Substances are classified based on their chemical composition into elements (e.g., gold), compounds (e.g., salt, pure water, carbon dioxide), homogeneous mixtures (e.g., salt water, pure air), and heterogeneous mixtures (e.g., soil, bronze).
Explanation:Classification of SubstancesSubstances can be classified into four main categories based on their chemical composition: elements, compounds, homogeneous mixtures, and heterogeneous mixtures. The classification for each of the given substances is as follows:
Salt (sodium chloride): CompoundPure water (H2O): CompoundSoil: Heterogeneous mixtureSalt water: Homogeneous mixture (solution)Pure air: Homogeneous mixture (solution)Carbon dioxide (CO2): CompoundGold (Au): ElementBronze: Heterogeneous mixtureAn element is a pure substance that cannot be broken down into simpler substances. A compound is a pure substance that consists of two or more elements chemically combined in a fixed ratio. A homogeneous mixture, or solution, has uniform composition throughout, whereas a heterogeneous mixture has a composition that varies from point to point.
You have 1 liter of a freshly prepared 0.1 m sucrose (molecular mass 342) solution, which means
what physical properties are used when making a cup of tea by boiling a tea bag in hot water?
Physical properties can be perceived or observed without changing the structure of matter. These are used to detect and describe matter. Physical properties comprise: appearance, texture, color, odor, boiling point, melting point, density, solubility, and polarity just to name a few.
In this case, the physical process used is boiling, which causes water to evaporate and the contents in the tea bag to become more soluble and can make the color to change. Also, the physical property of solubility relates to some of the components of the tea.
On a mission to a newly discovered planet, an astronaut finds gallium abundances of 60.11 % for 69ga and 39.89 % for 71ga. what is the atomic mass of gallium for this location? the mass of 69ga is 68.7200 amu . the mass of 71ga is 70.9200 amu .
The atomic mass of gallium on the newly discovered planet is calculated to be 69.65704 amu, based on the given abundances and masses of its isotopes 69ga and 71ga.
Explanation:To calculate the atomic mass of gallium based on the given abundances and masses of its isotopes, we can use the formula: Atomic mass = (% abundance of isotope 1 × mass of isotope 1) + (% abundance of isotope 2 × mass of isotope 2), where percentages are converted into decimal form. Given, 69ga has an abundance of 60.11% (or 0.6011) and a mass of 68.7200 amu, and 71ga has an abundance of 39.89% (or 0.3989) and a mass of 70.9200 amu.
The calculation is therefore: (0.6011 × 68.7200 amu) + (0.3989 × 70.9200 amu).
This equals: 41.359532 amu + 28.297508 amu = 69.65704 amu.
Therefore, the atomic mass of gallium for this location is 69.65704 amu.
The atomic mass of gallium on the newly discovered planet is approximately 69.6077 amu.
To determine the atomic mass of gallium on the newly discovered planet, the contributions of both isotopes ⁶⁹Ga and ⁷¹Ga must be considered based on their abundances and atomic masses.
⁶⁹Ga abundance: 60.11%
⁷¹Ga abundance: 39.89%
Mass of ⁶⁹Ga: 68.7200 amu
Mass of ⁷¹Ga: 70.9200 amu
Convert abundances from percentages to decimals:
⁶⁹Ga : 60.11% = 0.6011
⁷¹Ga : 39.89% = 0.3989
Calculation of atomic mass:
Atomic mass = (fractional abundance of ⁶⁹Ga × mass of ⁶⁹Ga) + (fractional abundance of ⁷¹Ga × mass of ⁷¹Ga)
[tex]\text{Atomic mass} &= (0.6011 \times 68.7200 \, \text{amu}) + (0.3989 \times 70.9200 \, \text{amu}) \\[/tex]
Atomic mass = 41.3092 amu + 28.2985 amu
Atomic mass = 69.6077 amu
How is each measurement represented using scientific notation?
48,000,000,000 g =
Answer : The scientific notation of the given number is, [tex]4.8\times 10^{10}[/tex]
Explanation :
Scientific notation : It is defined as the way or representation of expressing the number that are too big or too small that is written in the decimal form. This means that, it always written in the form of power of 10.
For example : The number 200 is written as, [tex]2\times 10^2[/tex]
The given number is, 48,000,000,000 g
This number is written in scientific notation as :
[tex]48,000,000,000g=4.8\times 10^{10}g[/tex]
Therefore, the scientific notation of the given number is, [tex]4.8\times 10^{10}[/tex]
An ion with an atomic number of 34 and 36 electrons has a __________ charge
Final answer:
A Selenium ion (Se) with an atomic number of 34 and 36 electrons has a charge of -2, making it a negatively charged ion, Se²⁻.
Explanation:
An ion with an atomic number of 34 and 36 electrons has a negative two charge. An atomic number of 34 corresponds to the element Selenium (Se). Normally, selenium has 34 electrons, equal to its number of protons, making it neutral. However, when it gains 2 additional electrons to have a total of 36, it becomes an anion (a negatively charged ion) with a charge of -2, denoted as Se²⁻. This gain in electrons increases its negative charge relative to its positive charge, leading to its overall negative charge.
What would be the result of changing the number of each subatomic component on an atom?
Changing the number of protons in an atom changes its element, altering neutrons results in isotopes with the same chemical properties, and changing electrons affects the atom's charge and reactivity without altering its identity.
Explanation:The result of changing the number of each subatomic component -- protons, neutrons, and electrons -- on an atom would have different consequences:
Changing the number of protons would change the atomic number, thereby changing the element itself. This process, known as a nuclear reaction, can result in elements with vastly different chemical properties.Adding or removing neutrons from an atom's nucleus results in isotopes of the same element. These isotopes have the same atomic number but different mass numbers due to the change in the number of neutrons. This alteration does not affect the chemical properties of the element.Altering the number of electrons in an atom changes its charge but not its identity. This can affect the chemical reactivity and bonding characteristics of the atom.For instance, carbon will always be carbon as long as it has 6 protons, regardless of the number of neutrons (isotopes) or electrons (ions) it may have. However, the physical and chemical properties of atoms and the resulting elements can vary greatly depending on the number and arrangements of subatomic particles.
Gold has density of 19.3 g/cm3; how many grams of gold are in a 16.0 cm3 gold bar?
What are some similarities amongst elements within a group?
What are some similarities amongst elements within a period?
Elements in the same group have similar valence electron configurations leading to similar chemical properties, while elements in the same period have the same number of electron shells but differing valence electrons causing changes in atomic radius and ionization energy.
Similarities Amongst Elements Within a Group
Elements within a group, also known as a column on the periodic table, share several important similarities. These elements typically have the same number of electrons in their outermost or valence shell, leading to similar chemical properties. For instance, the alkali metals in Group 1 all have one electron in their outermost shell and are very reactive, especially with water. As you move down a group, atomic size and reactivity tend to increase due to the addition of more electron shells.
Similarities Amongst Elements Within a Period
A period is a horizontal row on the periodic table. Elements in the same period have the same number of electron shells but differ in the number of electrons within the valence shell. Moving from left to right across a period, the atomic radius usually decreases, and ionization energy increases as electrons are added to the same shell and protons to the nucleus, creating a stronger pull on the electrons.
The organization of the periodic table facilitates the understanding of these trends, with elements sorted by increasing atomic number and structured in periods and groups to reflect periodic trends such as atomic size, reactivity, and ionization energy. This organization reflects the periodic recurrence of elements with similar properties and allows chemists to predict chemical behaviors based on position within the table.
What is the mass of 5.80 × 1023 atoms of silver (Ag)?
The mass of 5.80 × 10^23 atoms of silver (Ag) can be found by first determining the number of moles of Ag this represents using Avogadro's number, then using the atomic mass of Ag to calculate the mass.
Explanation:To find the mass of 5.80 × 1023 atoms of silver (Ag), we use Avogadro's number, which states there are 6.022 × 1023 atoms in one mole of any substance. First, we find the number of moles in 5.80 × 1023 atoms of Ag by dividing the given number of atoms by Avogadro's number.
Moles of Ag = (5.80 × 1023) / (6.022 × 1023)
Next, we calculate the mass of these moles of Ag using atomic mass of silver (107.87 g/mol).
Mass of Ag = Moles of Ag x Atomic mass of Ag
Learn more about Molar Mass here:https://brainly.com/question/12127540
#SPJ2
How does a solution of ph 7 compare to a solution of ph 10?
The law of definite composition states that every compound has a definite composition by mass. What does that mean?
The law of definite composition states that a chemical compound always consists of the same elements in a fixed ratio by mass, regardless of how or where it's formed. For example, water always contains hydrogen and oxygen in a 1:8 mass ratio. This law is crucial for understanding chemical reactions and the conservation of mass.
Explanation:The law of definite composition, also known as the law of definite proportions, is a fundamental concept in chemistry. This law states that a chemical compound, no matter how it is formed or where it is found, will always consist of the same elements in a fixed ratio by mass. For example, water (H2O) is always composed of hydrogen and oxygen in a 1:8 mass ratio, meaning that there are always 8 grams of oxygen for every 1 gram of hydrogen.
This law has significant implications for chemical reactions. Because compounds always have a definite composition, the mass of the reactants in a chemical reaction always equals the mass of the products. This reflects the principle of conservation of mass.
Learn more about Law of Definite Composition here:https://brainly.com/question/33715758
#SPJ6
The law of definite composition, also known as the law of constant composition, is a fundamental concept in Chemistry. This law states that any given chemical compound will always contain the same elements in the exact same proportions by mass, regardless of the sample's origin or quantity.
Definition and Origin: The law of definite composition was formulated by Joseph Proust in the late 18th century. His experiments showed that chemical compounds contain elements in a fixed ratio by mass.
Fixed Ratios: For example, water (H₂O) is always composed of two hydrogen atoms and one oxygen atom. This 2:1 ratio in the number of atoms translates to a consistent mass ratio because each element has a specific atomic mass.
Mass Proportions: To illustrate with masses, the atomic mass of hydrogen is approximately 1 amu (atomic mass unit) and that of oxygen is about 16 amu. Therefore, in a water molecule, the mass ratio of hydrogen to oxygen is roughly 2 (from 2 hydrogen atoms) to 16, or simplified to 1:8.
Consistency Across Samples: No matter where you find a sample of water, whether from a river or distilled in a lab, its composition by mass will always be around 88.8% oxygen and 11.2% hydrogen.
Implications: This law helps in predicting and understanding chemical reactions because knowing the fixed ratios allows chemists to determine the quantities of reactants needed to produce a certain amount of a compound.
What is the frequency of electromagnetic radiation having a wavelength of 3.27 ✕ 10-8 m?
s-1 What type of electromagnetic radiation is this?
Using your own words define a scientific law
Using what you know about the compressibility of gases explain why the oxygen in is a SCUBA tank is compressed
The concept of compressibility enables SCUBA tanks to contain a large amount of compressed air, which divers can use for breathing underwater despite the limited size of the tanks.
The principle of compressibility explains why the oxygen in a SCUBA tank is compressed. Gases are compressible, which means they can be packed into a smaller volume under higher pressure. This property is utilized in scuba diving to supply a diver with sufficient breathing gas underwater.
Because gases expand to fill their containers, at sea level (1 atm pressure), the air fills the available space. However, when pressure is applied, the air's volume decreases significantly, allowing more air to be packed into the same container.
For example, if the air in a typical scuba tank, which might have a volume of 13.2 liters and be pressurized to 153 atm, was transferred to a container at the standard 1 atm pressure, it would occupy about 2500 liters of volume. The high pressure in the tank therefore ensures that the diver has enough air to breathe while underwater for extended periods of time.
Which of the following will cause an increase in the weight of an object?
A: Increase in the gravitational pull
B: Decrease in the gravitational pull
C: Increase in the temperature of the object
D: Decrease in the temperature of the object
5. How does the abundance of isotopes of an element relate to its average atomic mass?
Identify three physical properties of ionic compounds that are associated with ionic bonds
Final answer:
Three physical properties of ionic compounds associated with ionic bonds are high melting and boiling points, brittleness, and poor conductivity in the solid state.
Explanation:
Three physical properties of ionic compounds that are associated with ionic bonds are:
High melting and boiling points: Ionic compounds have strong ionic bonds which require a large amount of energy to break. Thus, they have high melting and boiling points.
Brittleness: Ionic compounds are generally hard, but when a force is applied, the layers of ions shift causing ions of the same charge to come near each other. The repulsive forces between like-charged ions cause the crystal to shatter.
Poor conductivity in the solid state: Due to the strong ionic bonds, ions are unable to move freely in the solid state, making them poor conductors of electricity.
What mole ratio would you use to calculate how many mole of oxygen gas would be?
Calculate the energy of a quantum of radiant energy with a frequency of 5.00x1011/s
is rust forming on metal a chemical or physical change
The formation of rust on metal is a chemical change because it involves new chemical bonds forming between iron and oxygen, resulting in the new substance, iron oxide or rust.
Explanation:Is rust forming on metal a chemical or physical change? The formation of rust on metal is a chemical change. Rust is iron oxide, a different kind of matter than the iron, oxygen, and water present before the rust formed. The reaction that takes place is Fe + O₂ → Fe₂O₃, indicating that new chemical bonds have been formed, leading to the creation of a new substance. Color change is a common indicator of a chemical change, and in the case of rust formation, we observe the metal transitioning from its original color to an orange or red flaky substance. This transformation is due to the chemical reaction of iron with oxygen, commonly referred to as corrosion. Rusting is an expensive problem, causing significant financial impact due to the damage it causes to metal structures and items.
Which of these is an acid?
Check all that apply.
A. HCl
B. H2SO4
C. NaOH
D. HNO3
We call the elements in the blocks of periods 4-7 and groups 3-12 the
Arsenic is a metalloid, and it has _________ electron shells and _________ valence electrons.
The number of which subatomic particle designates the atomic number of an element? select one:
Express in scientific notation. Remember, M must be a number 1 ≤ M < 10. 0.000543 =
Answer : The given number in scientific notation will be, [tex]5.43\times 10^{-4}[/tex]
Explanation :
Scientific notation : It is the representation of expressing the numbers that are too big or too small and are represented in the decimal form with one digit before the decimal point times 10 raise to the power.
For example :
5000 is written as [tex]5.0\times 10^3[/tex]
889.9 is written as [tex]8.899\times 10^{-2}[/tex]
As we are given that the number is, 0.000543
This number is written in scientific notation as :
[tex]5.43\times 10^{-4}[/tex]
Hence, the given number in scientific notation will be, [tex]5.43\times 10^{-4}[/tex]
Which term is best defined as a measure of the amount of space a substance occupies?
The term 'Volume' in physics defines the measure of the amount of space that a substance occupies. It is used across various equations and calculations in the study of physical sciences. Its applicability ranges from classroom learnings to real-life situations.
Explanation:The term that best defines the measure of the amount of space a substance occupies is Volume. Volume is a fundamental concept in physical sciences and is often used in equations and calculations. Whether the substance is a liquid, a gas, or a solid, you can calculate its volume. For instance, the volume of a solid box is calculated by length * width * height, and the volume of a liquid in a cylindrical container would be calculated with π*radius2*height. Knowledge of volume can apply to real-life situations beyond the classroom as well, like working out how much water you can fit in a pool, or how much air is in your bedroom.
Learn more about Volume here:https://brainly.com/question/31946306
#SPJ2
According to the law of conservation of mass, when sodium, hydrogen, and oxygen react to form a compound, the mass of the compound will be ____ the sum of the masses of the individual elements.
The mass of the compound will be equal to the sum of the masses of the individual elements.
According to the law of conservation of mass, the mass of the reactants in a chemical reaction must equal the mass of the products.
When sodium (Na), hydrogen (H), and oxygen (O) react to form a compound, such as sodium hydroxide (NaOH), the total mass of the compound produced will be equal to the combined masses of the individual elements that reacted.
This principle is fundamental in chemistry and ensures that mass is neither created nor destroyed during a chemical reaction.
Therefore, if you start with a certain amount of sodium, hydrogen, and oxygen, the total mass of these elements before the reaction will be exactly the same as the mass of the sodium hydroxide produced after the reaction.
Thus, the mass of the compound will be 'equal to' the sum of the masses of the individual elements.
Why is water considered a pure substance, while milk is not?
Answer : The water is made up of only one type of molecule and milk is made up of different type of molecules.
Explanation :
Pure substance : It is defined as a substance that is made by the combination of only one type of atom or only one type of molecule.
The pure substance can not be separated by simple physical methods.
Heterogeneous mixtures : It is a mixture that appears non-uniformly throughout the solution and the particle size or shapes are also different.
Homogeneous mixtures : It is a mixture that appears uniformly throughout the solution and the particle size or shapes are not different.
As water is considered as a pure substance because it is made up of only one type of molecule that means it is made up of two hydrogen atoms bonded to a single oxygen atom.
While on the other hand, milk is considered as a mixture because various substances (fats, proteins, water, lipids etc..) are present in milk. So, it is not a pure substance.
Water is considered a pure substance, while milk is not as water is made up of elements and milk is made up of mixture of compounds.
Pure substances are substances that are made up of only one kind of particle and have a fixed or constant structure.
Pure substances are further classified as elements and compounds.An element is a substance that consists of only one type or kind of atom. An element is a pure substance as it cannot be broken down or transformed into a new substance even by using some physical or chemical means. Elements are mostly metals, non-metals or metalloids.
Thus, water is considered to be a pure substance, while milk is not as water is made up of elements and milk is made up of mixture of compounds.
Learn more about pure substance,here:
https://brainly.com/question/34411814
#SPJ6
A student is given two clear solutions. One solution contained lead ions, Pb2+ and the other solution contains chloride ions, Cl-. When the two solutions are mixed, a clear solution with white powder at the bottom results. What has happen to cause this change?
Answer: A chemical change has occurred.
Explanation: A chemical change is a change which results when there is a change in the chemical composition of the atoms.
Chemical changes are accompanied by:
a) Change in color
b) Absorption or release of heat
c) formation of precipitates
d) production of gas
[tex]Pb^{2+]+2Cl^-\rightarrow PbCl_2(s)[/tex]
The white powder is precipitates of lead chloride [tex]PbCl_2(s)[/tex] which do not dissolve.
Calculate the theoretical atom economy for each reaction.
a. 2 cuo (s) + c (s) → 2 cu (s) + co2 (g)
When a substance undergoes a physical change does it create a new substance?