Chemistry balance skeleton reaction? Balance the following skeleton reactions and identify the oxidizing and reducing agents.; include states-of-matter please! 1.BH4‾(aq) + ClO3‾(aq) → H2BO3‾(aq) + Cl ‾(aq) [basic] 2.CrO42-(aq) + N2O(g) → Cr3+(aq) + NO(g) [acidic]

Answers

Answer 1
Final answer:

The given reactions are balanced, with the first reaction not requiring any adjustment and the second reaction being balanced as 2CrO42-(aq) + 3N2O(g) → 6Cr3+(aq) + 3NO(g). The oxiding agents are ClO3¯ and CrO42- for the first and second reactions, respectively. The reducing agents are BH4¯ and N2O for the first and second reactions, respectively.

Explanation:

First, it's essential to know that during oxido-reduction reactions, one substance loses electrons (oxidized) and another gains them (reduced). We call the substance oxidized to be the reducing agent and the one reduced to be the oxidizing agent.

For the first reaction BH4¯(aq) + ClO3¯(aq) → H2BO3¯(aq) + Cl¯(aq), there aren't any charges or states of matter to be balanced. Analyzing the oxidation states, the B in BH4¯ goes from -3 to +3, showing it has been oxidized. Thus, BH4¯ is the reducing agent. ClO3¯ reduces to Cl¯, thus ClO3¯ is the oxidizing agent.

Moving on to the second reaction CrO42-(aq) + N2O(g) → Cr3+(aq) + NO(g), balance the equation first by adjusting coefficients to get 2CrO42-(aq) + 3N2O(g) → 6Cr3+(aq) + 3NO(g). This reaction is in an acidic solution, so it's important to note that hydroxide ions do not appear in half-reactions occurring in an acidic solution. SO, in this reaction too, Cr in CrO42- goes from +6 to +3, signifying reduction, making CrO42- the oxidizing agent. N in N2O goes from +1 to +2 which signifies oxidation, marking N2O as the reducing agent.

Learn more about Oxidization-Reduction Reactions here:

https://brainly.com/question/19528268

#SPJ12


Related Questions

When dissolved in water, baking soda is basic.the ph of baking soda (sodium bicarbonate) is closest to:?

Answers

This question has four answer choices:

2
4
6
8

The question do not have information enough to calculate a number.

But given the options given it is easy to answer. You just must know that

1) the pH scale is from 1 to 14

2) the pH of acidic compounds is below 7 (1 extremely acid and 7 is neutral).

3) the pH of basic compounds is above 7 (7 is neutral and 14 is extremely basic, or alkalyne).

So, the numbers 2, 4, and 6 are pH of acid solutions. Then only number, from the list, that corresponds to a pasic pH is 8.

Therefore, the answer is 8.

Final answer:

Baking soda, or sodium bicarbonate, when dissolved in water, has a basic pH close to 9.0, classifying it as a weak base.

Explanation:

When sodium bicarbonate, commonly known as baking soda, is dissolved in water, it exhibits basic properties. The pH of a baking soda solution is closest to 9.0, which means it is a weak base. Water is neutral with a pH of 7.0, whereas a substance with a pH higher than 7.0 is considered alkaline or basic.

The pH scale ranges from 0 to 14, with 7 being neutral. Acids have a pH less than 7, and bases have a pH greater than 7. The pH of a substance is determined by its concentration of hydronium ions. Baking soda has a lower concentration of hydronium ions compared to pure water, thereby making it a base with a pH higher than 7.

In practical applications, baking soda is used to neutralize acids, such as in bee sting treatments or when mixed with acetic acid in vinegar during bread preparation.

How much water should be added to 30 l of a 40 acid solution to reduce it to a 30 solution?

Answers

To solve this we use the equation, 

M1V1 = M2V2

where M1 is the concentration of the stock solution, V1 is the volume of the stock solution, M2 is the concentration of the new solution and V2 is its volume.

M1V1 = M2V2

40% x 30 L = 30% x V2

V2 = 40 L 

Therefore, you will need to have 30 mL of the 40% acid solution and 10 mL of distilled water. In mixing the two liquids, you should remember that the order of mixing would be acid to water. So, you use a 40 mL volumetric flask . Put small amount of distilled water and add the 30 mL of HCl solution. Lastly, dilute with distilled water up to the mark.

For the weak acid ch3cooh (acetic acid) that is titrated with a strong base (naoh), what species (ions/molecules) are present in the solution at the stoichiometric point?

Answers

This is a strong base / week acid reaction.

NaOH + CH3COOH

The equilibrium of this reaction is very displaced to the right leading to the formation of the products

Na CH3COO + H2O

Na CH3COOH is a ionic compound which in solutionn will be as Na (+) and CH3COOH(-)

=> CH3COOH + NaOH = CH3 COO(-) + Na(+) + H2O

So, the predominant species in the solution are the ions Na(+) and CH3COO(-).

In general, in an strong base / weak acid titration, the predominant species present at the stoichiometric point will be the cation of the strong base (Na+ in this case) and the conjugate base of the weak acid (the anion of the weak acid, which is CH3COO- in this case).

The answer is predominantly Na(+) and CH3COO(-); predominantly because it is an equlibrium which means that the rectants will also br present.
Final answer:

At the stoichiometric point of the titration of acetic acid with a strong base, the species present in the solution are acetate ions (CH3COO-) and water (H2O).

Explanation:

During the titration of acetic acid (CH3COOH) with a strong base (NaOH), at the stoichiometric point all of the acetic acid will have reacted with the sodium hydroxide. This means that the species present in the solution at the stoichiometric point are the acetate ions (CH3COO-) and water (H2O). The balanced chemical equation for the reaction is:

CH3COOH(aq) + NaOH(aq) → CH3COONa(aq) + H2O(l)

Which is the next logical step in balancing the given equation?
CS2(l) + Cl2(g) CCl4(l) + S2Cl2(l)
A.) Place the coefficient 2 in front of sulfur dichloride (S2Cl2).
B.)Place the coefficient 3 in front of the chlorine molecule.
C.)Leave the equation alone as it is already balanced.
D.) Place the coefficient 4 in front of carbon disulfide(CS2).
E.)Place the coefficient 2 in front of carbon tetrachloride(CCl4).

Answers

B. For balancing this equation: it originally starts with one carbon and two sulfurs and on the reactant side, you still end up with one carbon and two sulfurs. As for chlorine, to balance the equation you will need 6 chlorine molecules, and since chlorine is a diatomic molecule on the left it is Cl2. Therefore, to get 6 molecules of chlorine you will need 3 Cl2.

  CS2(l)  +Cl2(g)→CCl4(l)   + S2Cl2 (l)

The next  logical  step  in balancing  the  equation above is  place  the  coefficient  3  in front  of the chlorine  molecule  ( answer B)


  Explanation

When   coefficient 3  in placed in front  of   chlorine  molecule  the balanced equation is as below

CS2 (l)  +3Cl2 (g) → CCl4 (l)  + S2Cl2 (l)
According to the law  of mass  conservation  the  number of atom in side of reactant  should  be equal to the side of product.The  reaction above is balanced  because  the number of atom  is equal in both side.
For example  there  are 2 atoms of S in  side  of product  and 2 atoms of S in the product side.s

How many moles of H2O can be formed when 4.5 moles of NH3 react with 3.2 moles of O2?

4NH3 + 5O2 yields 4NO + 6H2O

A)3.8 mol H2O
B) 4.8 mol H2O
C) 6.4 mol H2O
D) 6.8 mol H2O

Answers

Hi Sentpain! Thanks for asking a question here on Brainly. 

Solving: 

4 NH3 +5 O2 = 4 NO + 6 H2O 

☛ Find the ratio for NH3 and O2. That's 4:3 
☛ 4.5 x 5 /4 = 5.6 
☛ Find the ratio for O2 and H2O. That's 5:6
 3.2 x 6 / 5 = 3.8

Answer: 3.8 mol H2O - choice A

Hope that helps! ★ If you have further questions about this question or need more help, feel free to comment below or leave me a PM. -UnicornFudge aka Nadia

Explain how the law of conservation of mass necessitates our balancing all chemical equations.

Answers

The law of conservation of mass states that energy can neither be created, nor destroyed. It applies to all the chemical equations because everything is about matter. Changing one chemical to another, changing forms, shapes, colors, types to other ones. But in each and every single process of this universe, nothing is created or destroyed. It's just the simplest to the most complex transfers of energy throughout the universe.
I hope this helped. 

How many moles of ammonium nitrate are necessary to form 0.692 moles water?

Answers

First step is to write the balanced equation as follows:
NH4NO3(aq)→N2O(g)+2H2O(l)
where (aq) means aqueous and (l) means liquid

From this equation, we find that 1 mole of NH4NO3 yields 2 moles of H2O, thus the ratio between them is 1/2

Now, to get the number of moles (assume it is given the symbol 'n') of ammonium nitrate to form 0.692 moles of water:
n = 0.692 x (1/2) = 0.346 moles

When you hear the word decahydrate, what number should be written in front of the formula for water?

Answers

10, deca means ten a decagon is a ten side polygon, a decimetre is one tenth of a metre a decade is ten years so your answer is ten.

Which is the correct formula for the compound made when aqueous solutions containing a dissolved magnesium compound and a dissolved chloride compound are mixed?

Answers

it would be MgCl₂ ~ Magnesium Chloride. 

Answer:

The correct formula for the compound made when aqueous solutions containing a dissolved Magnesium and Chloride are mixed is Magnesium chloride [tex]MgCl_2[/tex]

Explanation:

If we suppose the existence of two components in aqueous solutions containing Magnesium and Chloride. For example: Hydrochloric acid - HCl and Magnesium hydroxide - [tex]Mg(OH)_2[/tex].

The global reaction would be:  

HCl + [tex]Mg(OH)_2[/tex] --> [tex]MgCl_2[/tex] + [tex]H_2 O[/tex]

It means, Hydrochloric acid is neutralized with Magnesium hydroxide to produce Magnesium chloride and Water.  

Besides of that, we can analyze the aqueos solution of every componenent:

For Hydrochloric acid:

HCl + [tex]H_2 O[/tex] --> [tex]H_3O^+[/tex] + [tex]Cl^-[/tex]

For Magnesium hydroxide

[tex]Mg(OH)_2[/tex] +  [tex]H_2 O[/tex] --> [tex]H_2O-(OH)^-[/tex] + [tex]Mg^+2[/tex]

Finally, the ionic compounds will form the salt:

[tex]Mg^+2[/tex] + [tex]Cl^-[/tex] ->  [tex]MgCl_2[/tex]

 

Adding a base tends to _____ of a solution. (etext concept 3.3)

Answers

we are adding base to a solution so OH- increases and pH increases ,too.
Final answer:

Adding a base to a solution reduces its acidity by releasing hydroxyl ions or absorbing H* already present in the solution. The relative strength of a base is indicated by its base-ionization constant, and buffered solutions experience slight changes in pH when acid or base is added.

Explanation:

Adding a base to a solution tends to reduce the acidity of the solution. A base is a substance that releases hydroxyl ions (OH) in solution, or one that accepts H* already present in solution. These hydroxyl ions or other basic substances combine with H* to form a water molecule, thereby removing H* and reducing the solution's acidity. This process is reflected in the base-ionization constant (K), which reflects the relative strength of a base in solution. A stronger base has a larger ionization constant than does a weaker base, resulting in a larger reduction in solution acidity. In addition, solutions that contain appreciable amounts of a weak conjugate acid-base pair are known as buffers. These buffered solutions generally experience only slight changes in pH when small amounts of acid or base are added due to their buffer capacity.

Learn more about Base and Acidity here:

https://brainly.com/question/31590862

#SPJ3

How many oxygen atoms are there in 7.00 g of sodium dichromate, na2cr2o7?

Answers

From the periodic table:
molar mass of sodium = 23 gm
molar mass of Cr = 51.99 gm
molar mass of oxygen = 16 gm

molar mass of Na2Cr2O7 = 2(23) + 2(51.99) + 7(16) = 261.98 gm

number of moles in 7 gm = mass / molar mass = 7 / 261.98 = 0.0267 moles

1 mole of  Na2Cr2O7  contains 7 moles of oxygen, therefore:
number of moles of oxygen in 0.0267 moles = 0.0267 x 7 = 0.1869 moles

To find the number of atoms, we multiply the number of moles by Avogadro's number as follow:
number of atoms = 0.1869 x 6.02 x 10^23 = 1.125138 x 10^23 atoms

[tex]\boxed{1.1255 \times {{10}^{23}}{\text{ atoms}}}[/tex] of oxygen are present in 7.00 g of sodium dichromate.

Further Explanation:

Given information:

Mass of sodium dichromate: 7.00 g

To calculate:

Number of oxygen atoms in 7.00 g of sodium dichromate

Steps to proceed:

I. First of all, moles of sodium dichromate that are present in 7.00 g of sodium dichromate are to be calculated. This is done with the help of equation (1) as mentioned below.

The formula to calculate moles of sodium dichromate [tex]\left( {{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}} \right)[/tex] is as follows:

[tex]{\text{Moles of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}} = \dfrac{{{\text{Mass of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}}}{{{\text{Molar mass of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}}}[/tex]                                               …… (1)

The mass of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}[/tex] is 7.00 g.

The molar mass of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}[/tex] is 261.97 g/mol.

Substitute these values in equation (1).

[tex]\begin{aligned}{\text{Moles of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}} &= \frac{{{\text{7}}{\text{.00 g}}}}{{{\text{261}}{\text{.97 g/mol}}}} \\ &= 0.0267{\text{ mol}} \\ \end{aligned}[/tex]  

II.Moles of oxygen that are present in 0.267 moles of sodium dichromate are to be calculated.

According to the chemical formula of sodium dichromate, it is evident that one mole of sodium dichromate contains two moles of sodium, two moles of chromium and seven moles of oxygen in it. Since one mole of sodium dichromate consists of seven moles of oxygen, moles of oxygen present in 0.267 moles of sodium dichromate can be calculated as follows:

[tex]\begin{aligned}{\text{Moles of oxygen}} &= \left( {0.0267{\text{ mol N}}{{\text{a}}_2}{\text{C}}{{\text{r}}_4}{{\text{O}}_7}} \right)\left( {\frac{{7{\text{ mol O}}}}{{{\text{1 mol N}}{{\text{a}}_2}{\text{C}}{{\text{r}}_4}{{\text{O}}_7}}}} \right) \\&= 0.1869{\text{ mol O}} \\\end{aligned}[/tex]  

III. Number of oxygen atoms that are present in 0.1869 moles of oxygen is to be calculated. This is done with the help of Avogadro’s law which states that one mole of a substance contains [tex]6.022 \times {10^{23}}{\text{ particles}}[/tex] . Such particles can be atoms, molecules, or formula units.

Since one mole of oxygen contains [tex]6.022 \times {10^{23}}{\text{ atoms}}[/tex], atoms of oxygen present in 0.1869 moles of oxygen can be evaluated as follows:

[tex]\begin{aligned}{\text{Number of oxygen atoms}} &= \left( {0.1869{\text{ mol}}} \right)\left( {\frac{{6.022 \times {{10}^{23}}{\text{ atoms}}}}{{{\text{1 mol}}}}} \right) \\&= 1.1255 \times {10^{23}}{\text{ atoms}} \\\end{aligned}[/tex]  

Hence, [tex]1.1255 \times {10^{23}}{\text{ atoms}}[/tex] of oxygen are present in 7.00 g of sodium dichromate.

Learn more:

How many moles of Cl are present in 8 moles of [tex]{\text{CC}}{{\text{l}}_4}[/tex]? https://brainly.com/question/3064603 Calculate the moles of ions in HCl solution: https://brainly.com/question/5950133

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole concept

Keywords: sodium dichromate, oxygen, mass, molar mass, 7.00 g, 1.1255*10^23 atoms, Avogadro’s law, one mole, atoms, molecules, particles.

What state of change do atoms or molecules become more ordered?

Answers

When they become a solid, as in a solid the particles are packed tightly together and have little space between them, thus at solid state , particles are more ordered.

A solution with a hydrogen ion concentration of 3.25 × 10-2 m is ________ and has a hydroxide concentration of _______

Answers

To know the acidity of a solution, we calculate the pH value. The formula for pH is given as:

pH = - log [H+]            where H+ must be in Molar

We are given that H+ = 3.25 × 10-2 M

Therefore the pH is:

pH = - log [3.25 × 10-2] 

pH = 1.488

Since pH is way below 7, therefore the solution is acidic.

 

To find for the OH- concentration, we must remember that the product of H+ and OH- is equivalent to 10^-14. Therefore,

[H+]*[OH-] = 10^-14 
[OH-] = 10^-14 / [H+]

[OH-] = 10^-14 / 3.25 × 10-2

[OH-] = 3.08 × 10-13 M

 

Answers:

Acidic

[OH-] = 3.08 × 10-13 M

Final answer:

The hydrogen ion concentration is 3.25 × 10-2 M, indicating an acidic solution with a pH of 1.49. The hydroxide concentration is 3.08 × 10-13 M.

Explanation:

In this question, the hydrogen ion concentration is given as 3.25 × 10-2 M. This concentration indicates that the solution is acidic, with a pH value equal to -log[H3O+]. Therefore, pH = -log(3.25 × 10-2) = 1.49.

The hydroxide concentration can be calculated using the formula: [OH-] = Kw/[H3O+]. At 25°C, the value of Kw (the ion-product constant for water) is 1.0 × 10-14. Therefore, [OH-] = 1.0 × 10-14 / 3.25 × 10-2 = 3.08 × 10-13 M.

Why doesn't oil dissolve in water? oil molecules are non–polar. oil molecules carry a net negative charge. oil molecules carry a net positive charge?

Answers

oil molecules are non–polar.

1. How many milliliters of a 0.184 M NaNO3 solution contain 0.113 moles of NaNO3?ans:614 mL

Answers

C=0.184 mol/L
n=0.113 mol

n=CV

V=n/C

V=0.113/0.184=0.614 L = 614 mL

Explanation:

The given data is as follows.

        Molarity of solution = 0.184 M

        Volume of solution = ?

         number of moles = 0.113 mol

As molarity is the number of moles present in liter of solvent.

Mathematically,      Molarity = [tex]\frac{\text{No. of moles}}{\text{Volume}}[/tex]

Hence, calculate the volume of given solution as follows.

                  Molarity = [tex]\frac{\text{No. of moles}}{\text{Volume}}[/tex]

                  0.184 M = [tex]\frac{0.113 mol}{volume}[/tex]

                     volume = 0.614 L

As 1 L = 1000 mililiter. Hence convert 0.614 L into ml as follows.

                      [tex]0.614 L \times \frac{1000 ml}{1 L}[/tex]

                       = 614 ml

Thus, we can conclude that the volume of given solution is 614 ml.

If the half-life of a radioisotope is 20,000 years, then a sample in which three-quarters of that radioisotope has decayed is ___________ years old

Answers

25% remaining = 40,000 years old

What is the molar concentration of potassium ions in a 0.250 m k2so4 solution?

Answers

Answer : The molar concentration of [tex]K^+[/tex] ion is, 0.5 M

Explanation :

The dissociation reaction of [tex]K_2SO_4[/tex] is,

[tex]K_2SO_4(aq)\rightarrow 2K^+(aq)+SO_4^{2-}(aq)[/tex]

By the stoichiometry we can say that, 1 mole of [tex]K_2SO_4[/tex] dissociates into 2 mole of [tex]K^+[/tex] ions and 1 mole of [tex]SO_4^{2-}[/tex] ions.

As we  are given the concentration of [tex]K_2SO_4[/tex] is, 0.250 M.

So, the molar concentration of [tex]K^+[/tex] ion = [tex]2\times 0.250=0.5M[/tex]

The molar concentration of [tex]SO_4^{2-}[/tex] ion = 0.250 M

Therefore, the molar concentration of [tex]K^+[/tex] ion is, 0.5 M

[Gradpoint-Question AK-4] Which equation represents a combustion reaction?

A: Ca + 2H Cl -----> CaCl₂ + H₂
B: Pb(NO₃)₂ +2HCl -----> PbCl₂ + 2HNO₃
C: 2SO₂ + O₂ ------> 2SO₃
D: 2C₂H₆ + 7O₂ -----> 4CO₂ + 6H₂O

This question is worth 40 points. So please answer carefully. I'm bad at Chemical equations.

Answers

The answer is D. It's combustion of ethane to carbon dioxide and water (complete combustion).

The equation represents a combustion reaction is -

D: 2C₂H₆ + 7O₂ -----> 4CO₂ + 6H₂O

A reaction involves a substance reacting with oxygen and releasing energy in form of light or heat, such a chemical reaction is called a combustion reaction.

Burning coal, methane gas, and sparklers are all common examples of combustion reactions

2C₂H₆ + 7O₂ -----> 4CO₂ + 6H₂O

Here ethane reacts with oxygen and releases carbon dioxide and water with a high amount of energy. Pb(NO₃)₂ +2HCl -----> PbCl₂ + 2HNO₃ is a double replacement, acid-base reaction. It is also called a neutralization reaction.2SO₂ + O₂ ------> 2SO₃ is a combination reaction that is an example of an oxidation-reduction reaction. Ca + 2H Cl -----> CaCl₂ + H₂ is a single replacement reaction that is also an example of oxidation-reduction reaction

Thus, the equation represents a combustion reaction is -

D: 2C₂H₆ + 7O₂ -----> 4CO₂ + 6H₂O

Learn more:

https://brainly.com/question/21170540

What is the balanced equation when aluminum reacts with copper (ii) sulfate in a single displacement reaction?

Answers

This will be the balanced equation: 2Al + 3CuSO4 -> 3Cu + Al2(SO4)3.

The balanced equation is :

2Al + 3CuSO4 -> 3Cu + Al2(SO4)3.

What happens in a single displacement reaction?

A single-displacement reaction takes place while an element replaces any other element in a compound. A metallic handiest replaces steel, and a nonmetal only replaces a nonmetal. only a greater reactive element can update the opposite element within the compound with which it reacts.

A single substitute response, now and again known as a single displacement response, is a reaction in which one element is substituted for another detail in a compound. The starting materials are continually natural elements, which include pure zinc steel or hydrogen fuel, plus an aqueous compound.

To determine whether or not a given single replacement will occur, you have to use an “activity series” table. If the metal or the halogen is above the detail it will replace based totally on the hobby series, a single displacement response will occur. Examples of displacement reactions are The reaction among iron and copper sulphate to present iron sulphate as a product. here, iron displaces copper due to the fact iron is extra reactive than copper. The response between zinc and iron sulphate to offer zinc sulphate as a product.

Learn more about single displacement reaction here https://brainly.com/question/11904766

#SPJ2

42.5 grams of an unknown substance is heated to 105.0 degrees Celsius and then placed into a calorimeter containing 110.0 grams of water at 24.2 degrees Celsius. If the final temperature reached in the calorimeter is 32.4 degrees Celsius, what is the specific heat of the unknown substance?

Show or explain the work needed to solve this problem, and remember that the specific heat capacity of water is 4.18 J/(°C x g).

Answers

q = mcΔT 
 = 110.0g * 4.18J/(°C x g) * 8.2°C
 = 3770.36 J

3770.36 J = 42.5 g * c * 72.6°C

c = 1.222 J/(°C x g)

Answer:The specific heat of the unknown substance is 1.22 J/ °Cg.

Explanation:

Heat absorbed by the water .

Mass of the water = 110.0 g

Change in temperature of water = [tex]\Delta T=32.4^oC-24.2^oC=8.2^oC[/tex]

[tex]Q=mc\Delta T=110.0g\times 4.18 J/^oCg\times 8.2^oC=3,770.36 J[/tex]

Heat lost by substance(Q') = Heat gained by the water(Q)

-Q' = Q

Change in temperature of the substance =

[tex]\Delta T'=(32.4^oC)-105.0^oC=-72.6 ^oC[/tex]

Mass of the substance = m'=42.5 g

Specific heat of substance = c'

[tex]-(m'\times c'\times \Delta T')=3,770.36 J[/tex]

[tex]c'=\frac{3,770.36 J}{42.5 g\times 72.6^oC}=1.22 J/^oCg[/tex]

The specific heat of the unknown substance is 1.22 J/ °Cg.

A considerable amount of heat is required for the decomposition of aluminum oxide. 2 al2o3(s) â 4 al(s) + 3 o2(g) δh = 3352 kj (a) what is the heat change for the formation of 1 mol of aluminum oxide from its elements?

Answers

Final answer:

The heat change for the formation of 1 mol of aluminum oxide from its elements is 1676 kJ.

Explanation:

The heat change for the formation of 1 mol of aluminum oxide from its elements can be calculated using the information provided in the question. We know from the given thermochemical equation that the decomposition of 2 mol of aluminum oxide releases 3352 kJ of heat. Therefore, we can set up a proportion to find the heat change for the formation of 1 mol of aluminum oxide:

3352 kJ / 2 mol = x kJ / 1 mol

Solving for x gives us the heat change for the formation of 1 mol of aluminum oxide, which is 1676 kJ.

The compound ch3 - ch2 - sh is in the organic family known as

Answers

The name of these family is thiols
Final answer:

The compound CH3-CH2-SH belongs to the organic family known as Thiols. Thiols are structurally similar to alcohols but the oxygen atom in alcohols is replaced by sulfur in thiols. Both thiols and alcohols belong to a larger class called the Hydrocarbon Derivatives.

Explanation:

The compound you mentioned, CH3-CH2-SH, falls into the organic family categorized as 'Thiols'. Thiols are similar to alcohols in structure, but they have a sulfur atom rather than an oxygen atom. They are identified by the -SH or sulfhydryl functional group. Like the hydroxyl group in an alcohol, this sulfhydryl group gives a thiol its properties.

For example, the compound CH3-SH, also known as 'Methanethiol', is analogous to the alcohol methanol. Both thiols and alcohols are part of a larger class called the 'Hydrocarbon Derivatives'. As the name suggests, these are derived from hydrocarbons by replacing one or more hydrogen atoms with a functional group, which in this case is either a hydroxyl group (-OH) for alcohols or a sulfhydryl group (-SH) for thiols.

Learn more about Thiols here:

https://brainly.com/question/35084168

#SPJ6

What would be the volume in liters of an ideal gas, if a 0.425 mole sample of the gas had a temperature of 900 degrees celsius at a pressure of 3.00 atmospheres? (the ideal gas constant is 0.0821 l•atm/mol•k.)?

Answers

The ideal gas law relates the pressure (P), volume (V), number of moles (n), and temperature (T) of a given ideal gas through the equation,

                                 PV = nRT 

If we are to determine the volume of the gas, we derive the equation such that it takes the form of,
                                 V = nRT/P

Substituting,
             V = (0.425 mol)(0.0821 L.atm/mol.K)(900 + 273 K) / 3 atm

                            V = 13.64 L

Thus, the volume of the ideal gas is approximately 13.64 L. 

Which best explains why scientific theories grow stronger over time?

A.) As more scientist attempt to find holes in the current theory adjustments are made which make the theory stronger

B.) More students are taught about the theory and so there are more people who will leave the theory to be true

C.) Scientists believe that older theories are stronger than newer theories

D.) New evidence is ignored if it's contradicts to the older more accepted theories
I need the best answers please!

Answers

Scientific theories become stronger over time primarily because scientists continuous attempt to challenge and refine them, which leads to improvements and adjustments that further solidify the theory.

The best explanation for why scientific theories grow stronger over time is option A: 'As more scientist attempt to find holes in the current theory adjustments are made which make the theory stronger.' Scientific theories are rigorously tested and often challenged by researchers who seek to uncover any weaknesses or inconsistencies. When such efforts are made, they can lead to refinements and adjustments that subsequently strengthen the theory. This process may involve incorporating new evidence, reinterpreting existing data, or modifying theoretical frameworks to better explain the phenomenon in question.

Scientific theory is not just an educated guess; it is a comprehensive explanation supported by many research studies that collectively provide falsifiable evidence. Throughout history, theories such as the heliocentric model have been revised and strengthened through this process. It is by this meticulous scrutiny, including the elimination of competing hypotheses and the aggregation of reliable evidence, that a scientific theory matures and gains acceptance.

The statement which best explains why scientific theories grow stronger over time is A.) As more scientists attempt to find holes in the current theory, adjustments are made which make the theory stronger.

Scientific theories are dynamic and grow stronger through a process of rigorous testing, criticism, and refinement. When scientists develop a theory, they propose explanations for phenomena observed in the natural world. These theories are not merely guesses; they are grounded in substantial evidence that has been gathered through experimentation and observation. The process of scientific investigation includes trying to refute or find the limitations of current theories. As researchers explore these theories in different contexts and conditions, they either gather more evidence that supports the theory or uncover discrepancies that prompt modifications. This critical assessment and ongoing peer review contribute to the strength and reliability of scientific theories over time. Each time a theory withstands scrutiny or is adjusted to incorporate new data, it becomes more robust and dependable. Scientific theories are considered strong because they have been tested and falsified repeatedly, not because they are simply old or widely taught. It is the accumulation of evidence and the continuous critical analysis by the scientific community that gradually builds the strength of a theory.

A sample of cacl2⋅2h2o/k2c2o4⋅h2o solid salt mixture is dissolved in ~150 ml de-ionized h2o. the oven dried precipitate has a mass of 0.333 g. the limiting reactant in the salt mixture is k2c2o4⋅h2o. cacl2⋅2h2o(aq) + k2c2o4⋅h2o(aq) à cac2o4⋅h2o(s) + 2kcl(aq) + 2h2o(l) starting material (sm) product molar mass (mm) g/mol: cacl2⋅2h2o = 147.02 k2c2o4⋅h2o = 184.24 cac2o4 = 128.10 determine mass of k2c2o4⋅h2o(aq) in salt mixture in grams. answer to 3 places after the decimal and include unit, g

Answers

Answer: The mass of [tex]K_2C_2O_4.H_2O[/tex] in the salt mixture is 0.424 grams.

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

For [tex]CaC_2O_4.H_2O[/tex] :

Given mass of [tex]CaC_2O_4.H_2O[/tex] = 0.333 g

Molar mass of [tex]CaC_2O_4.H_2O[/tex] = 146.12 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of}CaC_2O_4.H_2O=\frac{0.333g}{146.12g/mol}=0.0023mol[/tex]

The given chemical equation follows:

[tex]CaCl_2.2H_2O(aq.)+K_2C_2O_4.H_2O(aq.)\rightarrow CaC_2O_4.H_2O(s)+2KCl(aq.)+2H_2O(l)[/tex]

By Stoichiometry of the reaction:

1 mole of [tex]CaC_2O_4.H_2O[/tex] is produced by 1 mole of [tex]K_2C_2O_4.H_2O[/tex]

So, 0.0023 moles of [tex]CaC_2O_4.H_2O[/tex] will be produced by = [tex]\frac{1}{1}\times 0.0023=0.0023mol[/tex] of [tex]K_2C_2O_4.H_2O[/tex]

Now, calculating the mass of [tex]K_2C_2O_4.H_2O[/tex] by using equation 1, we get:

Molar mass of [tex]K_2C_2O_4.H_2O[/tex] = 184.24 g/mol

Moles of [tex]K_2C_2O_4.H_2O[/tex] = 0.0023 moles

Putting values in equation 1, we get:

[tex]0.0023mol=\frac{\text{Mass of }K_2C_2O_4.H_2O}{184.24g/mol}\\\\\text{Mass of }K_2C_2O_4.H_2O=(0.0023mol\times 184.24g/mol)=0.424g[/tex]

Hence, the mass of [tex]K_2C_2O_4.H_2O[/tex] in the salt mixture is 0.424 grams.

Final answer:

The mass of K2C2O4·H2O in the salt mixture is calculated using the molar mass and the moles of the precipitate formed in the reaction, resulting in a mass of 0.479 g.

Explanation:

To determine the mass of K2C2O4·H2O in the salt mixture, we start by identifying that the precipitate formed, CaC2O4·H2O, has a molar mass of 128.10 g/mol and a measured mass of 0.333 g. Using this information, the number of moles of CaC2O4·H2O can be calculated as moles = mass / molar mass = 0.333 g / 128.10 g/mol.

This results in 2.60 x 10-3 moles of CaC2O4·H2O. Since the reaction shows that K2C2O4·H2O and CaCl2·2H2O react in a 1:1 mole ratio to form the precipitate, the same number of moles is used for K2C2O4·H2O. The mass of K2C2O4·H2O can be found by multiplying the number of moles by its molar mass (2.60 x 10-3 moles x 184.24 g/mol).

The resulting mass of K2C2O4·H2O in the salt mixture is 0.479 g, to three decimal places.

Earth's climate has been stable throughout its history. True False

Answers

the answer would be false......

Given an initial cyclopropane concentration of 0.00560 m, calculate the concentration of cyclopropane that remains after 1.50 hours.

Answers

We can solve this problem by assuming that the decay of cyclopropane follows a 1st order rate of reaction. So that the equation for decay follows the expression:

A = Ao e^(- k t) 

Where,

A = amount remaining at time t = unknown (what to solve for) 
Ao = amount at time zero = 0.00560 M 
k = rate constant
t = time = 1.50 hours or 5400 s 

The rate constant should be given in the problem which I think you forgot to include. For the sake of calculation, I will assume a rate constant which I found in other sources:

k = 5.29× 10^–4 s–1                     (plug in the correct k value)

Plugging in the values in the 1st equation:

A = 0.00560 M * e^(-5.29 × 10^–4 s–1 * 5400 s )

A = 3.218 × 10^–4 M           (simplify as necessary)

To calculate the concentration of cyclopropane that remains after 1.50 hours, we need to use the first-order integrated rate law equation. Without the rate constant, we cannot calculate the exact concentration, but we can determine that it will be less than 0.200 mol/L.

To calculate the concentration of cyclopropane that remains after 1.50 hours, we need to use the first-order integrated rate law. The rate constant for the reaction is not given, so we cannot calculate it. However, we can use the given information that at 10.0 minutes (0.1667 hours) the concentration of cyclopropane is 0.200 mol/L and find the concentration at 1.50 hours using the integrated rate law equation:

[tex][C] = [C]0 * e^(-kt)[/tex]

where [C] is the concentration at time t, [C]0 is the initial concentration, k is the rate constant, and t is the time.

Given [C]0 = 0.200 mol/L, t = 1.50 hours, and [C] = ?

Let's solve the integrated rate law equation:

Plug in the known values:

[tex][C] = 0.200 * e^(-k*1.50)[/tex]

Since the rate constant is not given, we cannot calculate the exact concentration. However, we can still make a general qualitative statement that the concentration will be less than 0.200 mol/L.

Learn more about concentration here:

https://brainly.com/question/4445420

#SPJ6

Sodium hydrogen carbonate nahco3 , also known as sodium bicarbonate or "baking soda", can be used to relieve acid indigestion. acid indigestion is the burning sensation you get in your stomach when it contains too much hydrochloric acid hcl , which the stomach secretes to help digest food. drinking a glass of water containing dissolved nahco3 neutralizes excess hcl through this reaction: hcl (aq) nahco3 (aq) â nacl (aq) h2o (l) co2 (g) the co2 gas produced is what makes you burp after drinking the solution. suppose the fluid in the stomach of a man suffering from indigestion can be considered to be 250.ml of a 0.076 m hcl solution. what mass of nahco3 would he need to ingest to neutralize this much hcl

Answers

Molarity = number pf moles / volume in liters.
Number of moles of HCl needed to be neutralized = molarity * volume = 0.076 * 250/1000 = 0.019 moles.
HCl + NaHCO3 = NaCl + H2O = CO2
1 mole of HCl reacts with 1 mole of NaHCO3
1 mole of NaHCO3 = 23 + 1 + 14 + 3*16 = 86 grams.
1 mole HCl reacts with 86 g
0.019 moles reacts with x g
x = 0.019 * 86 = 1.634 grams

Answer:

1.596 g

Explanation:

The neutralization reaction is:

NaHCO₃ + HCl → NaCl + H₂O + CO₂

The number of moles of the acid in stomach is the volume (250.0 mL = 0.250 L) multiplied by the molar concentration (0.076 M):

n = 0.250 * 0.076 = 0.019 mol of HCl

By the stoichiometry of the reaction, 1 mol of NaHCO₃ is needed to neutralize 1 mol of HCl, so it'll be necessary 0.019 mol of sodium bicarbonate.

The molar mass of NaHCO₃ is 84 g/mol, thus the mass of it is:

m = number of moles * molar mass

m = 0.019 * 84

m = 1.596 g

How many milliliters of calcium, with a density of 1.55 g/mL, are needed to produce 85.8 grams of calcium fluoride in the single replacement reaction below? Show all steps of your calculation as well as the final answer.

Unbalanced equation: Ca + HF yields CaF2 + H2

Answers

Answer: 55.35ml

Explanation:

[tex]Ca+2HF\rightarrow CaF_2+H_2[/tex]

To calculate the given moles, we use the formula:

[tex]Moles=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

[tex]Moles=\frac{85.8g}{78g/mol}=1.1moles[/tex]

By  stoichiometry of the reaction,

1 mole of [tex]CaF_2[/tex]  is produced by 1 mole of Ca

1.1 moles of [tex]CaF_2[/tex]  are produced by=[tex]\frac{1}{1}\times 1.1=1.1 moles[/tex] of Ca.

Mass of [tex]CaF_2=\text{no of moles}\times \text{Molar mass}[/tex]

Mass of [tex]CaF_2=1.1\times {78}=85.8g[/tex]

[tex]Volume=\frac{Mass}{Density}[/tex]

[tex]Volume=\frac{85.8g}{1.55g/ml}=55.35ml[/tex]



The ka value for acetic acid, ch3cooh(aq), is 1.8× 10–5. calculate the ph of a 1.60 m acetic acid solution.

Answers

Final answer:

To calculate the pH of a 1.60 M acetic acid solution, use the ionization constant (Ka) of acetic acid, set up an ICE table, and solve for x to find the concentration of the hydronium ion (H3O+). Then, calculate the pH using the equation pH = -log[H3O+]. The pH of the acetic acid solution is approximately 1.5873.

Explanation:

To calculate the pH of a 1.60 M acetic acid solution, we can use the ionization constant (Ka) of acetic acid and the relationship between the concentration of the acid, its conjugate base, and the pH. The Ka value for acetic acid is 1.8×10-5. Since acetic acid is a weak acid, we can assume that the concentration of the hydronium ion (H3O+) is equal to the concentration of the acid that has ionized.

Using the equation Ka = [H3O+][C2H3O2]/[HC2H3O2], we can set up an ICE table to calculate the concentration of the hydronium ion:

Initial concentration: [H3O+] = unknown, [C2H3O2] = 0, [HC2H3O2] = 1.60 MChange in concentration: [H3O+] = -x, [C2H3O2] = x, [HC2H3O2] = -xEquilibrium concentration: [H3O+] = 1.60 - x, [C2H3O2] = x, [HC2H3O2] = 1.60 - x

Substituting these values into the Ka expression, we get 1.8×10-5 = (1.60 - x)(x)/(1.60 - x). Solving for x gives us x ≈ 0.0127 M. Since [H3O+] = 1.60 - x, the pH of the solution is approximately 1.60 - 0.0127 = 1.5873.

Learn more about Calculating pH of acetic acid solution here:

https://brainly.com/question/33949075

#SPJ12

Final answer:

The pH of a 1.60 M acetic acid solution can be calculated using the equilibrium constant expression and initial concentration. The pH is equal to -log[H3O+]. The pH of this particular solution is 2.37.

Explanation:

The pH of a 1.60 M acetic acid solution can be calculated using the equation:

pH = -log[H3O+]

First, we need to find the concentration of the hydronium ion, [H3O+]. To do this, we use the equilibrium constant expression for acetic acid, which is Ka = [H3O+][CH3CO2-] / [CH3COOH]. With a given Ka value of 1.8 × 10-5 and a concentration of acetic acid of 1.60 M, we can plug in these values to find the concentration of [H3O+], which is then used to calculate the pH.

Therefore, the pH of a 1.60 M acetic acid solution is 2.37.

Learn more about pH of acetic acid solution here:

https://brainly.com/question/33949075

#SPJ11

Other Questions
What percentage of muscle weight would you have if 60 pounds out of 140 pounds is muscle weight? write a story problem that can be solved using the equation: 18.500.5=x The interaction of genetic predispositions, mental processes, and cultural circumstances is most clearly emphasized by How many ships did agamemnon send to troy? How do you complete the square using fractions How to factor quadratic expressions in General Sarah can recite her speech for her oral communications class perfectly when she is alone. however, when she is in front of the group she often loses her "train of thought" because of her concern that the audience is judging her performance. sarah's performance has been influenced by: x+3menor que 8 qual o resultado What do the parallel lines shown on segment BD and segment DC represent? A total of644tickets were sold for the school play. They were either adult tickets or student tickets. There were56fewer student tickets sold than adult tickets. How many adult tickets were sold? Classical psychoanalytic theory emphasizes the power of unconscious ___________ in moral development, but other theorists, such as damon, emphasize the role of _________. empathy; guilt guilt; empathy empathy; justification justification; guilt Since the late 1970s, most american families have seen their income growth stagnate, with income rising only slightly more than inflation. this has changed many americans consumers' concept of Determine the total relevant cost per unit if starters are purchased from an outside supplier. Suppose triangle ABC has vertices at A(1, 0), B(10, 0), and C(2, 6). After a 60 counterclockwise rotation about the origin, vertex B' has coordinates (5, ?). Match each word from Column A with the correct definition from Column B. Column AColumn B 1. impulse 2. muster 3. naught 4. renown 5. vacancy 6. thrifty A. the state of being empty or not filled B. nothing, nonexistence C. to stir up or bring to action D. a sudden stirring to do something E. fame F. careful with money Mr. wayne is scheduled to have a visual examination of the distal end of his descending colon that leads into the rectum. this procedure is called Bolivia tiene dos ciudades capitales diferentes. cierto falso The renal corpuscle consists of a capillary bed called the ____________ and a capsule of epithelial cells. Oliver earns $9 per hour. Write and solve equation to find how many hours he mustwork to earn in your equation. $315. to define the variable you use What similarities, if any, do Jim Smiley and the narrator share?