An ion with an atomic number of 34 and 36 electrons has a __________ charge
Final answer:
A Selenium ion (Se) with an atomic number of 34 and 36 electrons has a charge of -2, making it a negatively charged ion, Se²⁻.
Explanation:
An ion with an atomic number of 34 and 36 electrons has a negative two charge. An atomic number of 34 corresponds to the element Selenium (Se). Normally, selenium has 34 electrons, equal to its number of protons, making it neutral. However, when it gains 2 additional electrons to have a total of 36, it becomes an anion (a negatively charged ion) with a charge of -2, denoted as Se²⁻. This gain in electrons increases its negative charge relative to its positive charge, leading to its overall negative charge.
Prepare approximately .1n hcl by putting the correct amount of concentrated acid in a glass bottle and
On a mission to a newly discovered planet, an astronaut finds gallium abundances of 60.11 % for 69ga and 39.89 % for 71ga. what is the atomic mass of gallium for this location? the mass of 69ga is 68.7200 amu . the mass of 71ga is 70.9200 amu .
The atomic mass of gallium on the newly discovered planet is calculated to be 69.65704 amu, based on the given abundances and masses of its isotopes 69ga and 71ga.
Explanation:To calculate the atomic mass of gallium based on the given abundances and masses of its isotopes, we can use the formula: Atomic mass = (% abundance of isotope 1 × mass of isotope 1) + (% abundance of isotope 2 × mass of isotope 2), where percentages are converted into decimal form. Given, 69ga has an abundance of 60.11% (or 0.6011) and a mass of 68.7200 amu, and 71ga has an abundance of 39.89% (or 0.3989) and a mass of 70.9200 amu.
The calculation is therefore: (0.6011 × 68.7200 amu) + (0.3989 × 70.9200 amu).
This equals: 41.359532 amu + 28.297508 amu = 69.65704 amu.
Therefore, the atomic mass of gallium for this location is 69.65704 amu.
The atomic mass of gallium on the newly discovered planet is approximately 69.6077 amu.
To determine the atomic mass of gallium on the newly discovered planet, the contributions of both isotopes ⁶⁹Ga and ⁷¹Ga must be considered based on their abundances and atomic masses.
⁶⁹Ga abundance: 60.11%
⁷¹Ga abundance: 39.89%
Mass of ⁶⁹Ga: 68.7200 amu
Mass of ⁷¹Ga: 70.9200 amu
Convert abundances from percentages to decimals:
⁶⁹Ga : 60.11% = 0.6011
⁷¹Ga : 39.89% = 0.3989
Calculation of atomic mass:
Atomic mass = (fractional abundance of ⁶⁹Ga × mass of ⁶⁹Ga) + (fractional abundance of ⁷¹Ga × mass of ⁷¹Ga)
[tex]\text{Atomic mass} &= (0.6011 \times 68.7200 \, \text{amu}) + (0.3989 \times 70.9200 \, \text{amu}) \\[/tex]
Atomic mass = 41.3092 amu + 28.2985 amu
Atomic mass = 69.6077 amu
The compound zinc fluoride is a strong electrolyte. write the transformation that occurs when solid zinc fluoride dissolves in water.
When solid zinc fluoride (ZnF2) dissolves in water, it dissociates into its constituent ions to form aqueous zinc ions (Zn^2+) and fluoride ions (F^-). This transformation represents a physical change known as dissociation. This reaction is typical for strong electrolytes like zinc fluoride due to the ionic bonds within the compound.
Explanation:The compound zinc fluoride (ZnF2) is a strong electrolyte, which means that it completely dissociates into its constituent ions when dissolved in water. The process of dissociation occurs when the ions in the solid separate and disperse uniformly throughout the solution. This is facilitated by water molecules that surround and solvate the ions, reducing the strong electrostatic forces between them.
When solid zinc fluoride dissolves in water, it forms aqueous zinc ions (Zn^2+) and fluoride ions (F^-). This can be represented by the equation:
ZnF2 (s) -> Zn^2+ (aq) + 2F^- (aq)
This transformation is a physical change known as dissociation. The term 'aq' denotes that the ions are in an aqueous solution, indicating that they have been solvated by water molecules. It's noteworthy that the compound zinc fluoride, by nature of it being an ionic bond, is a strong electrolyte, hence it will nearly completely dissociate when dissolved in water.
Learn more about Zinc Fluoride Dissolution here:https://brainly.com/question/5452058
Why is it impossible to contain gaseous iron in a glass container?
In its standard temperature and pressure, iron would exist as a solid. Therefore to make it into gas, we must heat it beyond its boiling point which is around 2,862°C. At that temperature, ordinary glass container would readily melt. Hence, it is impossible to contain gaseous iron in a glass container.
(a) the characteristic odor of pineapple is due to ethyl butyrate, a compound containing carbon, hydrogen, and oxygen. combustion of 4.17 mg of ethyl butyrate produces 9.48 mg of co2 and 3.87 mg of h2o. what is the empirical formula of the compound?
By stoichiometry and assume that:
CxH2xOy + zO2 -> xCO2 + xH2O
CO2: 9.48/44 = 0.215 mmol
H2O: 3.87/18 = 0.215 mmol
mass of C = 0.215 * 12 = 2.58 mg
mass of H = 0.215 * 2 * 1 = 0.43 mg
mass of O in ethylbutyrate = 4.17 - 2.58 - 0.43 = 1.11 mg
So C/O = 2.58/1.11 ≈ 3
Thus we have C3H6O
Answer: The empirical formula for the given compound is [tex]C_3H_6O[/tex]
Explanation:
The chemical equation for the combustion of hydrocarbon having carbon, hydrogen and oxygen follows:
[tex]C_xH_yO_z+O_2\rightarrow CO_2+H_2O[/tex]
where, 'x', 'y' and 'z' are the subscripts of Carbon, hydrogen and oxygen respectively.
We are given:
Mass of [tex]CO_2=9.48mg=9.48\times 10^{-3}g[/tex]
Mass of [tex]H_2O=3.87mg=3.87\times 10^{-3}g[/tex]
We know that:
Molar mass of carbon dioxide = 44 g/mol
Molar mass of water = 18 g/mol
For calculating the mass of carbon:
In 44 g of carbon dioxide, 12 g of carbon is contained.
So, in [tex]9.48\times 10^{-3}g[/tex] of carbon dioxide, [tex]\frac{12}{44}\times 9.48\times 10^{-3}=2.58\times 10^{-3}g[/tex] of carbon will be contained.
For calculating the mass of hydrogen:
In 18 g of water, 2 g of hydrogen is contained.
So, in [tex]3.87\times 10^{-3}g[/tex] of water, [tex]\frac{2}{18}\times 3.87\times 10^{-3}=4.30\times 10^{-4}g[/tex] of hydrogen will be contained.
For calculating the mass of oxygen:
Mass of oxygen in the compound = [tex](4.17\times 10^{-3})-[(2.58\times 10^{-3})+(4.30\times 10^{-4})]=1.16\times 10^{-3}g[/tex]
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Carbon =[tex]\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{2.58\times 10^{-3}g}{12g/mole}=2.15\times 10^{-4}moles[/tex]
Moles of Hydrogen = [tex]\frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{4.30\times 10^{-4}g}{1g/mole}=4.30\times 10^{-4}moles[/tex]
Moles of Oxygen = [tex]\frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{1.16\times 10^{-3}g}{16g/mole}=7.25\times 10^{-5}moles[/tex]
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is [tex]7.25\times 10^{-5}[/tex] moles.
For Carbon = [tex]\frac{2.15\times 10^{-4}}{7.25\times 10^{-5}}=2.96\approx 3[/tex]
For Hydrogen = [tex]\frac{4.30\times 10^{-4}}{7.25\times 10^{-5}}=5.93\approx 6[/tex]
For Oxygen = [tex]\frac{7.25\times 10^{-5}}{7.25\times 10^{-5}}=1[/tex]
Step 3: Taking the mole ratio as their subscripts.
The ratio of C : H : O = 3 : 6 : 1
Hence, the empirical formula for the given compound is [tex]C_3H_6O_1=C_3H_6O[/tex]
Can a chemical change be something heating up?
You have 1 liter of a freshly prepared 0.1 m sucrose (molecular mass 342) solution, which means
Why is water considered a pure substance, while milk is not?
Answer : The water is made up of only one type of molecule and milk is made up of different type of molecules.
Explanation :
Pure substance : It is defined as a substance that is made by the combination of only one type of atom or only one type of molecule.
The pure substance can not be separated by simple physical methods.
Heterogeneous mixtures : It is a mixture that appears non-uniformly throughout the solution and the particle size or shapes are also different.
Homogeneous mixtures : It is a mixture that appears uniformly throughout the solution and the particle size or shapes are not different.
As water is considered as a pure substance because it is made up of only one type of molecule that means it is made up of two hydrogen atoms bonded to a single oxygen atom.
While on the other hand, milk is considered as a mixture because various substances (fats, proteins, water, lipids etc..) are present in milk. So, it is not a pure substance.
Water is considered a pure substance, while milk is not as water is made up of elements and milk is made up of mixture of compounds.
Pure substances are substances that are made up of only one kind of particle and have a fixed or constant structure.
Pure substances are further classified as elements and compounds.An element is a substance that consists of only one type or kind of atom. An element is a pure substance as it cannot be broken down or transformed into a new substance even by using some physical or chemical means. Elements are mostly metals, non-metals or metalloids.
Thus, water is considered to be a pure substance, while milk is not as water is made up of elements and milk is made up of mixture of compounds.
Learn more about pure substance,here:
https://brainly.com/question/34411814
#SPJ6
Suppose you have an atom composed of 19 protons, 20 neutrons and 19 electrons. what is the mass of this atom?
What would be the result of changing the number of each subatomic component on an atom?
Changing the number of protons in an atom changes its element, altering neutrons results in isotopes with the same chemical properties, and changing electrons affects the atom's charge and reactivity without altering its identity.
Explanation:The result of changing the number of each subatomic component -- protons, neutrons, and electrons -- on an atom would have different consequences:
Changing the number of protons would change the atomic number, thereby changing the element itself. This process, known as a nuclear reaction, can result in elements with vastly different chemical properties.Adding or removing neutrons from an atom's nucleus results in isotopes of the same element. These isotopes have the same atomic number but different mass numbers due to the change in the number of neutrons. This alteration does not affect the chemical properties of the element.Altering the number of electrons in an atom changes its charge but not its identity. This can affect the chemical reactivity and bonding characteristics of the atom.For instance, carbon will always be carbon as long as it has 6 protons, regardless of the number of neutrons (isotopes) or electrons (ions) it may have. However, the physical and chemical properties of atoms and the resulting elements can vary greatly depending on the number and arrangements of subatomic particles.
The fundamental difference between covalent bonds and ionic bonds is that in covalent bonds __________ whereas in ionic bonds __________.
Covalent bonds involve the sharing of electrons between atoms, while ionic bonds involve the transfer of electrons from one atom to another.
Explanation:The fundamental difference between covalent bonds and ionic bonds is that in covalent bonds, electrons are shared between atoms, whereas in ionic bonds, electrons are transferred from one atom to another.
In covalent bonds, the atoms are nonmetals and they share electrons to achieve a stable electron configuration. Examples include the bond between two hydrogen atoms in a hydrogen molecule (H2) and the bond between carbon and oxygen in carbon dioxide (CO2).
In ionic bonds, one atom loses electrons to become a positively charged ion (cation), while another atom gains those electrons to become a negatively charged ion (anion). These oppositely charged ions are then attracted to each other and form an ionic bond. An example is the bond between sodium (Na+) and chlorine (Cl-) in sodium chloride (NaCl).
Learn more about Covalent bonds and Ionic bonds here:https://brainly.com/question/32827812
#SPJ12
Roberto and his sister had a garden in the backyard. Every spring they grew strawberries, like the plant you see here. Plants make their own food through the process of photosynthesis. What non-living parts of this backyard ecosystem are needed for the plant to survive?
What are some similarities amongst elements within a group?
What are some similarities amongst elements within a period?
Elements in the same group have similar valence electron configurations leading to similar chemical properties, while elements in the same period have the same number of electron shells but differing valence electrons causing changes in atomic radius and ionization energy.
Similarities Amongst Elements Within a Group
Elements within a group, also known as a column on the periodic table, share several important similarities. These elements typically have the same number of electrons in their outermost or valence shell, leading to similar chemical properties. For instance, the alkali metals in Group 1 all have one electron in their outermost shell and are very reactive, especially with water. As you move down a group, atomic size and reactivity tend to increase due to the addition of more electron shells.
Similarities Amongst Elements Within a Period
A period is a horizontal row on the periodic table. Elements in the same period have the same number of electron shells but differ in the number of electrons within the valence shell. Moving from left to right across a period, the atomic radius usually decreases, and ionization energy increases as electrons are added to the same shell and protons to the nucleus, creating a stronger pull on the electrons.
The organization of the periodic table facilitates the understanding of these trends, with elements sorted by increasing atomic number and structured in periods and groups to reflect periodic trends such as atomic size, reactivity, and ionization energy. This organization reflects the periodic recurrence of elements with similar properties and allows chemists to predict chemical behaviors based on position within the table.
A student is given two clear solutions. One solution contained lead ions, Pb2+ and the other solution contains chloride ions, Cl-. When the two solutions are mixed, a clear solution with white powder at the bottom results. What has happen to cause this change?
Answer: A chemical change has occurred.
Explanation: A chemical change is a change which results when there is a change in the chemical composition of the atoms.
Chemical changes are accompanied by:
a) Change in color
b) Absorption or release of heat
c) formation of precipitates
d) production of gas
[tex]Pb^{2+]+2Cl^-\rightarrow PbCl_2(s)[/tex]
The white powder is precipitates of lead chloride [tex]PbCl_2(s)[/tex] which do not dissolve.
Express in scientific notation. Remember, M must be a number 1 ≤ M < 10. 0.000543 =
Answer : The given number in scientific notation will be, [tex]5.43\times 10^{-4}[/tex]
Explanation :
Scientific notation : It is the representation of expressing the numbers that are too big or too small and are represented in the decimal form with one digit before the decimal point times 10 raise to the power.
For example :
5000 is written as [tex]5.0\times 10^3[/tex]
889.9 is written as [tex]8.899\times 10^{-2}[/tex]
As we are given that the number is, 0.000543
This number is written in scientific notation as :
[tex]5.43\times 10^{-4}[/tex]
Hence, the given number in scientific notation will be, [tex]5.43\times 10^{-4}[/tex]
Using what you know about the compressibility of gases explain why the oxygen in is a SCUBA tank is compressed
The concept of compressibility enables SCUBA tanks to contain a large amount of compressed air, which divers can use for breathing underwater despite the limited size of the tanks.
The principle of compressibility explains why the oxygen in a SCUBA tank is compressed. Gases are compressible, which means they can be packed into a smaller volume under higher pressure. This property is utilized in scuba diving to supply a diver with sufficient breathing gas underwater.
Because gases expand to fill their containers, at sea level (1 atm pressure), the air fills the available space. However, when pressure is applied, the air's volume decreases significantly, allowing more air to be packed into the same container.
For example, if the air in a typical scuba tank, which might have a volume of 13.2 liters and be pressurized to 153 atm, was transferred to a container at the standard 1 atm pressure, it would occupy about 2500 liters of volume. The high pressure in the tank therefore ensures that the diver has enough air to breathe while underwater for extended periods of time.
Selenous acid is diprotic it can react with sodium hydroxide in steps write equations (in molecular form) for the two steps of the reaction
The chemical formula for the selenous acid is H2SeO3. Its reaction with sodium hydroxide, which has a chemical formula of NaOH, will be a neutralization reaction forming a salt and water. This is depicted below.
H2SeO3 + NaOH à Na2SeO3 + H2O
If we are to balance the chemical reaction then, we will have a final answer of,
H2SeO3 + 2NaOH à Na2SeO3 + 2H2O
What is the mass, in grams, of a pure gold cube that has a volume of 3.20 cm3?
Final answer:
The mass of a pure gold cube with a volume of 3.20 cm³ is 61.76 grams. Using the density of gold (19.3 g/cm³), the mass is calculated by multiplying density by volume, with the final answer rounded to three significant figures as 61.8 grams.
Explanation:
To calculate the mass of a pure gold cube with a given volume, you use the density of gold. The density (d) of gold is known to be 19.3 g/cm³. Thus, if the volume of the gold cube is 3.20 cm³, the mass (m) is calculated as follows:
m = d × V
Where m is the mass, d is the density, and V is the volume. Plugging in the values:
m = 19.3 g/cm³ × 3.20 cm³
m = 61.76 grams
Therefore, the mass of the gold cube is 61.76 grams. We limit our final answer to three significant figures, so the mass is 61.8 grams.
Use the periodic table entry below to answer the following question.
What is the atomic mass of the element cobalt (Co)?
27
31
59
31.71
if an elements atomic mass is 70 and it has 39 neutrons how many protobs does it have? What element is this?
The element has 31 protons based on the given information, but its specific identity cannot be determined.
Explanation:The number of protons in an atom is determined by its atomic number. In this case, the element has 39 neutrons and a total atomic mass of 70. To find the number of protons, we subtract the number of neutrons from the atomic mass. So, the element has 31 protons.
The atomic number of an element determines its identity on the periodic table. However, with only the number of neutrons and the atomic mass given, it is impossible to determine the exact identity of the element. More information is needed to identify the element.
Learn more about atomic structure here:https://brainly.com/question/33054877
#SPJ2
During photosynthesis, sunlight shining on a plant is absorbed. Through several chemical reactions, the plant produces sugar, a high-energy compound, from simpler substances. What energy transformation occurs during this process?
Answer: radiant energy to chemical energy
Explanation:-
Radiant energy is the energy of electromagnetic waves.
Chemical energy is the energy stored in the bonds of molecules.
Photosynthesis is a phenomenon in which green plants containing chlorophyll use sunlight as a source of energy to convert carbon dioxide and water to form glucose and oxygen.
Photosynthesis is the process used by plants, algae and certain bacteria to convert energy from sunlight called as radiant energy and turn it into chemical energy in the form of glucose which is used as a source of energy by many organisms.
[tex]6CO_2+6H_2O\overset{sunlight}\rightarrow C_6H_{12}O_6+6O_2[/tex]
Which of the following will cause an increase in the weight of an object?
A: Increase in the gravitational pull
B: Decrease in the gravitational pull
C: Increase in the temperature of the object
D: Decrease in the temperature of the object
Sort these elements into pairs that would most likely exhibit similar chemical properties Br ,Mg ,F ,Sr ,S ,O
Final answer:
Similar chemical properties in elements arise from their groupings in the periodic table. Bromine and Fluorine are paired as halogens; Magnesium and Strontium as alkaline earth metals; and Sulfur and Oxygen as chalcogens.
Explanation:
Elements that exhibit similar chemical properties are often found in the same group or family on the periodic table. The elements provided can be sorted into pairs based on their chemical behaviors and position in the periodic table:
Bromine (Br) and Fluorine (F): Both are halogens found in Group VII, known for their reactivity and tendency to form compounds by gaining one electron.Magnesium (Mg) and Strontium (Sr): These are alkaline earth metals found in Group II, which are shiny and good conductors of heat and electricity, with each forming compounds with oxygen in a ratio of one of their atoms to one oxygen atom.Sulfur (S) and Oxygen (O): Both belong to Group VI (the chalcogens) and can form compounds by gaining two electrons.In summary, similar properties in elements are a result of their position within the same group on the periodic table. For example, bromine and fluorine are both halogens, while magnesium and strontium are alkaline earth metals.
How do you figure out the number of protons electrons and neutrons of 7Li+
The number of protons, electrons, and neutrons in the 7Li+ ion can be determined by its atomic number and mass number. It has 3 protons, 3 electrons, and 4 neutrons.
Explanation:Lithium-7 has three protons and four neutrons within its nucleus, making its mass number 7 and its atomic number 3. This means there are 3 protons, 3 electrons, and 4 neutrons in the 7Li+ ion.
Learn more about Atomic Structure here:https://brainly.com/question/33054877
#SPJ2
How could you determine the correct temperature range, salt concentration, and ph for a specific enzyme?
If a sample of gold is a cube what is the length of each edge in centimeters
To find the edge length of a cube made of gold, divide the mass of the gold sample by its density and take the cube root of the result.
Explanation:The edge length of a sample of gold, if it is in the form of a cube, can be determined using the concept of density. The density of gold is 19.3 g/cm³. To find the edge length, we need to divide the mass of the gold sample by its density. For example, if the mass of the gold sample is 10 grams, the volume is 10 g / 19.3 g/cm³ = 0.52 cm³. Since the sample is a cube, all three dimensions are equal, so the edge length would be the cube root of the volume. In this case, the edge length would be approximately 0.8 cm.
How is each measurement represented using scientific notation?
48,000,000,000 g =
Answer : The scientific notation of the given number is, [tex]4.8\times 10^{10}[/tex]
Explanation :
Scientific notation : It is defined as the way or representation of expressing the number that are too big or too small that is written in the decimal form. This means that, it always written in the form of power of 10.
For example : The number 200 is written as, [tex]2\times 10^2[/tex]
The given number is, 48,000,000,000 g
This number is written in scientific notation as :
[tex]48,000,000,000g=4.8\times 10^{10}g[/tex]
Therefore, the scientific notation of the given number is, [tex]4.8\times 10^{10}[/tex]
Two atoms of the same element must have the same number of _____. two atoms of the same element must have the same number of _____. electrons protons neutrons plus protons neutrons
Answer: Option (b) is the correct answer.
Explanation:
When two atoms of the same element has different number of neutrons but same number of protons then it is known as an isotope.
For example, isotopes of carbon are [tex]^{12}_{6}C[/tex] and [tex]^{13}_{6}C[/tex].
Also, when two atoms of the same element have same number of protons then their chemical properties remain the same.
Therefore, we can conclude that two atoms of the same element must have the same number of protons.
an unknown substance undergoes a chemical chance that gives off heat. which of the following is true
The correct statement for a chemical change that gives off heat is that the molecule types change and the process is exothermic, as energy is released to the surroundings.
When an unknown substance undergoes a chemical change that gives off heat, the process is exothermic, and the types of molecules before and after the change are different. A chemical change that releases heat indicates that energy is a product of the reaction.
This is contrasted with an endothermic process where heat is absorbed, and the surroundings become colder. In exothermic reactions, bonds are formed which release more energy than the energy needed to break bonds in the reactants, hence the heat given off to the surroundings.
The correct statement for a chemical change that produces heat is: The types of molecules of the substance before and after the chemical change are different, and the change was exothermic.
Complete Question - An unknown substance undergoes a chemical change that gives off heat. Which statement is true?
The types of molecules of the substance before and after the chemical change are different, and the change was endothermic. The types of molecules of the substance before and after the chemical change are the same, and the change was exothermic. The types of molecules of the substance before and after the chemical change are the same, and the change was endothermic. The types of molecules of the substance before and after the chemical change are different, and the change was exothermic.