass 57.4 kg, starting at rest, slides down a slide 17.2 m long, tilted at an angle of 28.1° with respect to the horizontal. If the coefficient of kinetic friction between the student and the slide is 0.108, find the force of kinetic friction, the acceleration, and the speed she is traveling when she reaches the bottom of the slide. (Enter the magnitudes.)

Answers

Explanation:

(a)   Formula to calculate the force of kinetic friction is as follows.

             f = [tex]\mu N[/tex]

                = [tex]\mu mg Cos (\theta)[/tex]

Putting the given values into the above formula as follows.

          f = [tex]\mu mg Cos (\theta)[/tex]

           = [tex]0.118 \times 57.4 kg \times 9.8 \times Cos (28.1^{o})[/tex]

           = [tex]0.118 \times 57.4 kg \times 9.8 \times 0.882[/tex]

           = 58.54 N

Hence, the force of kinetic friction is 58.54 N.

(b)    Net force experienced by the block will be as follows.

            F = [tex]mg Sin (\theta) - f[/tex]

         ma = [tex]mg Sin (\theta) - \mu mg Cos (\theta)[/tex]

or,         a = [tex]g[Sin (\theta) - \mu Cos (\theta)][/tex]                  

                = [tex]9.8[Sin(28.1) - Cos(28.1)][/tex]

                = [tex]9.8 \times (0.471 - 0.882)[/tex]

                = 4.03 [tex]m/s^{2}[/tex]

Therefore, the acceleration is 4.03 [tex]m/s^{2}[/tex].

(c)    According to the third equation of motion,

          [tex]v^{2} = u^{2} + 2as[/tex]

                    = [tex]0 + 2 \times 4.03 \times 17.2[/tex]        

                    = 138.63 m/s

Hence, the speed she is traveling when she reaches the bottom of the slide is 138.63 m/s.

Answer:

Explanation:

mass, m = 57.4 kg

distance, d = 17.2 m

angle of inclination, θ = 28.1°

initial velocity, u = 0 m/s

coefficient of kinetic friction, μk = 0.108

(a) N is the normal reaction acting on the student.

N = mg Cosθ

N = 57.4 x 9.8 x Cos 28.1

N = 496.2 N

Friction force = μk x N

Friction force = 0.108 x 496.2 = 53.6 N

Let a is the acceleration

ma = mg Sinθ - friction force

ma = 57.4 x 9.8 x Sin 28.1 - 53.6

a = 3.7 m/s²

Let the speed is v.

v² = u² + 2ad

v² = 0 + 2 x 3.7 x 17.2

v = 11.3 m/s

A student sits on a rotating stool holding two 2.6 kg masses. When his arms are extended horizontally, the masses are 0.71 m from the axis of rotation, and he rotates with an angular velocity of 1.8 rad/sec. The student then pulls the weights horizontally to a shorter distance 0.23 m from the rotation axis and his angular velocity increases to ω2. For simplicity, assume the student himself plus the stool he sits on have constant combined moment of inertia Is = 3.8 kg m2 . Find the new angular velocity ω2 of the student after he has pulled in the weights. Answer in units of rad/s.

Answers

Answer:

2.8 rad/s

Explanation:

In absence of external forces, the total angular momentum of the system must be conserved.

The angular momentum when the arms of the student are extended horizontally is given by:

[tex]L_1 = (I_0 + 2I)\omega_1[/tex]

where:

[tex]I_0=3.8 kg m^2[/tex] is the moment of inertia of the student+stool

[tex]I=mr^2[/tex] is the moment of inertia of each mass, where:

m = 2.6 kg is one mass

r = 0.71 m is the distance of each mass from the rotation axis

[tex]\omega_1=1.8 rad/s[/tex] is the initial angular velocity

So we have

[tex]L_1=(I_0+2mr^2)\omega_1[/tex]

When the student pulls the weights to a distance of r' = 0.23 m, the angular momentum is:

[tex]L_2=(I_0+2I')\omega_2[/tex]

where:

[tex]I'=mr'^2[/tex] is the new moment of inertia of each mass, with

r' = 0.23 m

Since the angular momentum must be constant, we have:

[tex]L_1=L_2\\(I_0+2mr^2)\omega_1 = (I_0+2mr'^2)\omega_2[/tex]

and solving for [tex]\omega_2[/tex], we find the final angular velocity:

[tex]\omega_2 = \frac{I_o+2mr^2}{I_0+2mr'^2}\omega_1=\frac{3.8+2(2.6)(0.71)^2}{3.8+2(2.6)(0.23)^2}(1.8)=2.8 rad/s[/tex]

A 328-kg car moving at 19.1 m/s in the + x direction hits from behind a second car moving at 13.0 m/s in the same direction. If the second car has a mass of 790 kg and a speed of 15.1 m/s right after the collision, what is the velocity of the first car after this sudden collision?

Answers

Final answer:

To find the velocity of the first car after the collision, we can use the principle of conservation of momentum.

Explanation:

To find the velocity of the first car after the collision, we can use the principle of conservation of momentum. The total momentum before the collision is equal to the total momentum after the collision.

Before the collision:

Total momentum = (mass of first car × velocity of first car) + (mass of second car × velocity of second car)

After the collision:

Total momentum = (mass of first car × velocity of first car after collision) + (mass of second car × velocity of second car after collision)

Using the given information and the principle of conservation of momentum, we can solve for the velocity of the first car after the collision.

Learn more about Momentum here:

https://brainly.com/question/30677308

#SPJ11

A woman fires a rifle with barrel length of 0.5400 m. Let (0, 0) be where the 125 g bullet begins to move, and the bullet travels in the +x-direction. The force exerted by the expanding gas on the bullet is (16,000 + 10,000x − 26,000x2) N, where x is in meters. A) Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
B) If the barrel is 1.05 m long, how much work is done?

Answers

Final answer:

The work done by the gas on the bullet while the bullet travels the length of a 0.54m barrel was calculated to be 9,354.80 joules, and the work done for a 1.05m barrel length was calculated to be -5,712.50 joules.

Explanation:

The work done by the force of the gas on the bullet can be determined by calculating the integral of the force with respect to x, from 0 to the length of the barrel. The force is a function of x, F(x) = 16,000 + 10,000x - 26,000x^2. The work done W = ∫F(x) dx, from x = 0 to x = 0.54 m.

By integrating this function we have, W = 16,000x + 5,000x^2 - 26,000x^3/3. Substituting the upper and the lower limits in, we get W = 9,354.80 joules.

For part B) we calculate work using the same formula but changing the length of the barrel to 1.05 m. The Calculated work done by the gas on the bullet, when the length of the barrel is 1.05 m, is W = -5,712.50 joules. Here, negative work signifies that the bullet is working against the direction of the force.

Learn more about Work done by Gas here:

https://brainly.com/question/32263955

#SPJ3

Final answer:

To compute the work done by the gas on the bullet as it travels the length of the barrel, we use an integral to sum the work done over the length of the barrel. The force function given is integrated across the range from 0 to the length of the barrel (either 0.5400 m or 1.05 m).

Explanation:

The work done by a variable force in one-dimension can be computed using the formula:

Work = ∫F(x) dx

Where F(x) is given as (16,000 + 10,000x - 26,000x^2) N and the limits of the integral are from 0 to the length of the barrel. For a 0.5400 m barrel, we evaluate the integral with these limits. Similar for the second part, using 1.05 m as the upper limit.

The actual calculations would involve integrating the function for force (F), and then substituting the limits of 0 and 0.5400 m or 1.05 m in the result to calculate the work done.

Learn more about Work Done by Variable Force here:

https://brainly.com/question/35887929

#SPJ2

1. Meiosis produces daughter cells that are
A) Haploid
B) Diploid
C) The same as the parent cell
D) Have more chromosomes than the parent cell

2. What is the purpose of mitosis?
A) Somatic Cell production
B) Gametic cell production
C) To make gametes
D) To make sperm and eggs

3. What is the purpose of meiosis?
A) Somatic Cell production
B) Gametic cell production
C) Liver cell production
D) Brain cell production

4. Which of the following about cell generation is true?
A) Mitosis is a form of sexual reproduction.
B) Meiosis is a form of asexual reproduction.
C) Mitosis produces identical cells to parent cells.
D) Meiosis produces identical cells to parent cells.

5. S=short fur and s=long fur, SS short fur and Ss long fur mate. What is the phenotypic ratio of short fur to long fur?
A) 3:1
B) 4:0
C) 1:3
D) 2:2

6. L=long wings and l=short wings. How can two long winged bees produce short winged bees?
A) 2 long winged bees cannot produce short winged bees
B) Both parent bees are homozygous dominant LL
c) Both parent bees are heterozygous Ll
D) Both parent bees are homozygous recessive ll

7. Which of the following is NOT true of DNA?
A) DNA is made up of 4 base chemicals
B) DNA is genetic material passed from parent to offspring
C) Long strands of DNA make up chromosomes
D) DNA is made up of chromosomes

8. DNA is now accepted as the molecule for heredity instead of proteins. How did this happen?
A) Scientists thought DNA seemed cooler
B) Each hypothesis was tested and DNA supported the data better
C) Highly respected scientists introduced it, everyone accepted
D) Proteins are known for producing muscles and that's it

9. Which of the following is most likely a concern about genetically modified crops?
A) There may be an increase in global food prices.
B) There may be a decrease in the range of environmental conditions in which a crop can survive.
C) There may be a decrease in the amount of time that fruits or vegetables stay fresh in the supermarket
D) There may be an increase in pest populations that are resistant to control measures.

10. What is NOT true of GMOs
A) They are proven to cause cancer
B) GM plants are pest resistant lowering the need for pesticide
C) GM plants produce higher yields for farmers
D) The long term effects are unknown

11) What are alleles?
A) characteristics
B) a form of a gene
C) a gamete
D) the study of heredity

I am willing to give brainliest and 100 points whoever EXPLAINS and gives the ANSWER to each question. You are not rushed, because I have 11:59, by the end of today to submit the assignment. If you write the answers and no explanation, you will get reported. So please answer and explain the questions clearly so I understand them. I am putting the subject as physics, but it is really science. good luck.

Answers

Answer:

1. A Haploid

2. A. Somatic Cell production

3. B. Gametic cell production

4. C. Mitosis produces identical cells to parent cells.

5. B 4:0

6. C Both parent bees are heterozygous Ll

7. D DNA is made up of chromosomes

8. B Each hypothesis was tested and DNA supported the data better

9. D There may be an increase in pest populations that are resistant to control measures.

10. A They are proven to cause cancer.

11. B a form of a gene

Explanation:

Answer was too long, so is attached in a word document

What two quantities are crucial to quantifying the translational kinetic energy of an object?

Answers

Answer:

Moment of inertia and angular velocity.

Explanation:

The translational kinetic energy of an object is possessed when the object is showing rotational motion. It can be given by the formula as :

[tex]KE=\dfrac{1}{2}I\omega^2[/tex]

Here,

I is the moment of inertia of the object

[tex]\omega[/tex] is the angular velocity of the object

So, the translational kinetic energy of an object is given by moment of inertia and angular velocity of the object. Hence, this is the required solution.

Other Questions
4. Three routes connect an origin and a destination with performance functions tl = 8 + 0.5x1, t2 = 1 + 2x2, and t3 = 3 + 0.75x3, with the x's expressed in thousands of vehicles per hour and the t's expressed in minutes. If the peak-hour traffic demand is 3400 vehicles, determine user-equilibrium traffic flows. Note: there are 823 vehicles that must pass by a daycare in route 1. The plasma membrane is how many layers? A researcher is examining potential risk factors in comparison with disease at a specific time through collecting data regarding current exercise, sleep patterns, and current health status among 12-year-olds. Which research study would be most appropriate Brief Exercise 5-9 Included in Sunland Companys December 31, 2017, trial balance are the following accounts: Accounts Payable $244,000, Pension Liability $383,400, Discount on Bonds Payable $33,800, Unearned Rent Revenue $46,300, Bonds Payable $409,300, Salaries and Wages Payable $31,700, Interest Payable $14,810, and Income Taxes Payable $35,300. Prepare the long-term liabilities section of the balance sheet. Read this paragraph from The Dark Game.It may seem surprising that no Confederate sympathizers took action against Van Lew, given her strong and public views on secession and slavery. Surely there were suspicions, especially among her upper-crust neighbors, but the matter never went beyond those suspicions. Historians have suggested that the secessionists were victims of their own cultural bias, believing that no aristocratic person, and certainly not a lady, would ever consider taking part in anything as impolite as spying. A true lady managed her servants, prepared parties and gatherings, and blindly supported her husband. Such attitudes worked in Van Lew's favor, diverting suspicion from her.What central idea is implied in this paragraph?1. Elizabeth Van Lew did not follow the rules society set forth for ladies of her time and social class.2. Elizabeth Van Lew was a successful spy because society did not expect a lady to serve in that role.3. Elizabeth Van Lew was able to disguise her spying activities because she kept her views about the war to herself.4. Elizabeth Van Lew created for herself an untrue but believable cover story: she was a wealthy lady living in a fancy neighborhood. Mr. Daniels is building a clubhouse for his children. He has decided that the floor will be square with an area of 64 square feet. Write this number using a power greater than 1 and a lesser base. Imagine that Reva has joined Enviropro, her neighborhood environmental-cleanup group. Enviropros objective is to maintain a clean neighborhood and provide better garbage collection facilities. Reva encourages her friend Marcel to join the group as well. Marcel refuses as he does not want to pay to join this group. He argues that he already gets collective benefits even without having paid an enrollment fee to join the group. In this scenario, Marcel's argument best exemplifies _______. Can you help me please? Lesson CheckPractice Vocabulary1. What key role did capitalists play in theIndustrial Revolution? The distribution of SAT scores of all college-bound seniors taking the SAT in 2014 was approximately normal with a mean of 149714971497 and standard deviation of 322322322. Let XXX represent the score of a randomly selected tester from this group. Find P(X>1800)P(X>1800)P, (, X, is greater than, 1800, ). When 6.0 mol H2O reacts with 5.0 mol Al in the reaction below, 4.0 mol of Al are used up in the reaction. How many moles of Al are left over unreacted? Reaction: 2Al + 3H2O Al2O3 + 3H2 The fluid mosaic model of the membrane proposed that membranes ____________ Yash is an artist. He does not like when people talk about the separate parts of his pictures because he believes that looking at the complete picture is most important. Yashs opinion is similar to the ________ approach. Group of answer choices The process of inflammation _____. a. is an ongoing response to long-term infectionb. produces chemotaxisc. is a fast process that destroys infected or damaged tissued. produces prostaglandinse. is never helpful to healing Suppose that the economy is at long-run equilibrium. If there is a sharp decline in the stock market combined with a significant increase in immigration of skilled workers, then in the short runa. real GDP will rise and the price level might rise, fall, or stay the same.b. real GDP will fall and the price level might rise, fall, or stay the same.c. the price level will rise, and real GDP might rise, fall, or stay the same.d. the price level will fall, and real GDP might rise, fall, or stay the same. Emersons view of nature 1.04 Graded Assignment: Reflections 1. El profesor tiene tiza.2. T tienes mochilas. 3. Los turistas tienen mapa.4. Usted tiene cuadernos. 5. Nosotros tenemos papelera. Using the social-conflict approach, what could be a problem withsuburbanization?OA. The roads in the cities lead to areas in the suburbs.OB. The schools in the cities are better equipped than those in thesuburbs.OC. Mass transportation can become confusing when there are toomany routes in and out of cities.OD. There is less money available to provide services for peopleremaining in cities. QUESTION 1 (0.5 POINTS) In a large restaurant an average of 3 out of every 5 customers ask for water with their meal. A random sample of 10 customers is selected. What is the probability that less than 3 customers ask for water with their meal? a). 0.012 b). 0.055 c). 0.042 d). 0.011