According to the periodic table, the neutral atom of what element has 4 protons,5 neutrons,and 4 electrons
Since it has a 4 protons and 5 neutrons, it has a mass number of 9. The number of electrons is irrelevant for this question. Atomic number is the number of protons, so it is 4. So it is Beryllium
Answer:
Is your answer right or are you asking a question??
Fill in the coefficients that will balance the following:
_____Fe(HCO3)3+ _____CaO------> Fe2O3+_____Ca(HCO3)2
An imbalanced chemical equation describes the products and reactants of a chemical reaction. Therefore, the balanced equation is 2Fe(HCO[tex]_3[/tex])[tex]_3[/tex]+ 3CaO →Fe[tex]_2[/tex]O[tex]_3[/tex]+3Ca(HCO[tex]_3[/tex])[tex]_2[/tex].
What is balanced equation?A balanced equation is indeed a chemical reaction equation in which the overall charge and the amount of atoms for every element inside the reaction are the same for both the products and the reactants. In other terms, the mass as well as charge on the both sides of both the reaction are balanced.
An imbalanced chemical equation describes the products and reactants of a chemical reaction yet does not include the quantities needed to meet mass conservation.
Fe(HCO[tex]_3[/tex])[tex]_3[/tex]+ CaO →Fe[tex]_2[/tex]O[tex]_3[/tex]+Ca(HCO[tex]_3[/tex])[tex]_2[/tex]
The atom of Fe on reactant side is 1 while on product side it is 2
2Fe(HCO[tex]_3[/tex])[tex]_3[/tex]+ 3CaO →Fe[tex]_2[/tex]O[tex]_3[/tex]+3Ca(HCO[tex]_3[/tex])[tex]_2[/tex]
Therefore, the balanced equation is 2Fe(HCO[tex]_3[/tex])[tex]_3[/tex]+ 3CaO →Fe[tex]_2[/tex]O[tex]_3[/tex]+3Ca(HCO[tex]_3[/tex])[tex]_2[/tex].
To know more about balanced equation, here:
https://brainly.com/question/29769009
#SPJ2
6. Most traditional sources of energy come from the __________.
a. biosphere b. hydrosphere c. lithosphere d. atmosphere
Which term is defined as new substances formed from chemical reactions?
The difference between a lamp and Tv using electrical energy
Final answer:
A lamp with an incandescent bulb is less efficient as it converts more electrical energy to heat, whereas a TV uses energy more effectively for display and sound. Employing more efficient lighting such as fluorescent or LED bulbs can significantly reduce energy usage and costs.
Explanation:
Differences in Electrical Energy Use Between Lamps and TVs
When comparing the use of electrical energy between different appliances such as a lamp and a TV, it is important to consider their power consumption and efficiency. A lamp, especially if it uses an incandescent bulb, tends to be less efficient as it loses most of its energy as heat rather than light. On the other hand, a TV is designed to convert electrical energy into both light (the visual part of the display) and sound, typically using the energy more efficiently regarding the provision of its intended service.
To reduce electrical energy consumption and its associated costs, one can switch from incandescent bulbs to fluorescent lights or LED lights, which are more efficient. Fluorescent lights are about four times more efficient than incandescent lights, and LEDs are even more efficient than CFLs. Considering that a significant percentage of energy use in homes and businesses goes to lighting, switching to more efficient lighting options presents a valuable opportunity for energy and cost-saving.
For example, one could replace a 60-W incandescent bulb with a 15-W CFL that provides the same brightness and color. This change not only reduces power consumption but also lowers heat transfer and environmental impact since CFLs have a longer lifespan. LED lights offer improvements over CFLs in both efficiency and lifespan, but their higher cost might be a barrier, although prices have been decreasing over time.
Newton believed _______ _______ were encoded alchemic recipes.
an element can be identified as either a ________, __________, or a __________
A solution is prepared by adding 0.400 g of solid nacl to 50.0 ml of 0.100 m cacl2. what is the molarity of chloride ion in the final solution? assume that the volume of the final solution is 50.0 ml. a solution is prepared by adding 0.400 g of solid to 50.0 ml of 0.100 m . what is the molarity of chloride ion in the final solution? assume that the volume of the final solution is 50.0 ml. 0.108 0.137 0.208 0.237 0.337
add them all together then divide it by the amount that Is their
The molarity of chloride ions in the final solution is equal to 0.156 M.
What is the molarity?Molarity can be defined as the concentration of the solution in terms of moles of solute and volume of solution in liters.
Given the solution of calcium chloride:
[tex]CaCl_2 \longrightarrow Ca^{2+} + 2Cl^{-}[/tex]
Given the molarity of calcium chloride = 0.1 M
The concentration of chloride ions in the solution = 2×0.1 = 0.2 M
The volume of solution, V = 50 ml = 0.05 L
The number of moles of chloride = 0.2× 0.05 = 0.001 mol
Amount of NaCl added in the solution = 0.400 g
The number of moles of chloride from NaCl = 0.4/58.5 = 0.0068 mol
Total number of moles of chloride ions = 0.001 + 0.0068 = 0.0078 mol
Volume of the whole solution = 50 ml = 0.05 L
The molarity of the chloride ions in the final solution:
M = 0.0078/0.05
Molarity = 0.156 M
Learn more about molarity, here:
https://brainly.com/question/8732513
#SPJ5
What happens when the amoeba proteus is placed in distilled water?
So2 (5.00 g) and co2 (5.00 g) were placed in a 750.0 ml container at 50.0 °c. the partial pressure of co2 in the container was __________ atm.
4.02 atm
Further explanationGiven:
SO₂ (5.00 g) and CO₂ (5.00 g) were placed in a 750.0 ml container at 50.0°C.
Question:
The partial pressure of CO₂ in the container was ... atm.
The Process:
This problem is only required to find the partial pressure of CO₂ in containers, so we ignore SO₂ in the calculation.
Step-1: preparing for the molar mass of carbon dioxide
Mr CO₂ = 12 + 2(16) = 44 g/mol
Step-2: find out the number of mole of CO₂
Mole conversions [tex]\boxed{ \ moles = \frac{mass}{Mr} \ }[/tex]
Therefore, moles of CO₂ = [tex]\boxed{ \ moles = 5.00 \ g \times \frac{1 \ mol}{44 \ g} \ } \rightarrow \boxed{ \ = 0.11364 \ moles \ }[/tex]
Step-3: find out the partial pressure of CO₂ (in atm)
We use an equation of state for an ideal gas:
[tex]\boxed{\boxed{ \ \frac{pV}{T} = nRT \ }}[/tex]
p = pressure (in atm) V = volume (in L) , i.e., 750.0 ml = 0.75 Ln = molesR = 0.0821 atm•L•mol⁻¹•K⁻¹ as the molar gas constantT = temperature (in Kelvin) , hence 50°C + 273 = 323 KPrepare p as the subject you want to find.
[tex]\boxed{ \ p = \frac{nRT}{V} \ }[/tex]
[tex]\boxed{ \ p = \frac{0.11364 \times 0.0821 \times 323}{0.75} \ }[/tex]
Thus the partial pressure of CO₂ in the container was 4.018 atm, rounded up to 3 significant digits, we get 4.02 atm.
- - - - - - - - - -
Learn more To what temperature would you need to heat the gas to double its pressure? https://brainly.com/question/1615346# Find out the total pressure in the container https://brainly.com/question/6854033Find out he molecular weight of a gas that has a density of 5.75 g/L at STP https://brainly.com/question/7497852The hydrogens and oxygen of a water molecule are held together by ______ bonds.
a.electron
b.hydrogen
c.covalent
d.osmotic
Suppose you have a rock that, when it solidifies, contains 1 microgram of a radioactive isotope. how much of this isotope remains after five half-lives?
A compound is 80.0% carbon and 20.0% hydrogen by mass. assume you have a 100.-g sample of this compound. the molar mass of the compound was found to be 30.069 g/mol. what is the molecular formula?
Final answer:
To determine the molecular formula, calculate the moles of carbon and hydrogen from their masses, find the simplest whole-number ratio for the empirical formula (CH3), and then determine how many times the molar mass of the empirical formula fits into the molar mass of the compound to get C2H6.
Explanation:
The question involves determining the molecular formula of a compound from its percent composition by mass and its molar mass. Given that the compound is 80.0% carbon and 20.0% hydrogen by mass, and assuming a 100 g sample, we would have 80.0 g of carbon and 20.0 g of hydrogen. The molar mass of carbon is approximately 12.01 g/mol, and hydrogen is approximately 1.008 g/mol. Therefore, we can calculate the moles of carbon and hydrogen:
80.0 g C × (1 mol C / 12.01 g C) = 6.661 moles of carbon20.0 g H × (1 mol H / 1.008 g H) = 19.841 moles of hydrogenThe ratio of carbon to hydrogen moles is approximately 1:3. To determine the simplest whole-number ratio, we divide each by the smallest number of moles, which in this case is the moles of carbon, getting exactly 1 C and 3 H. This gives us the empirical formula CH3. To find the molecular formula, we divide the molar mass of the compound by the molar mass of the empirical formula:
Molar mass of CH3 = 12.01 g/mol + (3 × 1.008 g/mol) = 15.034 g/mol
Molecular formula determination:
30.069 g/mol (molar mass of compound) ÷ 15.034 g/mol (molar mass of empirical formula) = 2
Therefore, the molecular formula is C2H6, as we multiply the subscripts in the empirical formula by 2.
Which of these pairs of elements is most likely to be part of a polyatomic ion?
Cr and O
K and F
Li and Br
Mg and O
Cr and O are most likely to be part of a polyatomic ion.
Cr belongs to the transition metal series in the periodic table and has vacant d-orbitals. As a result it can exist in more than one oxidation state, the most common being +6, +3 and +2. Oxygen exists in -2 oxidation state. Hence, Cr and O can combine to form different polyatomic ions like: CrO₄²⁻ and Cr₂O₇²⁻ (Cr in +6 state)
K, Li and Mg exist in only one oxidation state +1 (K and Li) and +2(Mg). F and Br exhibit an oxidation state of -1. Therefore, they are not likely to form polyatomic ions.
Ans (a) Cr and O
IS Typtophan an element on the periodic table?
Looking at the forward reaction, at what rate is equilibrium reached?
at 0.00 mol/min
at 0.25 mol/min
at 1.0 mol/min
at 0.5 mol/min
In a compound that contains monatomic ions, which of the following gets named first?
Question 5 options:
the roman numeral of the valence number
the nonmetal
the anion
the metal
Answer:
It's the metal that gets named first.
Explanation:
Compounds are named based on the ions they produced on dissolution. In a compound that contains monatomic ions, the metallic ion is a named first. Thus 4th option is correct.
What is monoatomic ion?A monatomic ion is a single atom possessing a positive charge or negative charge. The ion bearing a positive charge is called cation and the ion bearing negative charge is called anion.
Cations are formed by the losing or donation of electrons. Whereas, anions are formed by withdrawal of electrons. For example Na+ is a cation and Cl- is an anion formed by losing of one electron from sodium metal and accepting an electron Cl gas respectively.
These single atomic cation and anions together forms ionic compounds called monatomic ions. For example NaCl containing sodium ion and chloride Cl- ion is a monatomic ion and its name is started with the metal sodium namely sodium chloride.
Similarly HBr containing H + ion and Br- ion have the name hydrogen bromide. Therefore, the metal named first for a compound containing monatomic ions.
To refer the more about monatomic ion, refer the link below:
https://brainly.com/question/9384283
#SPJ2
How many grams of h2 gas can be produced by the reaction of 63.0 grams of al(s) with an excess of dilute hydrochloric acid in the reaction shown below? 2 al(s) + 6 hcl(aq) → 2 alcl3(aq) + 3 h2(g)?
To determine the grams of H2 gas produced from the given mass of Al, we use stoichiometry and the molar mass of H2.
Explanation:To determine the number of grams of H2 gas that can be produced, we need to use the given information about the mass of Al and the balanced chemical equation.
First, we calculate the number of moles of Al by dividing the mass of Al by its molar mass. Then we use the stoichiometric ratio from the balanced equation to find the moles of H2 gas produced. Finally, we convert moles of H2 gas to grams using the molar mass of H2.
By following these steps, we can calculate the grams of H2 gas produced from the given mass of Al.
Learn more about stoichiometry here:https://brainly.com/question/30218216
#SPJ12
By reacting 63.0 grams of Al with excess hydrochloric acid, approximately 7.07 grams of H₂ gas will be produced.
This is based on stoichiometric calculations using a balanced chemical equation.
The steps include converting Al to moles, using the mole ratio, and then converting to grams of H₂.To determine the number of grams of H₂ gas produced, we first need to use stoichiometry based on the balanced chemical equation: 2 Al(s) + 6 HCl(aq) → 2 AlCl₃(aq) + 3 H₂(g)Given that we have 63.0 grams of Al, we start by converting this mass to moles:
Step 1: Calculate moles of Al
Mol mass of Al = 27.0 g/molMoles of Al = 63.0 g / 27.0 g/mol = 2.33 molStep 2: Use the mole ratio to find moles of H₂ produced
From the balanced equation, 2 moles of Al produce 3 moles of H2Moles of H₂ = 2.33 mol Al (3 mol H2 / 2 mol Al) = 3.495 mol HStep 3: Convert moles of H₂ to grams
Molar mass of H₂ = 2.0 g/molMass of H₂ = 3.495 mol * 2.0 g/mol = 7.07 gTherefore, 6.99 grams of H₂ gas can be produced by reacting 7.07 grams of Al with an excess of dilute hydrochloric acid.
Correct question is: How many grams of H₂ gas can be produced by the reaction of 63.0 grams of Al(s) with an excess of dilute hydrochloric acid in the reaction shown below?
2 Al(s) + 6 HCl(aq) → 2 AlCl₃(aq) + 3 H₂(g)
What is the chemical formula for the compound formed between sodium and oxygen?
The chemical formula for the compound formed between sodium and oxygen is Na₂O, which is known as sodium oxide. Sodium reacts with oxygen to form this ionic compound.
Explanation:The compound that is formed when sodium and oxygen combine is known as sodium oxide. Its chemical formula is Na₂O. Sodium (Na) and oxygen (O₂) react together to form this compound. Sodium is a soft, silvery-white metal which reacts vigorously with oxygen to form Na₂O. Oxygen, a gas under standard conditions, reacts with sodium to form an ionic compound with properties entirely different from the constituent elements. Sodium oxide is a white, crystalline solid that is often used in ceramics and glasses.
Learn more about Chemical Formula here:https://brainly.com/question/36379566
#SPJ2
Suggest why the ph of the gut secretions varies at different regions in gut answer key anatomy
Answer:
The correct answer is because they work at different pH levels.
Explanation:
The pH varies because the different enzymes secreted in the stomach work at different pH levels. Gastric secretion is the most important stage of digestion since when the food comes into contact with a low pH and the enzymes present, they dissociate it and denature the proteins present.
Have a nice day!
You just used the last of your breakfast cereal to make yourself a fresh bowl. after eating a couple of spoonfuls, you notice that the printing on the box claims that your cereal has the most metallic iron of any breakfast cereal on the planet. now, your only sample of the breakfast cereal contains bran flakes, raisins, milk, and sugar. you decide to find out if the claim regarding the iron is true. how would you separate the mixture to collect the iron?
Answer:
You can separate the mixture to collect the iron using a magnetic.
Explanation:
The printing on the box claims that your cereal has the most metallic iron of any breakfast cereal on the planet.
The last sample of the breakfast cereal contains bran flakes, raisins, milk and sugar. We need to analyze the iron content.
There are several chemical and physical experiments about this topic, the simplest is: You can use a magnetic material, the magnetic field of the material will affect the mixture previously prepared. In that way, only the metallic iron will move with the magnetic field movements. So, you can separate the metallic iron from all the other compounds.
Identify the spectator ions in this reaction:
H+ + Br – + K+ + OH– mc001-1.jpg K+ + Br– + H2O
A) H+ and K+
B) Br – and OH–
C) K+ and Br–
The spectator ions in this reaction is C) K⁺ and Br⁻
The spectator ions in the given reaction are K⁺ and Br⁻ because they remain unchanged on both sides of the equation.
In the given reaction :
H⁺ + Br⁻ + K⁺ + OH⁻ ----> K⁺ + Br⁻ + H₂OWe need to identify the spectator ions.
Spectator ions are ions that do not participate in the chemical change and remain unchanged on both the reactant and product sides of the equation.In this case, the K⁺ and Br⁻ ions appear on both sides of the reaction and remain unchanged. Therefore, they are the spectator ions.Thus, the correct answer is:C) K⁺ and Br⁻
In a molecule of _____, two electron dot structures describe the bonds equally well.
If 14.6 g of iron(iii) oxide (rust) is produced from a certain amount of iron, how many grams of oxygen are needed for this reaction?
To form 14.6 grams of iron(iii) oxide, or rust, about 4.4 grams of oxygen are required, based on the stoichiometry of the rust-forming reaction.
Explanation:The formation of rust, or iron(iii) oxide, involves the reaction of iron with oxygen. To determine the amount of oxygen needed for this process, we need to understand the stoichiometry of the reaction. Two moles of iron react with one mole of oxygen to produce two moles of iron(iii) oxide. The molar mass of iron (Fe) is approximately 56 g/mol, of oxygen (O) is about 16 g/mol, and Iron(III) Oxide (Fe2O3) is ~160 g/mol.
To calculate the grams of oxygen needed for 14.6 g of rust (Fe2O3), you first convert the given mass of iron(iii) oxide into moles, then use the stoichiometry of the reaction to determine how many moles of oxygen are required.
14.6g Fe2O3 * (1 mol Fe2O3/160 g) = 0.09125 mol Fe2O3
The reaction indicates that for every 1 mole of Fe2O3 produced, 1.5 moles of oxygen(O2) are needed. So:
0.09125 mol Fe2O3 * (1.5 mol O2/1 mol Fe2O3) = 0.137 mol O2
Finally, convert moles of oxygen into grams:
0.137 mol O2 * (32 g/mol) = approximately 4.4 grams
So, for 14.6g of Fe2O3 to form, around 4.4 g of O2 are needed.
Learn more about Chemistry here:https://brainly.com/question/13428382
#SPJ12
To produce 14.6 g of iron(III) oxide, approximately 4.39 grams of oxygen are needed. The nearest answer is option b. 4.4 g
The calculation involves converting grams to moles, using the stoichiometric ratio from the balanced equation, and then converting back to grams.
Each step uses the molar masses of the reactants and products.To determine how many grams of oxygen are needed for the reaction, we start with the balanced chemical equation for the formation of iron(III) oxide (rust):
4 Fe + 3 O₂ → 2 Fe₂O₃We know that 14.6 g of Fe₂O₃ is produced.
The molar mass of Fe₂O₃ is calculated as follows:
(2 x 55.85 g/mol Fe) + (3 x 16.00 g/mol O) = 111.7 g/mol Fe + 48.0 g/mol O = 159.7 g/mol Fe₂O₃Next, we convert 14.6 g of Fe₂O₃ into moles:
14.6 g Fe₂O₃ / 159.7 g/mol Fe₂O₃ ≈ 0.0914 mol Fe₂O₃According to the balanced equation, 2 moles of Fe₂O₃ are produced from 3 moles of O₂. Thus, the moles of O₂ needed are:
(3 moles O₂ / 2 moles Fe₂O₃) x 0.0914 mol Fe₂O₃ ≈ 0.1371 mol O₂Finally, we convert moles of O₂ to grams of O₂ using the molar mass of O₂ (32.00 g/mol):
0.1371 mol O₂ x 32.00 g/mol = 4.3872 g O₂Therefore, approximately 4.39 grams of oxygen are needed to produce 14.6 g of iron(III) oxide.
Correct question is: Consider the reaction 2Fe(s) + 30₂ (g) ► Fe₂O₃(g) . If 14.6 g of iron(III) oxide (rust) is produced from a certain amount of iron, how many grams of oxygen are needed for this reaction?
a. 1.85 g
b. 4.4 g
c. 3.74 g
d. 2.68 g
Which of the following types of pollution cannot be attributed to car and truck emissions?
A. Acid Rain
B. Sedimentation
C. Ozone
D. Photochemical Smog
(Also, I feel like I should know this, but we just started learning this.. so I don't know the answer to this.)
Please help!
Assuming stomach acid is 0.1 m hcl, how many grams of stomach acid would have been neutralized by your tablet (use the average value)?
HCl = 0.1 M.
find grams of Acid to neutralize the tablet.
n = 0.00739 mol of CO3-2.
D = 1.02 g/ml.
Find the moles of CO3-2.
CO3-2 + 2HCl <---> H2CO3 + 2Cl-.
therefore,
we need 2 mol of CO3-2 to neutralize 1 mol of HCl.
since we have 0.00739 mol of CO3-2, that will neutralize 2X mol of HCl.
2*0.00739 = 0.01478 mol of HCl will be neutralized.
Now, find the mass of Acid :
M = mol/V,
V = mol/M.
Substitute data of acid :
V = 0.01478 mol / 0.1 M = 0.1478 Liters of stomach acid
or 147.8 ml of stomach acid
now find mass:
D = mass/V.
mass = D*V = 1.02*147.8 = 150.76 grams of Stomach Acid will be neutralized
How many ml of 0.01-m naoh will be required to titrate 0.061-g of khp to it's endpoint?
Calcium chlorate has the formula Ca(ClO3)2. Which best describes the structure of calcium chlorate? One molecule of calcium chlorate contains nine atoms. Calcium chlorate is an element that contains three atoms. It takes nine different elements to make one molecule of calcium chlorate. Calcium chlorate contains two Ca groups.
The formula Ca(ClO3)2 breaks down to 1 calcium atom, 2 chlorine atoms, and 6 oxygen atoms. One molecule of calcium chlorate contains 9 atoms. Thus the correct option is A.
How calcium chlorate is formed?Calcium chlorate is formed by passing chlorine gas through a hot suspension of calcium hydroxide in water, producing calcium hypochlorite, which disproportionate when heated with excess chlorine to give calcium chlorate and calcium chloride.
6 Ca(OH)2 + 6 Cl2 → Ca(ClO3)2 + 5 CaCl2 + 6 H2O
This is also the first step of the Liebig process for the manufacture of potassium chlorate. Liebig's method is used for the estimation of carbon and hydrogen.
For more detail regarding calcium chlorate, visit:
https://brainly.com/question/4208907
#SPJ2
how did the electron change the model of an atom
When electrons move closer to a more electronegative atom, what happens? the more electronegative atom is _____?